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Experiments with Variance Estimation from
Survey Data with Imputed Values

Hyunshik Lee', Eric Rancourt', and Carl E. Sirndal’

Abstract: Missing data occur in almost all
surveys and frequently some form of
imputation is used to obtain a completed
data set. It is well known that the ordinary
variance formula applied to the data with
imputed values generally underestimates
the variance. There have been some pro-
posals to remedy this problem. One is the
well known multiple imputation. This
method, however, requires generating two
or more completed data sets, which may
be seen as a disadvantage in some appli-
cations. Recently, Sirndal proposed a
variance estimation method for single
imputation using a model-assisted approach

1. Introduction

Let yy = (1/N)Zyy, be the mean of the
finite population U = {1,...,k,...,N}. A
simple random sample without replace-
ment (SRSWOR), s, of size n is drawn
from U to estimate j;. Denote by r the set
of responding units; let m be the size of r.
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to the problem. Rao also proposed a method
based on the two-phase sampling approach
for single imputation. In this article, these
methods are studied by the Monte Carlo tech-
nique together with other methods including
multiple imputation methods, under 12 arti-
ficially generated populations representing a
variety of forms and three response mechan-
isms of which two are confounded, that is,
they depend on the values of the variable of
interest.

Key words: Model-assisted approach; ratio
imputation; multiple imputation; Monte
Carlo study.

The nonresponse set is s —r; its size is
n — m. For every unit k € r, the value y; is
observed. However, for the units k € s — r,
the y;-values are missing, and imputed
values are derived with a specified impu-
tation method. The six imputation methods
studied in this paper are defined in the
following.

If a single value imputation is used for
each missing observation, the imputation
leads to a completed data set, called the
data after imputation. This data set is
denoted as {y., : k € s}, where y.; equals
the observed value y, if k is a responding
unit, that is, if k €r, and y.; equals the
imputed value if & is a nonresponding unit,
that is, if kK € s — r. The population mean
is then estimated by 7.,= (1/n)Z,y .
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We assume that imputation is carried out
with the aid of an auxiliary variable, x, such
that x,, the value of x for unit &, is known
and positive for every k € s. That is, the
data x, = {x; : k € s} are known.

Given s, the response set r is realized by
an unknown probability distribution called
the response mechanism. In general, when
the sample s has been drawn, the probabil-
ity that the response set r is realized is
given by ¢(rls) = q(rls, z5, ys), where y, =
{yx : k € s}. The response mechanism is
called unconfounded in the particular case
where ¢(r|s) = q(r|z;), and the response
probabilities satisfy Pr(k € r|s) > 0 for all
k € 5. Otherwise, the response mechanism
is confounded. Our distinction between con-
founded and unconfounded mechanisms
corresponds closely to the one made by
Rubin (1983, 1992). An unconfounded
mechanism may depend on the sample x-
data, x;, but not on the sample y-data, y,,
so we can still have response probabilities
Pr(k € r|s) that vary with k; for example,
Pr(k € r|s) may be a function of x; but not
of y;. An unconfounded response mechan-
ism such that the units respond indepen-
dently with constant response probabilities
Pr(k € r|s) for all k € s is called uniform.
(A distinction is often made between ignor-
able and nonignorable response mechan-
isms, see, for example Rubin (1983, 1987).
This distinction is based on a property of
the posterior distribution of the unobserved
y-values. Because we are interested in
randomization inference rather than Baye-
sian inference, the distinction between con-
founded and unconfounded mechanisms is
more suited for this article.)

The imputation methods considered in
the Monte Carlo study are: (i) ratio impu-
tation; (ii) nearest neighbor imputation.
The main objective in this study is to com-
pare different estimators of the variance of
the estimator y.,. Both single imputation
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and multiple imputation variance estimators
are considered.

2. Description of the Variance Estimators
Studied

The point estimator of j; for the single
imputation methods is given by the mean
of the data after imputation, y.; = (1/n)
¥,y.x. The estimator formula is thus the
same as the one that would be used in the
case of 100% response. Since this formula
is calculated on data after imputation,
there is an implicit assumption that a negli-
gible bias is caused by replacing missing
data by imputed values. This assumption
is often violated, particularly when the non-
response mechanism is confounded.

For the multiple imputation methods, we
used M =2 repeated imputations. This
implies that the point estimator is calcu-
lated as the average of the means of two
sets of data after imputation. In the multi-
ple imputation methods, too, the bias of
the point estimator can be considerable
when the nonresponse is confounded.

We now define the variance estimators
used in the study.

2.1. Ratio imputation

Consider first the single value imputation. If
unit k requires imputation, the value Bx is
imputed, where B = (X,y;)/Z,xx). The data
after imputation are therefore

ifker

Vs
x=1\ & 2.1
Vo <Bxk, ifkes—r. 1)

For this imputation method, the point esti-
mator j., = (1/n)X,y., becomes

(2.2)

where X, = (1/n)Xxy, 3, = (1/m)E,y, and
%, = (1/m)%,x;. Three different variance
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estimators are considered with this impu-
tation method.

RAT-O. This method uses the ordinary
variance estimator formula, computed
using the data after imputation, that is

V=(1/n—1/N)S2., (2.3)

where Sﬁ.s =%(y.x—7.5)*/(n—1). The
method is known to underestimate the real
variance and is included in the study only
to assess the underestimation caused by act-
ing as if imputed data were as good as actual
data.

RAT-R. Using a two-phase sampling
argument, Rao (1990) suggested the vari-

ance estimator
I 1\,
+{——-)S,

where Sﬁr = Er(yk _J_/r)z/(m - 1) and Sgr =
S,et/(m — 1), with e, = y; — Bxy.

An alternative variance estimator, also
suggested by Rao (1990), is given by

X 11\ 50 1 1\ .
= —_—— —__B
14 (n N)BZS,U +2<n N) S er

1 1\,
+(E_N>S"

where S,,, = X,epx/(m — 1).

Both of these variance estimators are
unbiased in large samples under the
assumption that the response set r is gener-
ated by a uniform response mechanism,
given s. This holds regardless of the regres-
sion relationship between x and y. How-
ever, both variance estimators are biased if
the response mechanism is nonuniform,
for example, if the response probabilities
depend on x; or y, (or on both). In our
empirical study, we examined both of
these variance estimators but results are
reported only for the latter formula since
it performed consistently better than the
former.

RAT-S. This model-assisted variance

(2.4)
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estimator, derived in Sérndal (1990) and
also in Deville and Sirndal (1991) for
more general cases, is given by

~

1 1 R
V = <; — N) {S}z,s + C00'2}

1 1 5
—_—— ’ 2.
+ (m n)C]O' ( 5)
where
1
Co— n_1 X
lezc lzxkzxk
X, — S—=r _s—r S
s—r k Zxk n Zxk
C, = )_Cs-):cs—r’
Xy
> e/(m—1)

~2 r
T TR = (o) m}’

with X, = Es—rxk/(n - m)’ € =Yk — Exk
and cv,, = S,,/X,, which is the coefficient
of variation of x in the response set r. The
term (1/n— l/N){Sf.s + Cy6*} estimates
the sampling variance component, and
(1/m —1/n)C,6” estimates the imputation
variance component. This variance esti-
mator is based on the regression model
¢ stating that y, =f0x;+¢, for k=
l,...,N, where E.(g) =0, Ve(e) = o*xy
and the model errors ¢, are independent.
As shown in Sidrndal (1990), the RAT-S
variance estimator is £pg-unbiased if (i)
the model ¢ holds and (ii) the response
mechanism ¢ is unconfounded. The &pg-
unbiasedness implies that E.E,E, =
V) =0, where V = E.E,E, (j.,— jy)* is
the {pg-variance of the point estimator
V.s = X:3,/%,. Here, the operators E;, E,
and E, denote expectation over the
model £, over SRS sampling, and over
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the unconfounded mechanism ¢, respec-
tively. The RAT-S variance estimator is
therefore expected to perform particularly
well when the finite population scatter
(Y, x;) agrees closely with the model &
and when the response probability of the
unit k depends on x; only and not on y;.
When m is moderate to large, Cy=
(1 —m/n)x,_, and 6°=%, et /%, x; are good
approximations of the more cumbersome
exact expressions.

Consider now multiple ratio imputation.
The multiple imputation is carried out as
outlined in Rubin (1987, pp. 166-168),
under the assumption that y; ~ N(08xy,
o°x;.) and that response mechanism is ignor-
able in the sense defined by Rubin (1983).
First, 3 and o are estimated, respectively,
by B and

o 1 (yx — Bxi)?
O'Z—m_lz Xk '

Then, for each i=1,...,M (where M is
the number of imputations), perform the
following steps:

Step 1. Draw a x* random variate with
(m — 1) degrees of freedom, say
g, and let 07 = §*(m — 1)/g.
Draw a N(0,1) random variate,
say z, and let

Bi=B+oz (Sx)"
Foreachk € s — r,drawa N(0, 1)
variate independently, say u, and
let ejy = u,/x0;.

In our study, M = 2. Thus we obtain two
data sets after imputation defined by

Step 2.

Step 3.

_(yk, ifker
V= Byxe + ey, ifkes—r,
_(yk, ifker
VU= Byxy + &y, ifkes—r

A modification to the above procedure is
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to replace Step 3 by the following:

Step 3'. For each k€s—r, draw a
number, say wy, with replace-
ment from the set of standard-
ized residuals  {(y, — Bx))/
V(1 =1/m)x;6% 1 € r} and let
€k = Wi /Xx0;.

We tried both methods but report results
only for the latter method here because it
appeared to be the better of the two.

The point estimator of the population
mean is

V.sraT-M = (J.15 +7.2) /2 (2:6)
where j.;, and y.,; are the means of the
data sets {y.;x: k€ s} and {y.y : k €},
respectively. The corresponding variance
estimator is defined as follows:

RAT-M. The variance estimator sug-
gested by Rubin (1983, 1986) is given by

1 1,
V=) S
1_

(o) )

M

Z(J_’.js —7.RAT-M)" (2.7)
=1

with M =2 in our study where SJZ, s =
Z(y. e —f.js)z/(n —1) is the variance
calculated from the jth data set after impu-
tation, {y.j : k € s}.

2.2. Nearest neighbor imputation

We examined two variance estimators for
single imputation by nearest neighbor,
NN-O and NN-S, and one variance esti-
mator for the multiple imputation analog,
NN-M. We now describe these estimators.

Consider first single value nearest neigh-
bor imputation. If the unit k requires impu-
tation, the imputed value, ynnk, €quals the
y-value of a donor unit that is as close
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as possible to k, as measured by the x-vari-
able. More specifically, the donor unit is the
one for which the distance |x; — x;| is mini-
mum among all potential donors / such that
l €r, 1 # k. The data after imputation are

<yk, ifker
Ve =
YNNk»

ifkes—r.
The point estimator is the mean of the n
values y ., that is,

V.sNN =% (Zyk + ZJ’NNk)- (2.8)

Two variance estimators were used with this
imputation method:

NN-O. This consists of the ordinary
variance estimator, ¥V = (1/n— l/N)Si.s,
computed on the data after imputation.
We can expect underestimation of the true
variance with this method.

NN-S. This variance estimator is given by
the formula ¥ defined as in the RAT-S
method by (2.5) with the only difference
that Sf,,s is computed using the data with
nearest neighbor imputation values ynn
(instead of Bxy) for k € s — r, whereas 6°
is computed with the aid of the residuals
from the ratio imputation method, that is,
ex = yp — Bxy, for ker. (The residuals
Yk — YN~k are not used because they would
lead to overestimation of ¢2.)

Consider now multiple imputation by
nearest neighbor. For each nonrespondent,
the two nearest neighbors are identified
based on the distance |x; — x;|. Of the two
y-values thus obtained, one is randomly
picked and assigned to the first data set,
YNN1k» and the remaining y-value is
assigned to the second data set, ynn-
Two data sets after imputation are thus
obtained, namely

(yk,
Yok =
YNN1k>

ifker
ifkes—r,
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ifker

y _ Yk
"% ifkes—r,

YNN2k>

The point estimator of the population
mean is

V. oNN-M = (P15 +7.2)/2 (2.9)

where y.; and y.,, are the means of the two
data sets {y.jx: k€ s} and {y.y : k €5},
respectively. The variance estimator used
for this method is:

NN-M. The variance estimator is calcu-
lated in the same way as RAT-M, that is,
from (2.7). The only difference is that near-
est neighbor imputation values are used to
calculate the quantities y.,, and Sf. s>
Jj =1,2. This method is not “proper” (see
Rubin 1987, pp. 118-128, for the definition
of a proper multiple imputation) but was
mentioned in Rubin (1986, 1987).

Remark I: The single value imputation
variance estimators require that the
imputed values be flagged in the data file,
whereas flags are not required for the
multiple imputation variance estimators.

Remark 2: Ties can occur in reality when
donors are identified. In that case, a donor
is selected randomly. However, in our simu-
lation; the occurrence of ties was almost
nonexistent because we used untruncated
random numbers.

Remark 3: If one tries to modify RAT-R
for nearest neighbor imputation using
ex = yx — Bx; in the same way as for the
NN-S method, the resulting estimator
remains identical to RAT-R. This is the
reason why we did not try the modification
of RAT-R.

3. Monte Carlo Simulation Experiments

The performance of the different variance
estimators was studied with the aid of
the customary Monte Carlo summary
measures: mean, bias and variance of the
variance estimators and also coverage rate
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Table 1. Characteristics of the 12 populations used in the simulation study

Pop. Type a b c d g p Mean
1 RATIO 0 1.50 0.00 13.78 .25 773 70.44
2 RATIO 0 1.50 0.00 5.13 .50 775 73.47
3 RATIO 0 1.50 0.00 1.84 5 755 72.93
4 CONCAVE 0 3.00 —.01 15.04 25 .760 112.93
5 CONCAVE 0 3.00 —.01 5.60 .50 765 117.10
6 CONCAVE 0 3.00 —.01 2.01 5 746 110.31
7 CONVEX 0 25 .01 13.20 25 761 44.77
8 CONVEX 0 25 .01 491 .50 759 40.94
9 CONVEX 0 25 .01 0.75 75 755 34.93

10 SIM-REG 20 1.50 0.00 13.79 .25 746 91.97

11 SIM-REG 20 1.50 0.00 5.13 .50 763 91.29

12 SIM-REG 20 1.50 0.00 1.84 5 167 91.22

of the confidence interval. The performance o*(x) a2

of the different imputation methods was B= =

also investigated in terms of mean and
bias of the point estimators of the popu-
lation mean.

The Monte Carlo simulations were
carried out using 12 different artificially
generated populations of values (yg,xy).
These populations were generated as fol-
lows: a set of N = 100 x-values was gener-
ated according to a I'-distribution with mean
48 and variance 768. Then, for each fixed
value of x, we generated the corresponding
value of y according to a I'-distribution with
mean p(x) =a+bx+cx* and variance
o?(x) = d*x with appropriately chosen con-
stants a, b, ¢, d, and g. If the density of the I'-
distribution is written as

—1——x""1 exp (—x/f) for x >0

I'(a)p*
then the mean and the variance are, respec-
tively, a8 and af?. We thus have the
equations u(x) = a+bx+cx* = af and
o?(x) = d*x* = o, which imply that the
constants « and ( used to generate the
y-value associated with a given x-value are
determined by

_ {,u(x)}2 _(a+bx+ ex?)?
T oo(x) d’x*

w(x) a4+ bx+cx?’

The coefficient of correlation between x
and y is also a function of the five constants
a,b,c,d, and g. We first specified the values
for a,b,c, and g, and then determined the
remaining constant, d, as a consequence of
the desired theoretical correlation, which
we fixed at 0.75 for all populations. The
values of a,b,c,d, and g are given for the
12 populations in Table 1, as well as the
correlation coefficient p and the mean of y
calculated from the N =100 pairs of
¢k, ¥e), k = 1,---, 100, that were generated
by the procedure.

The constants, a, b and ¢ are shape
parameters. The populations are classified
into four population types as shown in
Table 1. Populations 1 to 3 represent a
linear regression through the origin. Popu-
lations 4 to 9 have a second degree poly-
nomial regression through the origin with
slight curvature. Populations 10 to 12 are
based on simple linear regression with a
nonzero intercept.

Figures 1-4 show plots of populations 2,
5,8,and 11.

For each of the 12 populations, three
different response mechanisms were used.
These have the following features, where



Lee et al.: Experiments with Variance Estimation from Survey Data
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) denotes the probability of nonresponse
for the unit k:

i

ii.

The probability 6, decreases as yy
increases where 6, = exp(—c;y;) and
the constant ¢; is chosen so that the
average nonresponse probability
over the whole finite population is
0.3. (A numerical method was used
to achieve this goal.) This con-
founded response mechanism, which
is such that small y-values are under-
represented among the respondents,
is denoted |.

The probability 6, increases as y
increases where 6, = 1 — exp (—coyx)
and the constant ¢, is chosen so that
the average nonresponse probability
over the whole finite population is 0.3.

Population 5
350 Y
300
250 %
® 12
b = @ ®
200 oo s 9
o pe
150 R ® mm% a g a
DTN T
100 o a1 “
% R B8
B8P g
50 - gﬁ 2
0 2 = o x
0 50 100 150

Fig. 2. Scatter plot of population 5
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Population 8
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iii.

This mechanism, which is such that
small y-values are overrepresented
among the respondents, is denoted 7.
The probability 6, is constant at 0.3
for all k € U. Both large and small
y-values are evenly represented
among the respondents. This mechan-
ism is denoted —.

In cases (i) and (ii) the nonresponse
probability depends on the value y; of the
variable of interest; these nonresponse
mechanisms are confounded. In case (iii),
the probability of nonresponse is constant

through the population;

the response

mechanism is unconfounded and uniform.

For each population, we drew 1,000
samples, each of size n=30. For each
of these samples, 50 realizations for each

Population 11
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of the three response mechanisms were
obtained by performing independent
Bernoulli trials, one for each of the 30
sample units. For each of the 12 x 3 =36
different combinations of population and
response mechanism, we thus obtained
50,000 realized nonresponse sets. With this
number of repetitions, the Monte Carlo
error should not exceed two-thirds of one
percent. The size of the nonresponse set,
(n—m), is random with the expected
value 30 x 0.3 =9 for each of the three
mechanisms.

In summary, the following factors were
held fixed in our Monte Carlo study:

i. the sampling fraction (n/N = 30%),

ii. the expected nonresponse rate
(Ey(m)/n = 30%),

iii. the x-value distribution (generated as
a D-distribution with mean 48 and
variance 768),

iv. the correlation between x and y
(around 0.75).

These factors were fixed since changing
them is not expected to have any significant
effect on the ranking of the procedures
studied. A nonresponse rate of 30% or
more is often encountered in actual surveys
and represents a rate high enough so that
uncritical use of standard formulae might
be grossly misleading. The gamma shape is
fairly typical for survey populations, in par-
ticular for many populations encountered in
business surveys.

The factors that were varied in the Monte
Carlo study were:

v. the populations (12 cases, as described
above, representing four different types
of regression between x and y, crossed
with three different patterns for the
variance around the regression curve),

vi. the response mechanisms (three cases,
as described above).
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The population types and the response
mechanisms have considerable effect on
the procedures we are comparing, so it is
essential to let these factors vary.

4. Summary of the Simulation Results

The principal object of the simulation study
was to examine the performance of the
variance estimators. However, we first
comment on some observed features of the
four point estimators j.,RaT, 7.sRAT-M>
7.snn and y.an-m defined, respectively, by
(2.2), (2.6), (2.8) and (2.9).

4.1. Bias and variance of the point

estimators

For the mechanism —, we found that the
Monte Carlo means of all four point esti-
mators, (2.2), (2.6), (2.8) and (2.9), agree
well with the respective population means.
This holds for all 12 populations. That is,
all point estimators are essentially unbiased
when the response mechanism is uniform,
and this is true regardless of population
type. Also as expected, all four point esti-
mators are noticeably biased for the
mechanism | (where the bias is ordinarily
positive) and for the mechanism | (where
the bias is ordinarily negative). The bias
can be substantial and is particularly pro-
nounced for the convex regression popu-
lations 7, 8 and 9, where the absolute
relative bias ranges between 12% and 22%
with the | mechanism and between 30%
and 37% with the T mechanism. For the
other nine populations, the absolute rela-
tive bias is less than 13%. We conclude
that confounded nonresponse is a severe
problem in that it generates considerable
bias in all point estimators studied; conse-
quently, the squared bias can be a large
component of the mean squared error
(MSE). Our study indicates that the convex
regression populations in combination with
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the 1 mechanism are particularly likely to
generate a large bias.

In particular, the ratio imputation esti-
mator y.gat = X,5,/X, is considerably
biased for the confounded mechanisms 1
and |. This is true even for population 2,
despite the fact that this population is
suited for the ratio estimation in the sense
that it conforms to a linear regression
through the origin with variance increasing
proportionally to x. The bias is explained
in this case by the fact that 7, /X, is a biased
estimate of the slope when nonresponse is
confounded.

We also noted that under the con-
founded mechanisms the nearest neighbor
estimators y. g~ and j.ganw_m are more
biased than y. gat and y.gat_m for most
populations. Exceptions to this are found
among the convex regression populations.

As for the variances of the four point esti-
mators, we noted in a majority of the 36
cases that y.gat and J.gat_m have dis-
tinctively lower variances than y.an and
y.snn—Mm- The averaging over repeated
imputations leads to some variance reduc-
tion; we noted that y.g,n_m has slightly
lower variance than y. nn.

We now turn to the main objective of the
simulation study, that is, comparison of the
variance estimators. The argument can be
made that variance estimation should not
be attempted if the relative bias of the
point estimator is too high because then
the confidence intervals are far from valid.
This is why we report results separately for
27 out of 36 cases where the bias is not
considered too large.

4.2.  Simulation results for the variance
estimators for ratio imputation

Table 2 summarizes the Monte Carlo simu-
lation results for the four variance esti-
mators for ratio imputation defined by
(2.3), (2.4), (2.5) and (2.7). Results are
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reported for three performance criteria:
absolute relative bias (ARB), coverage rate
(COVR), and root mean squared error
(RMSE).

To define these criteria, let the sampling
variance of a point estimator y;; of j; be
V = E,E,(yy — Ju)*. Then the ARB and
RMSE of a variance estimator ¥ of V are
defined, respectively, as

ARB(V) =100 x |E,E (V) — V|/V,

RMSE(V) = \/E,E,(V — V).

The expectations in these formulae were
evaluated by Monte Carlo simulation using
50,000 realized response sets. The COVR is
defined as the actual coverage probability of
the 95% confidence interval constructed by
$u % 1.96V'F. The Monte Carlo COVR was
calculated as 100 times the proportion of the
50,000 response sets such that the
interval included the true mean y;.

Results are reported as averages for dif-
ferent subsets of 27 cases formed by cross-
ing nine populations with three response
mechanisms (RM’s). The nine populations
are those where the bias of the point esti-
mator was found to be fairly limited, that
is, populations 1, 2 and 3 (which have
linear regression through the origin and
are called Ratio populations), and popu-
lations 4, 5, 6, 10, 11, and 12 (which have
a regression other than linear through the
origin and are called Nonratio popula-
tions). These 27 cases are broken down
into four cells formed by contrasting on
the one hand Ratio populations with Non-
ratio populations and on the other Uni-
form RM with Nonuniform RM. Average
performance measures are shown for each
cell, for the marginals, and for all 27 cases.

In addition, the far right column in
Table 2, headed All populations, shows
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average performance for all 36 cases (12
populations by 3 RM’s). That is, the three
convex regression populations (those with
considerable point estimator bias) are also
included. Of these 36 cases, 12 correspond
to Uniform RM and 24 to Nonuniform
RM.

From Table 2 it is clear that the RAT-O
variance estimator is highly biased under
all conditions. What Table 2 does not
show is that this large bias is negative, as
one would expect. We need not comment
further on the RAT-O estimator which is
clearly unsatisfactory. For the other three
contenders, RAT-R, RAT-S and RAT-M,
we conclude:

a. Absolute Relative Bias (ARB): For the
cell Ratio populations with Uniform RM
(three cases), all three variance estimators
perform well; the ARBs lie between 3%
and 5%. The remaining three cells put the
differences between RAT-R, RAT-S and
RAT-M into very clear focus.

For the cell Ratio populations with Non-
uniform RM (six cases), RAT-S is the best,
as theory would lead us to expect, RAT-M
follows closely, whereas RAT-R is con-
siderably more biased. For the cell Non-
ratio populations with Uniform RM (six
cases), RAT-R is the best, again as theory
would suggest, followed closely by RAT-
M; RAT-S is considerably more biased.
Finally, the cell Nonratio populations
with Nonuniform RM (six cases) can be
said to test resistance to breakdown of
assumptions of Ratio population and Uni-
form RM. In this cell, the conditions are
a priori unfavourable both to RAT-S
(which builds on the assumption of Ratio
population) and to RAT-R (which builds
on the assumption of Uniform RM).
We see in this cell that the multiple impu-
tation estimator RAT-M resists best (the
ARB is 8.1), followed by RAT-R and
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RAT-S (the ARBs are 11.7 and 14.3, respec-
tively). ‘

The marginal averages confirm the find-
ing that for Ratio populations, RAT-S is
the best method, while for Uniform RM,
RAT-R is the best.

Averaging over the 27 cases, RAT-M has
a clear advantage (the ARB is 6.9) over
RAT-R and RAT-S. Between the latter
two, there is little to choose (9.9 and 10.6,
respectively). The better performance of
RAT-M is again explained by the fact that
RAT-S and RAT-R build each on one
important assumption, whereas RAT-M
does not appeal explicitly to either of these
conditions.

Averaging over all 36 cases again
shows RAT-M ahead (the ARB is 8.0),
followed by RAT-S (11.8) and RAT-R
(14.3).

b. Coverage Rate (COVR): On this
criterion, RAT-S has an advantage over
both RAT-R and RAT-M for all of
the breakdowns in Table 2. That is,
RAT-S comes closer to the nominal
95% confidence level. However, the dif-
ferences are small, RAT-R and RAT-M
follow closely. All three methods show
satisfactory performance in all cells except
the nonuniform/ratio cell, although the
COVR is always somewhat on the low side.

c. Root Mean Squared Error (RMSE): No
great differences between RAT-S and
RAT-R are recorded in any of the four
cells in the left upper corner of Table 2. A
striking contrast is the much higher RMSE
of RAT-M. To decrease the RMSE of
RAT-M would be possible by increasing
the number of repeated imputations to
more than two. This, on the other hand,
implies a considerably increased data
handling effort, and then RAT-M loses
some of its attractiveness.
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4.3. Simulation results for the variance
estimators for nearest neighbor
imputation

Table 3 summarizes the Monte Carlo
simulation results for the three variance
estimators for nearest neighbor imputation
(NN-O, NN-S and NN-M) described in
Section 2. The results are reported in the
same manner as in Table 2, that is, with 27
cases broken down into four cells, and
with all 36 cases covered in the far right
column.

The NN-O variance estimator is again
clearly unsatisfactory. We go on to compare
the variance estimators NN-S and NN-M.

For the 27 cases, NN-S has smaller ARB
than NN-M in all cells, as well as overall.
This also holds for all 36 cases.

The coverage rate, COVR, is also more
satisfactory for NN-S than for NN-M.
The RMSE is as in the case of ratio impu-
tation, considerably higher for the multiple
imputation method.

5. Conclusion

The simulation shows very clearly that vast
improvement on the “ordinary formula”
(RAT-O and NN-O) can be achieved by
properly constructed variance estimators
either with single value imputation (RAT-
R, RAT-S and NN-S) or with multiple
imputation (RAT-M and NN-M).

The most important conclusion regarding
RAT-R, RAT-S and RAT-M is that none
of these is ideal from all points of view.
Both RAT-R and RAT-S are sensitive to
departure from the conditions on which
they build: uniform RM for RAT-R
and ratio population for RAT-S. On the
other hand, RAT-M is considerably more
volatile than the other two competitors,
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when only two repeated imputations are
used.
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