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Fay’s Method for Variance Estimation
David R. Judkins'

Abstract: The standard balanced repeated
replication (BRR) method of estimating
variances involves dividing the sample in
each stratum into half-samples, selecting a
balanced set of half samples across all
strata, re-computing the statistic of interest
(generally nonlinear) on each selected half-
sample, and taking the mean square differ-
ence of among the replicate estimates as the
variance estimate. One problem that occa-
sionally arises is that one or more replicate
estimates will be undefined due to division
by zero. This is particularly common when
ratio estimation has been used with very
small cell sizes. Robert Fay suggested a
solution to this problem several years ago:
Instead of increasing the weights of one half

1. Introduction

The variance estimation technique of
balanced half-samples or balanced repeated
replications (BRR) is well known. Formal-
ized by McCarthy (1966) with roots at the
U.S. Census Bureau in the 1950s it has long
been used as one of a number of techniques
to estimate the variance of nonlinear statis-
tics from complex designs. (For a detailed
and accessible discussion, see Wolter (1985.)
In fact, it is often used for linear statistics
from simple designs because of the simplic-
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sample by 100% and decreasing the weights
of the other half sample to zero, he recom-
mended perturbing the weights by + x%. In
this article, his suggestion is evaluated with
simulation techniques. It is shown to be
useful when variance estimates are needed
for both smooth and nonsmooth statistics
or when there are very few degrees of free-
dom available for variance estimation. The
paper also discusses further modifications to
the technique that are useful for variance
estimation when only one PSU is selected
per stratum.
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ity of the system once it has been set up for
complicated situations.

The advantages of this system relative to
Taylor linearization and the jackknife have
long been debated. Recently, Kovar (1985),
and Hansen and Tepping (1985), reported
on simulations which compared the jack-
knife, BRR, Taylor linearization, and the
bootstrap. Rao and Wu (1985) have also
studied the estimators theoretically. For
ratio estimates, the results seem pretty clear
that the jackknife and Taylor linearization
are nearly equivalent, and that both of them
are superior to BRR or the bootstrap.
Contrary findings are given in Andersson,

.Forsman, and Wretman (1987), but they

inadvertently compared an unstratified
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jackknife with versions of Taylor lineariz-
ation that did reflect the stratification
(Judkins 1989). Thus, arguments between
the methods generally revoive around which
method is easier and cheaper to implement.
The resampling methods (BRR, jackknife,
and bootstrap) are generally easier to
program but require lots of CPU time to
run. The replicate weights required for
unsophisticated users to use the method also
require substantial increases in record
lengths. This issue is best resolved by exam-
ining the complexity of the estimation
procedures, the variety of estimates to be
produced, and who will produce them. For
extremely complex estimation procedures
that involve the use of weights that have
been iteratively adjusted, the resampling
methods definitely come out ahead by virtue
of programming ease. Where, on the other
hand, the estimation procedures are fairly
simple, the range of items for which variances
are needed is fairly limited, and where
sampling statisticians are available to assist
in all variance calculations, the Taylor
method is a good choice. Given the facts
thus far, it would seem that the jackknife is
generally the best choice for complex
designs with complex estimation procedures.

More recently, however, Kovar, Rao, and
Wu (1988) have shown that the jackknife
provides much worse estimates of variances
for medians than does BRR. (Taylor linear-
ization cannot be used since the median is
not smooth.) Presumably their results are
also true for other non-smooth statistics.
One solution for the median is to use the
jackknife method to compute the variance
on an estimated percentage of 50% and then
use Woodruf’s method (1952). However,
Kovar, Rao, and Wu (1988, p. 42) show that
this is also not a good choice when the
population was *‘stratified by a concomitant
variable [that is] highly correlated with [the
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variable of interest].” A statistician is then
faced with a difficult choice if a procedure is
needed that is good both for ratios and for
medians. It is in this context that a modifi-
cation to BRR suggested by Robert Fay is
extremely useful. Fay’s method (Dippo,
Fay, and Morganstein 1984, sec. 4) is a
compromise between BRR and the jack-
knife. His technique was motivated by the
observation that the standard half-sample
variance estimator occasionally runs into
problems estimating the variance of ratios
because the denominators are zero for some
replicates. Less drastic but also a problem,
some ratio replicates can be extremely large
because of near-zero denominators. This is
caused by the fact that when half the sample
is zero weighted and half is double weighted,
less common groups disappear more fre-
quently than in the full sample. (The jack-
knife avoids these problems by only dropping
one observation at a time.) Even where
estimation of ratios is not an analytic objec-
tive, estimation procedures are frequently
used that involve ratio-weighting. Ideally in
the case of ratio-weighting, a half sample
estimate should have all stages of weighting
performed on it in exactly the same manner
as they were performed on the full sample. If
cells for nonresponse adjustment or post-
stratification have small cell sizes, however,
dropping out half the sample can result in
cell sizes smaller than would have been
tolerated in the full sample. (For the full
sample weighting, the cells would have been
collapsed.) The question then was how to
maintain the structure of the balanced half
samples but maintain the full cell sizes. He
solved the puzzle by suggesting that the
weights be perturbed more gently in each
half sample.

The standard BRR perturbs the weights
rather sharply. All weights are either multi-
plied by two or by zero. Then thg mean
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square error of the replicate estimates from
the full sample estimate is used as an esti-
mate of the variance. Fay’s idea was to use
the weights of 0.5 and 1.5 instead of 0 and 2
for the half samples within each stratum, or
more generally, weights of k and 2 — k for
0 < k < 1. (Such weights were in fact used
for the 1984 panel of the U.S. Census Bureau’s
Survey of Income and Program Participa-
tion. They have also been used in the
Epidemiologic Survey of Oral Health in
Adults). Of course, the mean square error
of the replicate estimates from the full
sample estimate becomes much smaller
when the weights are perturbed more gently.
Fay noted that for linear statistics, the mean
square error is too small by a factor of
(1 — k)*. He thus suggested that the mean
square error be multiplied by 1/(1 — k)’ to
obtain a reasonable estimate of variance.
Heuristically, it makes sense that gentler
perturbation should lead to fewer extreme
replicate estimates, thereby yielding lower
kurtosis of the replicates and hence better
stability of the variance estimator.

Formulaically, Fay’s method may be
compared with BRR as follows. For sim-
plicity, assume that there are two sample
units in each of H strata. (Later in the paper,
this simplifying assumption will be dropped.)
Let w = (W, W, ..., Wy, Wy,) be the
vector of unbiased weights for the sample
units. These unbiased weights are usually
taken to be inverse selection probabilities.
The final weights involve nonresponse
adjustment and iterative post-stratification.
Thus, the final weight for a case depends on
many of the other weights in the sample,
possibly all of them. To reflect this, let
W = f:(W) be the final weight for the ith
case in the Ath stratum. For BRR, the tth
replicate weight is taken to be

wi, = fu(@"), where
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W = (1 + dy)wy, A — d)w,,, ...

v (T4 dy)w, (1 — dy)wp),

and d,; is the element in the tth row and Ath
column of a matrix of ones and negative
ones with orthogonal columns and
orthogonal rows. The problem mentioned
before is that sometimes f,(W"”) is undefined
even when f,,(W) is defined. Fay’s method
solves this by taking

W(I) = ((1 + d/h(] - k))W”,
(1 — dy(1 = kK)wp, ...
e (U +dy (1 = k)wy,

(I — dy(1 = K)wy),

where 0 < k < 1. In this paper,
100(1 — k) will be referred to as the per-
turbation factor. The perturbation factor
for BRR is 100% (k = 0). Fay originally
suggested a perturbation factor of 50%. In
this paper, several other perturbation
factors are also evaluated.

Let w; be the vector of w,,, and W be the
vector of wil),. Let {(W,, ¥) be some statistic
of interest such as a population total, ratio
of domain means, a regression coefficient, or
a log-odds ratio. The BRR estimate of
variance is

(YDZ, LY, %) — G0bp, DT,

where T is the number of replicates. Fay’s
estimate of variance is

[/ = kY1(1/T) Z, [0, 3) — G0, DT,

where the replicate weights are formed as
indicated above.

As an example, suppose there are two
strata, each with two PSUs. For simplicity
of illustration, assume that w,, = 1000 for
all four PSUs and that there is no ratio-
adjustment. Then {W} = {(2, Q, 2, 0),
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(2, 0, 0, 2)} is one possible balanced set of
replicates for BRR. For Fay’s method with
50% perturbation, the corresponding set of
replicates is {W{’} = {(1.5,0.5, 1.5, 0.5),
(1.5, 0.5, 0.5, 1.5)}. Consider the case where
we are interested in the ratio of two vari-
ables and the bivariate distribution on the
sample is X = ((0, 0), (1, 2), (1, 3), (0, 0)).
The full sample estimate of the ratio of the
first variable to the second is 2000/5000 =
0.4. The first BRR replicate estimate of the
ratio is 2000/6000 = 0.333, but the second
BRR replicate estimate is undefined. With
Fay’s method, the first replicate estimate is
2000/5500 = 0.36 and the second replicate
estimate is 1000/2500 = 0.4. So Fay’s
estimate of variance is

: : 2o?é 0.4)
5(1—0.5)[(' - 04)

4 (0.4 — 0.4)?] = 0.002645.

Practically, Fay’s method is just as easy to
implement as BRR. After the replicate
weights have been created, the only change
from current procedure is in the application
of the multiplier. For example, if k = 2/3,
then all variance estimates produced with
old software need to be multiplied by 9
(standard error estimates by 3). Making it
even easier, software has been developed at
Westat which will implement Fay’s method
(or most other common resampling methods)
when replicate weights are fed to it. From
the standpoint of computer resources, Fay’s
method, BRR, and the jgckknife (two PSUs
per stratum, only dropping one) are all
identical.

Extending the generality of the method,
the two units within a stratum may be (1)
ultimate units, (2) first stage units in a multi-
stage design, (3) groups of ultimate units, or
(4) groups of first stage units. In the second
case, all second stage units within the same
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first stage unit will receive the same pertur-
bation. The third case is useful when more
than two ultimate units were selected per
stratum. Similarly, the fourth case is useful
when more than two PSUs have been selected
per stratum. In the third or fourth case, it
is necessary to collapse the ultimate or
primary units within each stratum into just
two groups per stratum. Rust (1986) dis-
cusses the implications of such collapsing.
Given the intuitive appeal of Fay’s method
and the fact that it does not require any
more CPU time than the other resampling
methods, it seemed important to determine
the bias and stability properties of the
method. In section 2, some simple proper-

‘ties of Fay’s method are discussed. The

method is shown to have desirable proper-
ties for estimating the variance of linear
statistics. Theoretical discussion of the
method’s properties for nonlinear statistics
is much more difficult, and none is presented.
Instead, a Monte Carlo simulation study
was done that investigated the method’s
properties for ratios, regression coeffi-
cients, and medians. The methodology for
the study is discussed in Section 4. The
results of this study were very favorable and
are presented in Section 5. In Section 6,
some extensions of Fay’s method are
presented that are useful for estimating
variances when only one PSU has been
selected per stratum. Section 6 closes with a
summary and directions for further research.

2. Equivalency for Linear Statistics

Fay’s method is identical to BRR for linear
statistics. Since BRR is itself equivalent, for
linear statistics, to the textbook variance
estimate for the Horvitz-Thompson esti-
mate from a design where two units are
selected with probability proportionate to
size and with replacement (Wolter 1985,
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p. 123), Fay’s method is shown to reduce to
a variance estimator that is widely agreed to
be optimal.

Fay’s variance estimator in this case is

a/nja — kyr
x Zl{zh{[l + dy (1 — K)wy xy,

estvar =

+ [(1 — dy(1 — K)wipx),}
— WX+ wixp)}

= (/DA — P
X ZAZ,[du(1 — K)wyxy,
— dy(1 = Bwpxp]}?

= (1/T)Z,[Z,(dypwy X
— dypwixp)

= (IYDZAZ[( + dp)wyxp
+ (1 — dy)wpx,l

— Wy xy + thxhz)}2

which is the same as the BRR variance
estimate.

3. Methodology for Nonlinear Statistics

Investigation of the bias and stability prop-
erties of Fay’s method relied upon empirical
investigation. Conceivably, these properties
could be studied for smooth statistics theor-
etically by taking all fourth partial deriva-
tives with respect to all stratum half-sample
totals, but such an approach was not
pursued. The empirical study was patterned
after an earlier Monte Carlo study by
Hansen and Tepping (1985) that was also
the basis for Kovar (1985) and for Kovar,
Rao, and Wu (1988). Hansen and Tepping

227

created three main artificial populations
with a common structure. They then varied
the parameters to create a larger set of
populations. In this study, only the first of
their main populations was used. The
common structure was 32 strata with two
independent and identically distributed
observations, (x;,, y, ) and (x,,, y,,), from a
bivariate normal population within each
stratum. The correlation, p, between x and
y was assumed to be constant over all strata.
The coeflicient of variation (cv) per stratum
for x was constant at 10% over all strata.
The cv per stratum for y was roughly
uniform at 24%. (The overall cv’s for x and
y were 1.8% and 5.6%, respectively.) The
means of x and y were allowed to change
across strata. Table 1 gives the stratum
weight, means of x and y and their standard
errors by stratum for population number 1.
To create variations within this main popu-
lation, the correlation (p) is varied from 0.8
to 0.2, the standard error of x is varied by a
uniform factor of 1, 5, 10, or 15, and the
standard error of y is varied by a uniform
factor of 1, 5, or 10. Some of the resulting
variations would be rare in practice and not
to be recommended. Nonetheless, such vari-
ations are sometimes of interest. As will be
seen later, significant differences between
the methods occur only when the sample is
being pushed hard (i.e., when variances are
large).

Some study was also made of a popu-
lation with less than 32 strata. The results
are not presented, but they were similar to
the results with very high stratum level vari-
ances. One exception is that as the number
of strata decreases, the jackknife becomes
more like BRR. The advantages that Fay’s
method has over BRR then apply to the
comparison with the jackknife as well.

The sample units generating (x, y) may
be ultimate units, PSUs, or groups of either,
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Table 1. Parameters for population 1
Stratum I/VIJ i u)'ll (SI) Oy
(h)
1 0.042 100 90 10.0 25
2 0.042 95 75 9.5 24
3 0.042 90 70 9.0 22
4 0.039 98 75 9.8 22
5 0.039 93 70 9.3 20
6 0.037 98 75 9.8 24
7 0.037 96 75 9.6 23
8 0.037 94 75 9.4 22
9 0.037 92 70 9.2 24
10 0.034 96 75 9.6 23
11 0.034 94 70 9.4 20
12 0.034 92 70 9.2 22
13 0.034 90 70 9.0 22
14 0.031 96 75 9.6 25
15 0.031 94 70 9.4 20
16 0.031 92 70 9.2 18
17 0.031 90 70 9.0 19
18 0.031 88 70 8.8 20
19 0.031 86 65 8.6 20
20 0.031 84 60 8.4 18
21 0.031 82 60 8.2 16
22 0.031 80 60 8.0 20
23 0.028 90 70 9.0 22
24 0.028 85 65 8.5 18
25 0.028 80 60 8.0 20
26 0.025 90 70 9.0 20
27 0.025 85 60 8.5 18
28 0.025 80 50 8.0 15
29 0.025 75 50 7.5 14
30 0.020 75 50 7.5 16
31 0.016 75 45 7.5 14
32 0.013 75 45 7.5 12
Overall 1.000 89.744 68.245 1.646 3.830

as discussed above. Since the normality
assumption is made, the simulation is prob-
ably most appropriate for either the case of
two ultimate units per stratum with a normal
variable such as height or the case of two
PSUs per stratum with at least 30 second
stage units per PSU. With this latter assump-
tion, the PSU totals will be approximately

normal from the central limit theorem. Of
course, the most common survey variables
are categorical in nature (counts of units in
various categories). So it would be rare to
have negative PSU totals in practise. Thus, a
more realistic distribution would be one that
approximates the normal over most of its
range but is never allowed to be negative.
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However, since the earlier authors did not
force the simulated PSU totals to be non-
negative, PSU totals were allowed to be nega-
tive in this study so as to have better com-
parability across studies.

The version of the jackknife that was
simulated is described by Kovar (1985) as the
half jackknife. All previous work indicates
little reason to investigate the full jackknife
since the properties of the two are very sim-
ilar except for use of CPU time; the full ver-
sion requires twice as much (for nonlinear
statistics). Formulaically, the only difference
from BRR is in the definition of the matrix
(d,;). For BRR, this matrix is taken to be an
orthogonal (32 x 32) matrix of positive and
negative ones. For the half jackknife (here-
after referred to as simply “the jackknife),
(d,,) is taken to be the identity matrix of order
32, with the assumption that the order of two
units within each stratum is not significant in
any way.

The pseudo-random numbers were
generated by the standard congruential
operator available in a package -called
GAUSS. When different methods were being
tested on the same population parameters, a
single seed and multiplier were used for the
algorithm so that the methods were com-
pared on the same population. When the
population parameters changed, new seeds
and occasionally new multipliers were used.

From the simulation, a number of evalu-
ative statistics were generated for each
underlying statistic and variance estimation
method. It was first necessary to define a
standard against which variance estimates
could be evaluated. The standard was taken
to be the mean square error of the under-
lying statistic across all replicates

M@ = 2, - R+ T - ¢,),

~ where {, is the value of the underlying statis-
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tic on the r-th simulation, 7 is the average of
the ¢, across all R simulations, and {, is the
value of the underlying statistic for the
entire population.

The values of {, were calculated for the
ratio, the regression coefficient and the
median as follows:

R = b - ZII I/Vhl‘lyh
g My z:h Wh u.\'h

B _ Z‘h u/;;[p Gyh Oxh + (p'yh - uy)(uxh — MKy )]
! le M[Gih + ("L.\'h - ux)z]

m, = median of the distribution

P

function zh th)[( y - “’yh )/Gyh],
where @ is the standard
normal distribution function.

These definitions are plain enough for the
ratio and the regression coefficient, but some
explanation is needed for the definition of
the population median since it is different
from that chosen by Kovar, Rao, and Wu
(1988). Those authors defined the popu-
lation median implicitly as the lowest
stratum mean with cumulative weight of 0.5
or higher. In this paper, it was assumed that
the median of interest is the median of the
random variable that results from selecting
one of the 32 strata with probability pro-
portionate to the stratum weights W, and
then selecting one (normally distributed)
observation from the selected stratum. (This
approximates the population median if the
population of each stratum is assumed to be
very large but finite and proportional to
W,.) This random variable has a mixed
normal distribution. Note that with this
assumption, the median need not coincide
with one of the stratum means.

The values of {, were calculated for the
ratio, the regression coefficient and the
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median as follows:

gl
My
— (Zh I/Vhplryh)
(Eh I/Vh ,:"r.\'h) ’
(f1,,;, 1s the average of the two
observations from the stratum)
G _ z"/1 I’Vh ':lryh l:lr.\‘h - u)'”.\'
' zh[/l/lvxﬁr,\'h l'lr.\'h — MMy
m, = Result of linear interpolation to

the cumulative density 0.5078125
between the PSU means with
cumulative density just below
and just above that point.

The cumulative density of 0.5078125 was
chosen as the interpolation point from the
formula 0.5 + 1/(4H). The motivation for
choosing this rather odd point stems from
the fact that there are an even number of
observations (64). If there were no weights,
the natural choice would be to average the
middle two PSU estimates. Interpolation to
0.5 usually results in taking the estimate
from the 32nd PSU instead of averaging the
32nd and 33rd PSUs. Empirically, this con-
tinuity adjustment was found to improve
the bias of the sample median. (Note that
Kovar, Rao, and Wu (1988) used the esti-
mate from the first PSU with cumulative
density to equal or exceed 0.5.)

For each variance estimation method, the
average, o and the mean square error,
M (D, M({)), across all simulations of the esti-
mated variances from M ({) was calculated
¥,9,/R

'Z_)=

M@, M©Q) = Z,[5, — MOQF/R.

The ratio of ¥ to M(() is denoted as the
“bias” and the ratio of /M (3, M(L)) to
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M(C) is denoted as the *‘stability.” These
definitions are consonant with the defini-
tions of the earlier authors.

One caution noted by the earlier authors
is that this sort of Monte Carlo design yields
much smaller variances on o than on M({).
To correct for this disparity in accuracy, it
is necessary to use a very large number of
replicates to estimate M(C). For this study,
1000 replicates were used to estimate M (C)
for the ratio and for the median, and 5000
for the regression coefficient. For estimating
9 for the ratio and for the median, the same
sets of 1000 replicates were used as had been
used to estimate M((). For the regression
coefficient, 200 simulations were used to
estimate 9.

4. Results

Table 2 summarizes the results for the ratio.
Consistent with earlier work, the jackknife
is found to be generally better than BRR for
estimating the variance on a ratio. The jack-
knife has somewhat better bias, much better
stability, and marginally better confidence
interval coverage. The superiority of the
jackknife is particularly evident when there
is high variance in the denominator at the
stratum level. In this situation, BRR is prac-
tically useless. (The value of stability greater
than 900 or 90,000% is not a typographical
error.) This is, of course, exactly the type of
situation that motivated Fay’s method. So it
is reassuring to see that Fay’s method is
indeed considerably better than BRR for
this case. In fact, as k approaches unity,
Fay’s method appears to converge to the
jackknife and thus to linearization.
Other observations from Table 2:

® For less extreme cases where the ratio
is better behaved, there are no signifi-
cant differences between the methods.
In fact, the better behaved situation is
probably the rule rather than the
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exception. For most common problems,
all of the estimators work very well.

® Although no situations with fewer than
32 strata are reported in this paper, the
results with fewer strata are similar to
the results with higher variances.

@ One-sided confidence interval coverage
is quite poor for all the methods when
the denominator has a greater cv than
the numerator. This is caused by a high
correlation between the estimated ratio
and its estimated standard error, for
this unusual situation.

® The bias estimates for the different
methods are highly correlated with
each other. Thus the relative biases
between them are very accurate. The
absolute level of the bias is less reliable
because of instability in M(). The
same is true of the stability estimates.
Similarly, the coverage properties of
the confidence intervals may be
accurately compared between the
methods on the same population
variant. The absolute level of coverage
is less accurate.

Table 3 summarizes the results for the
regression coefficient. Simulations for the
regression coefficient were limited to the
most interesting population variants from
Table 2. Consistent with earlier research,
there seems to be a tendency for BRR to
overestimate variance and for the jackknife
to underestimate it. Fay’s method with a
perturbation factor of 50% strikes a com-
promise between BRR and the jackknife
that has smaller bias than either of them.
Stability for Fay’s method appears compar-
able to that for the jackknife. Confidence
intervals for all the methods tend to be too
optimistic. Among the methods, BRR
appears to be marginally better than Fay’s
method or the jackknife in this respect.

Table 4 summarizes the results for the
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median. Results are almost completely
turned around from those for the ratio. As
is well known, the jackknife does not per-
form at all well for the median. Bias is high,
stability is very poor, and nominal 90%
confidence intervals do not cover the popu-
lation median anywhere near 90% of the
time. BRR is biased less seriously, has much
better stability, and has confidence intervals
that are pretty good. Again, Fay’s method
with a perturbation factor of 50% strikes a
compromise between these extremes. On the
other hand, it is important to note that for
very small perturbation factors (k = 0.99),
Fay’s method is actually worse than the
jackknife.

Having observed that Fay’s method
seems to be a reasonable compromise
between BRR and the jackknife for the
ratio, the regression coefficient, and for the
median, the critical question becomes:
“What perturbation factor should be used?”
Table 5 attempts to shed some light on this
question. It presents results for one of the
more interesting population variants with
BRR, the jackknife, and Fay’s method
with five different perturbation factors. As
can be seen, perturbation factors in the
range of 50 to 70% appear to be the most
robust.

5. Adaptation for Collapsed Strata

Although BRR and Fay’s method were
developed for the case where two PSUs are
selected with replacement per stratum, they
are easily adapted to other situations. The
case of one PSU per stratum is discussed
below in some detail. The case of more then
two PSUs per stratum is discussed in Wolter
(1985) and in Rust (1986). The collapsed
stratum variance estimator proposed here is
very similar to that proposed in Hansen,
Hurwitz, and Madow (1953, Vol. II, pp.
218-222). To assist comparisons, thg nota-
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tion has been kept nearly consistent. This
type of variance estimator was evaluated by
Shapiro, Singh, and Bateman (1980).
Suppose that the strata are collapsed into
G groups with L, strata in the gth group.
Assume the L, strata in each group are
divided as evenly as possible into two half
samples. If L, is odd, then let the first
half sample have K, strata and the second
half sample have M, strata, where M, —
K, =1land M, + K, = L,. If L, is even,
we assume that each half sample has M, =
K, = L,/2strata. Assume that there exists a
variable which is known at the stratum level
prior to data collection and is thought to be
highly correlated with the characteristics to
be observed in the survey. Let A4, be the
value of this variable for the Ath half sample
in the gth group. (In demographic surveys,
A, is typically the total population in the
half sample. Where a half sample consists of
multiple strata, A,, is formed by summing
the stratum totals.) Let 4, = A, + A,,.
The replicate weights for unit i in half
sample 1 and unit j in half sample 2 are

k) :| gli

A
k) _8'] W2'9
Ag 84

L
and

\/_
1 —

i J—
where W,; and W, are the unbiased
weights. Note in particular that the adjust-
ment factor for the first half sample involves
the “size” (4,,) of the second half sample. A
caution: if k is picked too small, these
weights can be negative. Also, note thatif L,
is even and the half samples are equal in size,
then these replicate weights reduce to the
ordinary replicate weights for Fay’s method:

[1 + dlg(l k)] gli
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and

(1 — d(1 = D)Wy,

By definition, the variance estimate for a
linear statistic is

+(1 L, d,(1 k)Ag'x X 2
/KgMg g Ag g2 4

where T is the number of balanced replicates,
x, and x,, are unbiased estimates of the
linear statistic for half-samples 1 and 2 in the
gth group, and x, = x,; + X,,.

Using the balancing property of the d, it
may be shown that

5 — i Lz <Ag2x| @ 2>2.
= KoM, Ag ) Ag )

The expected value of this variance esti-
mator is
6 LA A,
E D =
@ = X K M, A2

g=1

X, X,\' V
y [(_g, B _g2> N ar2xI
Ay Ay A,

N Varzxgz:l
A,
where X, = Ex,;.

The first term inside the brackets is usually
very large so that the estimator is conserva-
tive. Obviously, the better the prior know-
ledge represented by A,;, the smaller the bias
in the variance estimate will be. Note that it
is important for 4,, and A4, to be roughly
equal. (This is fairly easy to achieve for an
even number of strata by sorting the strata on
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A, and then grouping two by two.) If they
are exactly equal, then the expected value
reduces to

L,
KM

g

G
E(Z;lAgl = AgZ Vg) = Z
g=1

x § (X — X,2)* + Var x,, + Var x,,].

If, furthermore, the L, are all even, then this
simplifies to

E(9|4,, = Ay, and L, even V g)

Il
Mea

(X, — X,,)* + Varx, + Varx,]

oq
[l

[
e

(/Ygl - g2)2 + ?’ar X.

The advantage to the special adjustment
for odd L, becomes apparent if the original
strata are equal in size rather than the half
samples. In this case, the size of each half
sample is proportional to the number of
original strata it contains. Thus,

E(9|A, = K,A,/L,and A, = M A,[L,)

- Bl i)

M K
+ Fg Var x,, + ﬁg Var xgz].

g g

This value is intuitively appealing since
the first term in brackets is likely to be closer
to zero than (X,, — X,,)” and since we may
expect very roughly that

Var x,, _ Varx, -
K, M,

£

Var x,
L

4

so that the sum of the second and third
terms within the brackets may be approxi-
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mated by

M, Var x, K, Var x,
Lg Lg
= —£Varx, = Varx,.

14

Deciding how many collapsed groups to
form is a difficult question beyond the scope
of this paper. (Rust and Kalton (1987)
discuss this question in detail for the sim-
plified case where A4, = 1). One broad
point to keep in mind is that the degrees of
freedom increase with increase in G.
Increasing the degrees of freedom improves
the stability of the variance estimator, but it
is easier to equalize 4,, and 4,,, and thus
reduce the bias, with smaller G.

6. Conclusions and Future Study

Summing up from the work in this paper,
Kovar (1985) and Kovar, Rao, and Wu
(1988), there is no best resampling method
for estimation of variances. For surveys
where medians and other non-smooth
statistics are not of interest, the jackknife is
probably the best method. For surveys
where estimation of such non-smooth
statistics is important, BRR is a good choice

- provided that variance estimates for all

domains have substantial degrees of free-
dom. If non-smooth statistics are of interest
and there are domains where it is impossible
to obtain adequate degrees of freedom,
Fay’s modification is the best method
developed thus far provided that the pertur-
bation factor is chosen in the range of 50 to
70%. Obviously, it would be interesting to
extend this work to more populations, other
statistics, and more values of the perturba-
tion factor. Another interesting direction
would be to synthesize Fay’s method with
the recent modification to BRR for the case
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of more than two PSUs per stratum by Wu
and Rao (1989). Most recently, Fay (1989)
has shown how his method can be used when
PSUs are selected without replacement.
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