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Small area interval estimation is considered for a finite population, where the small area
parameters are treated as fixed constants. Design based direct estimation yields intervals that
are too long to be useful. Model based approaches are considered. The design based area-
specific coverages are uncontrollable. We propose to use population-specific simultaneous
coverage as the basis for evaluating the small area confidence intervals. Wage survey and
census household data are used for illustration.
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1. Introduction

The main current approach to small area estimation is based on prediction models. There is

a considerable amount of theory on the estimation (or prediction) of the small area

parameters and the associated mean squared error (MSE) with respect to both the

population and sampling models. We refer to Rao (2003) for a comprehensive overview.

For many survey practitioners and users it is appealing to have traditional design based

measures of uncertainty, conditional on the given population and with respect to the

sampling alone. Rivest and Belmonte (2000) derived such a conditional MSE of the

composite estimators, which include the empirical best linear unbiased predictor (EBLUP)

as a special case. The problem is that the conditional MSE estimator can be very unstable,

especially when the shrinkage factor attached to the direct estimator is small. On the other

hand, the model based unconditional MSE estimator has been found to track the

conditional MSE quite well in small simulation studies (Rao 2003, Section 7.1.6).

In this article we consider the related issue of small area interval estimation. Design

based direct estimation is inefficient, and the confidence intervals are too long to be useful

in many cases. Since short, area-specific-intervals are impossible to construct, we propose

to use design based, population-specific, simultaneous coverage as the basis for evaluating

the performance of small area interval estimators. It is shown that the simultaneous

coverage of interval estimators under the linear mixed models asymptotically achieves the

nominal level of confidence, under conditions similar to those for the second-order

unconditional MSE estimation (Rao 2003). The methodology is set out in Section 2. In

Sections 3 and 4 we illustrate the model-based approach using, respectively, the wage

survey and census household data. A summary is given in Section 5.
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2. Small Area Interval Estimation

2.1. Simultaneous Coverage

Let i ¼ 1; : : : , m denote the small areas (or domains). Let ui denote the small area

parameter of interest. Let liðaÞ denote a confidence interval for ui constructed for 100a%

nominal level of confidence. Let Ii ¼ IiðaÞ ¼ 1 if ui [ liðaÞ, and 0 otherwise. The design

based, area-specific coverage of liðaÞ is then

diðaÞ ¼ PpðIi ¼ 1Þ ¼ EpðIiÞ ð1Þ

where Pp. denotes probability and Ep denotes expectation with respect to sampling from

the finite population. We say that liðaÞ achieves the nominal level of confidence if

diðaÞ ¼ a

Regarding the set of liðaÞ’s, all of them derived at the same nominal level of confidence,

we define their simultaneous coverage as

dðaÞ ¼ Ep m21
Xm
i¼1

Ii

 !
¼ m21

Xm
i¼1

diðaÞ ð2Þ

The simultaneous coverage is the expected proportion of small area parameters covered by

the set of confidence intervals on repeated sampling from the population. It is a meaningful

design based measure in the context of small area estimation, summarizing all the area-

specific coverages in a single number. Since correct area-specific coverages for all the

areas imply correct simultaneous coverage, but not the other way around, the simultaneous

coverage is a weaker property of the interval estimators. While such population-specific,

area averaging performance measures are often used in empirical studies (e.g., Heady and

Ralphs 2005), few systematic studies have been reported on how the model based methods

should behave with respect to such design based measures. Finally, we notice that the

simultaneous coverage is not the joint coverage of the liðaÞ’s, i.e., Ppð>
m
i¼1 Ii ¼ 1Þ. Nor

has it anything to do with the so-called simultaneous intervals in multiple comparison

problems.

2.2. Design Based Estimation

Denote by ûi a design based direct estimator of ui. We assume that it is design unbiased

with variance ci. That is, let ei be the sampling error of ûi, and then we have

ûi ¼ ui þ ei where EpðeiÞ ¼ 0 and VpðeiÞ ¼ ci ð3Þ

The standard design based approach is then to assume normality of ei, which yields the

100ð2a2 1Þ% nominal confidence interval

ûi 2 za
ffiffiffiffiffi
ci

p
; ûi þ za

ffiffiffiffiffi
ci

p� �
where za is the a-quantile of N(0,1), and a [ ð0:5; 1Þ. Given the normality assumption,

design based intervals achieve area-specific as well as simultaneous coverage.
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There are two difficulties with this approach. In the first place, normality of ei, or even

zero expectation of ei, may not be valid if the within-area sample size is small and/or ui is

nonlinear. Secondly, in practice ci is seldom known. Replacing ci with the design based

direct estimator ĉi is inefficient. Often in practice one chooses to use some smoothed,

stable estimator of ci with small bias instead. While both the nonnormality of ûi and the

potential design bias of ĉi may cause problems for the area-specific coverage, the

simultaneous coverage often remains quite robust.

2.3. Estimation Based on Best Predictor

Let us start with a special case. Consider the following simple random effects model

ûi ¼ xTi bþ y i þ ei

(Fay and Herriot 1979), where xi contains the area-level covariates, y i is the independent

random effect with zero mean and variance s 2
y , and ûi is the direct design unbiased

estimator and ei is its sampling error as defined in (3). Suppose that the parameters ðb;s 2
y Þ

are known, and so are the ci’s. The best predictor (BP) is then given by

~ui ¼ xTi bþ gi ûi 2 xTi b
� �

where gi ¼ s 2
y = s 2

y þ ci

� �
The MSE of the BP is simply the so-called g1-term (Prasad and Rao 1990), i.e.,

g1i ¼
def E{ð ~ui 2 uiÞ

2} ¼ gici ¼ ð1 2 giÞs
2
y

where E denotes expectation with respect to both the population model and the design

generated sampling distribution. Given the normality of ~ui 2 ui, a 100ð2a2 1Þ% nominal

level prediction interval for ui is given by

li ¼ ~ui 2 za
ffiffiffiffiffiffi
g1i

p
; ~ui þ za

ffiffiffiffiffiffi
g1i

p� �
The nominal level refers to accuracy of prediction because ui is a random variable here.

Under the assumed random effects model, li then achieves the unconditional coverage

DiðaÞ ¼ PðIi ¼ 1Þ ¼ a ð4Þ

where P is the probability under both the population model and the sampling distribution.

How does this BP based li perform from the design based point of view? Take first the

situation where ci=s
2
y < 0 and s 2

y ¼ Oð1Þ. We have

gi < 1 g1i < ci
~ui < ûi and li < ûi 2 za

ffiffiffiffiffi
ci

p
; ûi þ za

ffiffiffiffiffi
ci

p� �
Since normality is probably a reasonable assumption in this case, liðaÞ would

approximately achieve the design based area-specific coverage, i.e., diðaÞ < a. Next,

suppose s 2
y =ci < 0. We have

gi < 0 gli < s 2
y

~ui < xTi b and li < xTi b2 zasy ; xTi bþ zasy

� �
Since y i is a constant given the finite population, we basically have di ¼ 1 if jy ij # zasy,

and 0 otherwise. That is, the area-specific coverage degenerates. In summary, the model

based interval li approximately attains the design based area-specific coverage as ci=s
2
y
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tends to 0 or, equivalently, gi ! 1. As gi ! 0, the design based area-specific coverage

cannot be maintained in general, and tends towards the degenerate case.

Consider now the design based simultaneous coverage of the li’s. Let E1, V1 and Coy1

denote, respectively, expectation, variance and covariance with respect to the population

model. Given (4) under the assumed model, for all i ¼ 1, : : : , m, we have

EðIiÞ ¼ E1{EpðIiÞ} ¼ E1{diðaÞ} ¼ a

V1{diðaÞ} ¼ VðIiÞ2 E1{VpðIiÞ} # VðIiÞ ¼ að1 2 aÞ

Moreover, given the population, Ii and Ij depend on ei and ej, for i – j, respectively. Given

independent sampling within the small areas, we have

didj ¼ EpðIiÞEpðIjÞ ¼ EpðIiIjÞ

Thus,

Coy 1ðdi; djÞ ¼ E1{EpðI1IjÞ} 2 E1{EpðIiÞ}E1{EpðIjÞ} ¼ Coy ðIi; IjÞ ¼ 0

because Ii derives from ~ui 2 ui which is a function of (ei; y i) and therefore independent of

Ij from ~uj 2 uj. It now follows from the Law of Large Numbers that, as m!1,

ðAÞ dðaÞ ¼ m21
Xm
i¼1

diðaÞ !
P a

i.e., there is convergence in probability with respect to the population model. In other

words, given a large number of small areas, we may expect the design based simultaneous

coverage of the model based intervals to be close to the nominal level of confidence, given

(i) correct unconditional area specific coverage, i.e., DiðaÞ ¼ a for i ¼ 1, : : : , m, and (ii)

independent random effects and independent sampling within the small areas.

2.4. Estimation Based on EBLUP

The model considered above is a member of the class of linear mixed models (LMMs). We

refer to Rao (2003) for an account of the various LMMs that have been used in small area

estimation. It is clear that the result (A) for the BP based intervals remains valid, provided

the random effects are uncorrelated across the areas under the LMM. In practice, however,

the parameters are unknown, and the EBLUP is used instead of the BP. Denote by û
H

i the

EBLUP of ui. Denote by ĝi the estimator of MSE ðû
H

i Þ. The 100ð2a2 1Þ% nominal level

prediction interval for ui is then

li ¼ û
H

i 2 za
ffiffiffiffi
ĝi

p
; û

H

i þ za
ffiffiffiffi
ĝi

p� �
ð5Þ

with respect to both the population and sampling models. The latter may be purely model

based, such as in the case of unit-level mixed models. It can also be the design generated

sampling distribution, or a model of the actual sampling process.

The design based area-specific coverage of li is uncontrollable as before. When it

comes to the design based simultaneous coverage, the condition (4) would still imply

El{diðaÞ} ¼ a and V1{diðaÞ} # aðl 2 aÞ as above. However, since both di and dj depend

on the parameter estimators, they are not uncorrelated as in the case of BP, even if the
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sampling is independent within the small areas. Nevertheless, given the EBLUP

asymptotically converges to the BP in distribution, the EBLUP based intervals will

converge towards the BP based intervals, and we may expect the simultaneous coverage of

the intervals (5) to be close to the nominal level of confidence. For this we need consistent

parameter estimators, with respect to both the population model and the sampling

distribution. In the usual context where the EBLUP is applied, this is for example the case

given the asymptotic settings for the second-order MSE estimation (Rao 2003). In

particular, the within-area sample sizes can remain bounded. Since consistent parameter

estimation is also necessary for the unconditional coverage (4), what we require is that the

conditions (i) and (ii) above hold asymptotically, as m!1.

2.5. Normality Assumptions

Because we are using a model based approach, the intended design based coverage may

fail in cases of model misspecifications. Good unconditional coverage of the interval (5)

depends on the normality of û
H

i 2 ui and the accurate MSE estimator. Thus, if the

asymptotic second-order MSE estimators (Prasad and Rao 1990) are being used, then the

regularity conditions for the MSE estimation are also needed for the interval estimation.

Notice that also the MSE estimation assumes normality of the random effects introduced

by the model, in which case the normality of û
H

i 2 ui follows from the normality of û
H

i in

addition.

We do not know in general how robust the model based intervals are under nonnormal ui
and û

H

i although robustness of the MSE estimation towards nonnormal area-level random

effects has been considered by Lahiri and Rao (1995). Taking the simple Fay-Herriot area-

level model above, we have

û
H

i ¼ xTi b̂þ ŷ i ¼ xTi b̂þ ĝi y i þ ei 2 xTi ðb̂2 bÞ
� �

Of the random variables on the right-hand side, normality of b̂ is usually a plausible

assumption, whereas normality of ĝi is probably not entirely accurate even if ŝ2
y is normal.

The normality of y i is a model assumption, whereas the normality of ei is probably not true

where the area sample size is small. In short, normality of û
H

i 2 ui is unlikely to hold in all

the areas even if y i is normal. However, given normal y i, nonnormality of ei may not be

crucial to the simultaneous coverage. The reason is that the simultaneous coverage of the

direct designed based intervals are often quite robust under nonnormal ei, which will be

illustrated in the simulation studies later. Empirically, diagnostics can be used to check

whether there are severe departures from the normality assumptions of the LMM. We refer

to Rao (2003) for examples from practices.

2.6. Bootstrap Calibration

As with any confidence procedure, various departures from the underlying assumptions

may cause the true coverage to deviate from the nominal level of confidence. A technique

for adjustment is calibration. That is, if the 100a% nominal confidence intervals do not

have 100a% coverage, intervals with nominal level 100f% may do. Bootstrap calibration

can be used to explore the mapping between f and a. The idea is straightforward: given
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the true population, we can repeatedly draw samples and derive confidence intervals at

chosen nominal levels in order to find out their true coverages. In practice, however, we do

not know the true population so that the bootstrap calibration must be conducted on the

basis of some plug-in population. The rest is exactly the same.

Booth, Butler, and Hall (1994) proposed a nonparametric method for constructing the

plug-in population based on stratified simple random samples. Let Nh and nh be,

respectively, the population and sample sizes in stratum h, for h ¼ 1, : : : , H. Let mh be

the integer part of Nh/nh and let kh ¼ Nh 2 mhnh. The plug-in population in stratum h is

given by mh replicates of the within-stratum sample, plus a sample of size kh selected

randomly and without replacement from it. The different stratum populations are formed

independently of each other. Thus, resampling from each stratum of the plug-in population

does not differ much from direct nonparametric bootstrap resampling (i.e., randomly and

with replacement) from the selected within-stratum sample, provided the sampling

fraction nh/Nh is negligible.

The method is explored in Section 4, where it does improve the coverage. However, the

extent to which such improvements will hold in general remains an open question at this

stage. This is because the bootstrap method is asymptotically justified when the population

is considered as a sample from a super-population, where all the Nh’s and nh’s diverge to

infinity in such a way that each ratio Nh/Ng and nh/ng converges to a finite nonzero limit.

Whether this holds for the given finite population is a question difficult to answer in

general. For instance, if the design strata coincide with the small areas of interest, then

many of the area sample sizes are probably not large enough to justify the asymptotic

setting of nh !1. If possible, the performance of the bootstrap calibration over repeated

sampling needs to be evaluated by simulations before it is endorsed.

2.7. Generalized Linear Mixed Models

For categorical data, such as binary or count data, generalized linear mixed models

(GLMM) are more appropriate (Rao 2003, Section 5.6). Let m be the mean of a response

vector y. Let h() be a monotonic link function, such that

hðmÞ ¼ h ¼ Xbþ Zy

where X and Z are the design matrices, b is the parameter vector containing the fixed

effects, and y is the vector of random effects. In the small area estimation context,

h ¼ ðh1; : : : ;hmÞ
T is often a vector of m components corresponding to u1; : : : ; um. It is

convenient to consider prediction of hi on the linear scale. An interval for hi can be turned

into an interval for ui through the inverse transformation h21ðhÞ. Let ĥH
i be the predictor of

hi, and let ĝi denote its MSE estimator. A 100ð2a2 1Þ% nominal level prediction interval

is given as (5) with ĥH
i replacing û

H

i . Asymptotic simultaneous coverage depends on the

normality of ĥi 2 hi as well as accurate MSE estimation. Typically, we need the normality

assumption of y , which partly depends on the choice of the link function. Otherwise, the

approach is similar to that under the LMM.

There is a harder computational issue under the GLMM. This is an area with rapid

on-going research developments. See McCulloch and Searle (2001) for an account of

the field. These authors favor the maximum likelihood estimation wherever possible.
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In practice, however, a group of the so-called penalized quasi-likelihood (PQL) algorithms

are often used because of the easiness of implementation (Schall 1991; Breslow and

Clayton 1993; McGilchrist 1994). We will not go into the computational details here.

2.8. Interval Based on Synthetic Estimator

Regression-synthetic types of estimator are sometimes used in small area estimation (Rao

2003, Section 4.2). Even when the point estimators are acceptable, the evaluation of the

uncertainty in the estimation will be misleading if it is done with respect to the underlying

model, because a fixed effects model is unlikely to be able to fully capture the between

area variation of the small area parameters of interest. For example, assume the following

linear regression model

yij ¼ xTijbþ 1ij

where xij contains the covariates of the jth unit from the ith area, and 1ij is independent of

each other with variance s 2
1 . The regression synthetic estimator of ui ¼ S

Ni

j¼1yij is given by

û
S

i ¼ XT
i b̂, where Xi ¼ S

Ni

j¼1xij and Ni is the population size, given negligible within area

sampling fraction. Denote by ti the approximate design based sampling variance of û
S

i .

The 100ð2a2 1Þ% nominal level interval û
S

i 2 za
ffiffiffiffi
ti

p
; û

S

i þ za
ffiffiffiffi
ti

p
� �

would in general

have very misleading design based coverage, because it fails to recognize the design based

bias in û
S

i that is always present in practice.

It is possible to introduce a ‘second’ model to improve the interval estimation. Put

û
S

i ¼ ui þ ji þ 1i where ji ¼ Ep û
S

i

� �
2 ui and 1i ¼ û

S

i 2 Ep û
S

i

� �
Assume that ji , Nðj; s2Þ, where ji is the design based bias of the synthetic estimator.

Notice that this is not the ‘first’ linear regression model under which û
S

i has been derived.

Once introduced, it implies the following 100ð2a2 1Þ% nominal level interval

li ¼ û
S

i 2 j2 za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ti

p
; û

S

i 2 jþ za
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ti

p� �
assuming normality of 1i, and independence between ji and 1i. In particular, this includes

an extra variance component s 2 not to be found in the naive confidence interval, which

can be considered as a uniform adjustment due to the design based bias. An estimator of li
is obtained from replacing ðj;s2; tiÞ by their estimates. For this purpose, observe that

û
S

i 2 ûi ¼ ji þ 1i 2 ei < ji 2 ei

where ûi is the design based direct estimator and ei is its sampling error. This is an LMM

with one model based random effect ji and two design generated sampling errors. The

approximate two-component model follows from the fact that b̂ is a global parameter

estimator depending on the whole sample such that asymptotically 1i will have much

smaller variance than ei.

It may be noted that the length of the adjusted interval above varies much less across the

areas than the direct design based intervals. Firstly, the term s 2 is the same everywhere,

and is comparable to ti in many situations. Secondly, ti is the sampling variance of the

synthetic estimator û
S

i , and thus does not directly depend on the sample size in the i-th
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area. As a result, a smaller area does not necessarily have a longer interval than a larger

area. Thus, the efficiency gains over the direct intervals are typically largest for the areas

with smallest sample sizes. The two-model approach here is conceptually less appealing

than the EBLUP based approach earlier, where the same model is used for point as well as

interval estimation. Because the resulting interval does not have an area-specific bias

correction, it is on the whole less efficient than the mixed modeling approach.

Nevertheless, it provides a more realistic measure of uncertainty for the regression

synthetic estimator than that under the original fixed effects model.

3. Simulation Based on Wage Survey Data

The Norwegian wage survey is based on a yearly sample of clusters of wage earners. The

clusters are establishments, which are stratified according to the size of the establishments.

From each stratum except the largest one (where a census is carried out), a random sample

of establishments are selected first, and all the employees from the selected establishment

are then included in the sample. The primary variable of interest is the monthly wage of

full-time employees in various subgroups of the population. For our simulation study we

extracted the data from occupation group 5 (sales and service) in industry group 52

(retailing) in 2001 and 2002. The panel from the three counties in North Norway contains

1,269 persons. We take the 66 municipalities in these three counties as the small areas, and

estimate the average monthly wage in each municipality in 2002, using the monthly wage

in 2001 as the auxiliary variable.

Let i ¼ 1; : : : ; m (and m ¼ 66) denote the small areas. Let yij be the monthly wage of

the jth full-time employee from area i in 2002, and let xij be the monthly wage of the same

person in 2001. Let �yi and �xi be the area sample means in the retrieved panel. These are

fixed to be the area means of the synthetic population for this simulation study, denoted by

u*
i ¼ �Y

*
i and �X

*
i . To generate a sample from this fixed population, we assume negligible

sampling fractions in all the areas, and draw randomly and with replacement pairs of

residuals from {ðxij 2 �xi; yij 2 �yiÞ; i ¼ 1; : : : ;m and j ¼ 1; : : : ; ni}, where ni is the area

sample size in the panel. Adding this to ð �X
*
i ; �Y

*
i Þ, we obtain a pair of simulated

observations from the corresponding area, denoted by ðx*
ij ; y

*
ijÞ. Notice that, in this way, the

within-area covariance between the simulated pair of variables is the same across all

the areas. We have thus a stratified random sampling design with the areas as the strata.

The total sample size is 1,269, the area sample size varies from 3 to 215, the median area

sample size is 8 and the mean is 19.2.

On the basis of each bootstrap sample, we derive the direct design based interval, as well

as the model based interval (5), under the following nested-error regression model

y*
ij ¼ b0 þ x*

ijb1 þ y i þ eij

(Battese, Harter, and Fuller 1988), where y i and eij are independent normal errors. The use

of actual wage data implies that the normality of the random errors remains a model

assumption. We record the proportion of u*
i ’s that are covered by each set of confidence

intervals. The average of this proportion over independent repeated bootstrap simulations

yields then a Monte Carlo approximation to the simultaneous coverage of the

corresponding nominal level of confidence.
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In Table 1 the confidence intervals are compared to each other with respect to the

simultaneous conditional coverage and the average relative length (ARL), given by

m21

i

X
2za

ffiffiffiffi
ĝi

p
=ui

for the 100ð2a2 1Þ% model based intervals. The simultaneous coverage of the

direct design based intervals approximately achieves the nominal level of confidence.

The EBLUP based intervals (5) have simultaneous coverage about 2–4 percent below the

nominal levels that we have looked at. Diagnostics for normality of y i suggest that

the distribution of y i has heavier tails than the normal distribution on both ends, which

seems to be the reason that the under-coverage increases slightly with the nominal level

of confidence. However, considerable gains in efficiency have been achieved: the model

based interval on average reduces the length of the direct confidence interval by more

than 50%.

In Figure 1 the design based area specific coverages of the direct intervals are compared

to those of the model based intervals. The nominal level of confidence is 95% in this case.

It can be seen that the coverage of the model based intervals can be quite erratic as the area

sample size decreases, for reasons explained earlier. The coverages of the design based

intervals are closer to the nominal level of confidence. In particular, the average coverage

across the small areas appears robust even when the sample size is as low as three.

4. Simulation Based on Census Household Data

4.1. Simulation Design

Small area household compositions are area population counts of households with respect

to some classification of interest (e.g., the size of the household). Complete enumeration of

the population is only available in the census. Post-censal updates need to be based on

household surveys conducted at the national statistical offices. For our simulation study

we retrieved the Norwegian census household compositions in 1990 and 2001. The 89

economic regions (analogous to the NUTS4 regional classification of EUROSTAT) are

fixed as the domains of interest, i.e., m ¼ 89. We set the area proportion of single-person

Table 1. Design based simultaneous coverage and average relative length of confidence intervals based on 250

simulated wage survey samples: A, Direct estimation; B, EBLUP under nested-error regression model. Monte

Carlo standard error in parentheses

Simultaneous coverage

Nominal 0.80 0.90 0.95 0.975 0.99

A 0.806 (0.003) 0.896 (0.002) 0.942 (0.002) 0.964 (0.001) 0.979 (0.001)
B 0.780 (0.003) 0.863 (0.002) 0.910 (0.002) 0.936 (0.002) 0.958 (0.001)

Average relative length

Nominal 0.80 0.90 0.95 0.975 0.99
A 0.141 (0.000) 0.180 (0.001) 0.215 (0.001) 0.246 (0.001) 0.283 (0.001)
B 0.062 (0.000) 0.080 (0.000) 0.095 (0.001) 0.109 (0.001) 0.125 (0.001)
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households in 2001 as the interest of estimation, using the corresponding area proportion

in 1990 as the auxiliary variable.

Let ui be the area proportion of interest in 2001. Let pi be the corresponding proportion

in 1990. Let hi ¼ logðuiÞ2 logð1 2 uiÞ and let xi ¼ logð piÞ2 logð1 2 piÞ. Simple

regression of hi on xi yields approximate normal residuals with appreciable variance. We

shall therefore adopt the following GLMM for this population

logitðuiÞ ¼ hi ¼ b0 þ xib1 þ y i and y i ,iid Nð0;s 2
y Þ

For sampling from the population we use stratified simple random sampling with the 89

areas as the design strata. The sampling design varies with respect to the sampling fraction,

denoted by f. Simulations are carried out at f ¼ 1=50, 1/150 and 1/500. On the basis of

each simulated sample, we derive direct design based intervals as well as the GLMM

based intervals, using the PQL algorithm outlined by McGilchrist (1994) to estimate the

parameters (b0, b1, s 2
y ) and the random effects y i. In particular, s 2

y is estimated by the

REML procedure. The MSE of ĥH
i 2 hi is estimated on the basis of a normal

approximation to the quasi log-likelihood for (b0, b1, y1, : : : , ym).

4.2. Coverages

Denote by l
ðkÞ
i the interval calculated from the kth simulated sample, for i ¼ 1; : : : ; m.

Let IðkÞi ¼ 1 if ui is covered by l
ðkÞ
i and IðkÞi ¼ 0 if not. The Monte Carlo approximation of

the true simultaneous coverage based on B simulated samples is then given by

d̂ ¼ m21
Xm
i¼1

d̂i ¼ m21
Xm
i¼1

B21
XB
k¼1

IðkÞi

 !
¼ B21

XB
k¼1

d ðkÞ where

d ðkÞ ¼ m21
Xm
i¼1

IðkÞi

Fig. 1. Design based area-specific coverage of 95% nominal level confidence intervals (marked by the dotted

horizontal line). Direct estimation (o) and EBLUP based estimation (x)
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The d (k) is indeed the proportion of the ui’s covered by the set of intervals based on the kth

sample. It is the realized simultaneous coverage. The simultaneous coverage d is its

expectation on repeated sampling. But one would also be interested in the whole

distribution of d (k). In particular, an estimate of the median of this distribution is given by

the median of d ð1Þ; : : : ; d ðBÞ, whereas the Monte Carlo standard error of d̂ is an estimate

of the standard deviation of d (k) divided by
ffiffiffi
B

p
.

In Table 2 the design based simultaneous coverage and the ARL of the confidence

intervals are given. Also shown are the median values of d (k). It can be seen that the

coverages of the design based direct intervals are on the whole quite good. Negative bias

arises as the sampling fraction decreases, but is not serious even at f ¼ 1=500. The main

problem is inefficiency. The direct intervals are simply too long to be useful even at

f ¼ 1=50.

The GLMM based intervals are much shorter. The relative efficiency compared to the

direct estimation increases as the sampling fraction decreases. The coverages of the model

based intervals, however, are negatively biased. The problem has little practical

consequences at f ¼ 1=50, but increases as the sampling fraction decreases. The loss of

coverage occurs mainly between f ¼ 1=50 and f ¼ 1=150. For example, the simultaneous

coverage of the 95% nominal intervals drops from 94.1% at f ¼ 1=50 to 85.2% at

f ¼ 1=150, whereas the coverages are about the same at f ¼ 1=150 and f ¼ 1=500, i.e.,

within the margins of Monte Carlo error. The median values of the realized simultaneous

coverages d ðkÞ are very robust as the sampling fraction decreases, and are in close

agreement with the corresponding nominal confidence levels. The discrepancy between

the mean and median values of d (k), however, suggests skewed distributions of the

realized simultaneous coverage over repeated sampling at f ¼ 1=150 and 1/500. The

Monte Carlo standard errors increase quite a lot from f ¼ 1=50 to f ¼ 1=150 and 1/500.

Together they indicate that the realized coverage may be particularly low on certain

occasions.

4.3. Calibration

We explore the bootstrap calibration to see if it can improve the simultaneous coverage of

the GLMM based intervals. For each simulated sample from the population, we carry out

bootstrap calibration by stratified resampling using the method of Booth, Butler, and Hall

(1994). Let B be the number of simulated samples from the true population, and let K be

the number of resamples for each bootstrap calibration. The total number of simulated

samples is then B £ K.

Table 3 shows the simulation results at f ¼ 1=150 with B ¼ 500 and K ¼ 40. The

Monte Carlo estimates of simultaneous coverages are consistent with the corresponding

estimates in Table 2 within the margins of Monte Carlo error. Each pair of a nominal level

of confidence and the corresponding calibrated simultaneous coverage is an estimate of the

mapping between f and a by the bootstrap calibration. Thus, according to the results in

Table 3, the ‘true’ coverage is 0.863 at the nominal level 0.95, and it is 0.934 at the

nominal level 0.99, and so on. In particular, a nominal level of 0.995 should yield a

simultaneous coverage of 0.949, or approximately 95%. On account of the Monte Carlo

error and the fact that the calibrated coverage can only be checked at chosen grid values,
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Table 2. Design based simultaneous coverage and average relative length of confidence intervals based on simulations of household data: A, Direct estimation; B, GLMM based

estimation. Median value of the realized simultaneous coverages (in italics). Monte Carlo standard error in parentheses

Sampling fraction f ¼ 1=50, number of simulations B ¼ 500
Simultaneous coverage

Nominal 0.80 0.90 0.95 0.975 0.99

A 0.797 (0.002) 0.896 (0.001) 0.947 (0.001) 0.972 (0.001) 0.988 (0.000)
0.798 0.899 0.944 0.978 0.989

B 0.795 (0.005) 0.891 (0.004) 0.941 (0.003) 0.966 (0.003) 0.982 (0.002)
0.831 0.921 0.966 0.989 1.000

Average relative length

Nominal 0.80 0.90 0.95 0.975 0.99

A 0.238 (0.000) 0.306 (0.000) 0.365 (0.000) 0.417 (0.000) 0.479 (0.000)
B 0.103 (0.001) 0.133 (0.001) 0.158 (0.001) 0.180 (0.001) 0.207 (0.002)

Sampling fraction f ¼ 1=150, number of simulations B ¼ 500
Simultaneous coverage

Nominal 0.80 0.90 0.95 0.975 0.99

A 0.795 (0.002) 0.892 (0.002) 0.941 (0.001) 0.968 (0.001) 0.985 (0.001)
0.798 0.899 0.944 0.966 0.989

B 0.709 (0.010) 0.800 (0.010) 0.852 (0.009) 0.883 (0.008) 0.909 (0.007)
0.798 0.899 0.955 0.978 1.000

Average relative length

Nominal 0.80 0.90 0.95 0.975 0.99

A 0.409 (0.000) 0.525 (0.000) 0.626 (0.000) 0.716 (0.000) 0.823 (0.000)
B 0.110 (0.002) 0.141 (0.002) 0.168 (0.003) 0.192 (0.003) 0.220 (0.004)
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Sampling fraction f ¼ 1=500, number of simulations B ¼ 500
Simultaneous coverage

Nominal 0.80 0.90 0.95 0.975 0.99

A 0.780 (0.002) 0.867 (0.002) 0.917 (0.001) 0.950 (0.001) 0.969 (0.001)
0.775 0.865 0.921 0.955 0.966

B 0.715 (0.010) 0.800 (0.009) 0.851 (0.008) 0.885 (0.007) 0.917 (0.006)
0.775 0.899 0.955 0.978 1.000

Average relative length

Nominal 0.80 0.90 0.95 0.975 0.99

A 0.720 (0.001) 0.925 (0.001) 1.102 (0.001) 1.260 (0.001) 1.448 (0.001)
B 0.137 (0.003) 0.175 (0.004) 0.209 (0.005) 0.238 (0.005) 0.274 (0.006)
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the calibrated coverage cannot always be brought to the exact nominal level of confidence,

even after repeated trials. For example, in this case we got 94.9% instead of exactly 95%.

It now follows that the difference between the simultaneous coverage and the calibrated

simultaneous coverage is an estimate of the coverage bias of the calibrated intervals over

repeated sampling. For instance, the coverage bias is 20.026 for calibrated intervals

aiming at the true coverage 0.95, which is a great improvement compared to the bias of the

uncalibrated intervals.

5. Summary

The design based properties of the model based small area interval estimation have been

considered. The area-specific coverages are uncontrollable in general. We propose to use

the simultaneous coverage to evaluate the small area confidence intervals. Being the mean

of the area-specific coverages, the simultaneous coverage is the expected proportion of

areas covered by the set of confidence intervals, all of which are derived at the same

nominal level of confidence. It is a meaningful concept in small area estimation,

summarizing all the area specific coverages in a single number.

It has been shown that the coverage of the EBLUP based intervals achieves the nominal

level of confidence asymptotically, as the number of small areas tends to infinity, given

correct unconditional area specific coverage with respect to both the population model and

the sampling distribution, and asymptotically independent sampling within the small

areas. The asymptotic settings are similar to those required for the second-order MSE

estimation under the LMMs. The adaption to the GLMMs is straightforward. Bootstrap

calibration may improve the coverage over repeated sampling in situations where the

normal approximation is poor. We have also discussed interval estimation based on

regression synthetic estimators. While this is less efficient than estimation based on the

random effects models, it provides more realistic measures of uncertainty than the naive

intervals derived under the fixed effects model underlying the synthetic estimator.
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