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We consider properties of revisions to mean squared optimal concurrent estimates of
unobserved components, e.g., seasonal adjustments or trends, obtained by ARIMA model-
based signal extraction methods like those used by SEATS. Concurrent estimates, i.e., the
estimates for the most recent month (or quarter), are updated whenever future observations
become available, and the difference between the concurrent estimate and the mean squared
optimal update is called the revision. It is therefore of interest to measure the variance of the
revisions, which generally increase in size as more data becomes available; this is because
the signal extraction mean squared error decreases as more observations are added. In this
article we compute the variance of the revision based on a finite sample of data, where the
revision lead, i.e., the amount of additional data that becomes available, is potentially infinite.
The revision variance for the infinite revision lead represents the maximal revision variance
possible, and is useful as a normalization. Our focus is on presenting practical, easily coded
algorithms for computation of the revision variances. These make possible a finite sample-
based alternative to SEATS’s “percentage reduction in the standard error of the revision after
additional years,” which assumes that estimates are obtained using an infinite past. We present
numerical comparisons between SEATS’s diagnostic and our finite sample analogue.
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1. Introduction

In the production of economic data at an official statistical agency, such as the U.S. Census

Bureau, “on-line” or contemporaneous publications are inevitably updated as more data

becomes available. But this updating can be encountered in a much wider venue. For

example, suppose that an analyst produces three-step-ahead forecasts of a dynamic variable

of interest; one and two periods into the future the forecast can be updated, reducing its error,

and three periods into the future one knows the actual value, reducing the error to zero.

Seasonal adjustment can be viewed as a signal extraction problem, and contemporaneous

(referred to as concurrent) estimates often involve a higher degree of error, which is

typically reduced as more data becomes available. The current practice at the U.S. Census

Bureau is to update initial seasonal adjustment estimates a year later, when 12 more values

have been obtained. After a certain point, determined by how rapidly the signal extraction

filter coefficients decay, the revision becomes negligible.
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There is a great deal of interest in knowing the variance of the error induced by revising

the estimates, since this quantity indicates the extent to which signal extraction estimates

can be expected to change when new data becomes available. Note however that, this

revision variance is often only a small contributor to the overall signal extraction error.

Knowledge of the revision error process can allow one to quantify confidence in the

reliability of concurrent filtered estimates, and also gauge ahead of time exactly how many

revisions are necessary to achieve a given tolerance of error. It is challenging to achieve

precise results in a nonparametric framework, but in a model-based signal extraction

scenario exact mathematical results can be obtained and applied. While this is the primary

advantage of a model-based approach, the corresponding limitation is that the results are

model dependent (and thus are wrong to the extent that the model is wrong). These results

(and how to implement them) are the primary focus of the article.

As a secondary application, we consider the revision error problem for growth rates of a

signal of interest. The growth rate is typically expressed as the percent change of the signal

considered at two nearby time points, e.g., the signal at the present time point compared

to the signal at the previous time point. If we apply a logarithmic transform to the raw data

(which is not uncommon for economic series), this percent change is approximately a

difference in the log scale. These growth rates are perceived by many consumers of

seasonally adjusted data to be a valuable characteristic of the series, and hence it is

desirable to quantify uncertainty about these rates. This can be done by computing revision

variances for the rates. Below, we show that simple extensions of the revision error

methodology for signal extraction can handle growth rates as well.

Pierce (1980) obtained some of the first results on revision variances, showing that

optimal forecast and backcast extension of the data minimizes mean squared revisions.

More recently, Planas and Depoutot (2002) described how to construct approximating

filters that reduce the length of the revision period. However, these papers generally

assume that a semi-infinite sample of data is available. We proceed a bit more generally,

allowing for a finite sample (which is more realistic) and obtaining more precise results.

We first treat the case of revising with a finite amount of additional data; for this purpose, it

is natural to follow the matrix-based signal extraction theory of Bell and Hillmer (1988)

and McElroy (2008). We also wish to compare these revisions to the “ultimate” revision,

which is theoretically obtained when we have an infinite amount of additional data.

In order to develop the appropriate formulas, we must project onto a semi-infinite sample,

and so we use the approach of Bell and Martin (2004). Section 2 describes the general

approach to computing the revisions, while Section 3 describes the requisite algorithms

for the semi-infinite sample case in considerable detail. These methods require the

calculation of partial fraction decompositions, and the Appendix discusses some

computationally efficient approaches. In Section 4 we present some examples which serve

to illustrate how the revision variances are computed and what information they provide.

Section 5 concludes.

2. Revisions

In this section we develop expressions for the revisions and their variances. In order that

the discussion here be self-contained, we include in Section 2.1 some background material

Journal of Official Statistics452



on signal extraction based on a finite sample of data (the case of signal extraction from a

semi-infinite sample is discussed in Section 3). Then Section 2.2 provides the basic

revision variance formulas, and Section 2.3 discusses how these can be calculated in

practice. Both these latter sections also deal with revision variances for growth rates. We

note that revision variances are an increasing function of the revision lead, which reflects

the idea that as more data becomes available, a greater revision of the signal extraction

estimate is to be expected.

2.1. Background on Finite Sample Signal Extraction

The following material can be found in an expanded form in McElroy (2008). We

consider the additive decomposition of our data vector Y ¼ ðY1; Y2; : : : ; YnÞ
0 into signal

S and noise N:

Y ¼ Sþ N

Following Bell (1984), we let Yt be an integrated process such that Wt ¼ dðBÞYt is

stationary, where B is the backshift operator and dðzÞ is a polynomial with all roots located

on the unit circle of the complex plane (also, dð0Þ ¼ 1 by convention). This dðzÞ is referred

to as the differencing operator of the series, and we assume it can be factored into

relatively prime polynomials dSðzÞ and dNðzÞ (i.e., polynomials with no common zeroes),

such that the series

Ut ¼ dSðBÞSt Vt ¼ dNðBÞNt ð1Þ

are stationary, mean zero time series. Note that dS ¼ 1 and/or dN ¼ 1 are included as

special cases (in these cases either the signal or the noise or both are stationary). We let d

be the order of d, and dS and dN are the orders of dS and dN ; since the latter operators are

relatively prime, d ¼ dS�dN and d ¼ dS þ dN .

As in Bell and Hillmer (1988), we assume Assumption A of Bell (1984) holds for the

component decomposition, and we treat the case of a finite sample with t ¼ 1; 2; : : : ; n

with n . d. Assumption A states that the initial d values of Yt, i.e., the variables

Y* ¼ ðY1; Y2; : : : ; YdÞ, are independent of {Ut} and {Vt}. For a discussion of the

implications of this assumption, see Bell (1984) and Bell and Hillmer (1988). A further

assumption that we make is that {Ut} and {Vt} are uncorrelated with one another.

Now we can write (1) in a matrix form, as follows. Let D be an ðn2 dÞ £ n matrix

with entries given by Dij ¼ di2jþd (the convention being that dk ¼0 if k , 0 or k . d).

D ¼

dd : : : d1 1 0 0 : : :

0 dd : : : d1 1 0 · · ·

..

. . .
. . .

. . .
. . .

. . .
. ..

.

0 : : : 0 dd : : : d1 1

2
6666664

3
7777775

The matrices DS and DN have entries given by the coefficients of dSðzÞ and dNðzÞ, but

are ðn2 dSÞ £ n and ðn2 dNÞ £ n dimensional, respectively. This means that each row
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of these matrices consists of the coefficients of the corresponding differencing

polynomial, horizontally shifted in an appropriate fashion. Hence

W ¼ DY U ¼ DSS V ¼ DNN

where Y ¼ ðY1; Y2; : : : ; YnÞ
0, and W, U, and V are analogously defined. Then it is possible

to write the estimate Ŝ as a linear matrix operating on Y:

Ŝ ¼ FY

The error covariance matrix, i.e., the covariance matrix of Ŝ2 S, is denoted by M; both

F and M are given in McElroy (2008). The formula for M is

M ¼ D 0
SS

21
U DS þ D 0

NS
21
V DN

� �21

ð2Þ

where SX denotes the covariance matrix for any random vector X.

2.2. Revision Variances

We now derive the formula for the revision variance, displayed in (5) below. For further

clarity, let Ŝtjn1 denote the estimate of St based on data Y1; Y2; : : : ; Yn; where 1 # t # n.

(It is possible to extend the discussion to the case t . n as well, using some extensions of

the formulas in McElroy (2008), but this case will not be pursued here.) In our matrix

notation, this corresponds to the tth row of the matrix F applied to Y, where F is n-

dimensional and Y has n components. Then the hth revision is defined as

Ŝ
tj
nþh
1

2 Ŝtjn1 ð3Þ

for any h . 0. Note that Ŝ
tj
nþh
1

can be written as an n þ h-dimensional matrix F acting on

ðY1; : : : ; YnþhÞ
0. Now although the process in (3) above has zero mean, its variance

depends on t, so we compute its variance in an indirect manner. Write

Ŝtjn1 2 St ¼ Ŝtjn1 2 Ŝ
tj
nþh
1

� �
þ Ŝ

tj
nþh
1

2 St

� �
ð4Þ

and note that the quantities on the right hand side are uncorrelated with each other, since

the first is a linear combination of the data Y1; Y2; : : : ; Ynþh which is always uncorrelated

with the error process of the minimum mean squared error estimate of St based on data up

through time n þ h. Therefore,

E Ŝtjn1 2 St

� �2
� �

¼ E Ŝ
tj
nþh
1

2 Ŝtjn1

� �2
� �

þ E Ŝ
tj
nþh
1

2 St

� �2
� �

Denoting the mean squared error of Ŝtjn1 by Dtj
n
1
, we have the revision variance equal to

RtðhÞ ¼ Dtj
n
1
2 D

tj
nþh
1

ð5Þ

which is always a positive quantity. Since D
tj
nþh
1

must be a nonincreasing function in h

(since more data is being added), the revision variance RtðhÞ is a nondecreasing function of

the revision lead. Note that RtðhÞ also depends on n, but this dependency has been

suppressed from the notation. The squared root of this revision variance is the standard
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error of the revision, and can be used in conjunction with the data distribution to produce a

confidence interval for Ŝ
tj
nþh
1

centered at Ŝtjn1 . For a normal distribution, an approximate 95

percent interval is given by

Ŝtjn1 ^ 2
ffiffiffiffiffiffiffiffiffiffi
RtðhÞ

p

By plotting this as a function of h, we obtain an envelope that will contain the revised

estimate about 95 percent of the time; this gives an idea of how much the estimate may

change in the future. Note that, since the signal extraction mean squared error formulas

only depend on the models that are assumed for St and Nt, for a given t and n we can

calculate RtðhÞ for any future horizon h, without the need for additional data.

As another application, suppose that we are interested in the revision of an estimated

growth rate. For some p . 0, the growth rate at time t could be measured via St 2 St2p

(assume that we have already log-transformed the data), which would be estimated by

Ŝtjn1 2 Ŝt2pj
n
1

assuming that t2 p $ 1. Hence the revision, based on h additional data points, is

Ŝ
tj
nþh
1

2 Ŝ
t2pj

nþh
1

� �
2 Ŝtjn1 2 Ŝt2pj

n
1

� �
Now using a decomposition of the revision similar to (4), the revision variance for the

growth rate is

~RtðhÞ ¼ ~Dtj
n
1
2 ~D

tj
nþh
1

where ~D denotes the variance of the signal extraction error for the growth rate. Explicit

formulas for these quantities are provided in Section 2.3 below.

2.3. Implementation of Revision Variance Formulas

Let M ðnÞ denote the n-dimensional covariance matrix of the error process associated with

signal extraction matrix F, as given in (2). Then

Dtj
n
1
¼ MðnÞ

tt

and it follows that the revision error variance, for finite revision horizon h, is computed via

RtðhÞ ¼ Dtj
n
1
2 D

tj
nþh
1

¼ MðnÞ
tt 2MðnþhÞ

tt

Computation of M involves several matrix inversions, so this procedure is

computationally cumbersome for large h or large n. One advantage is that revision

errors at all filter points t can be obtained at one time, for fixed n and h.

For the case of growth rates, the revision variance ~RtðhÞ is also easily obtained. Let ej
denote a vector (of dimension n or nþ h depending on the context) with a 1 in the jth

component, and zeroes elsewhere. Then the growth rate estimate can be written as

ðet 2 et2pÞ
0FY
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where F and Y have dimension n or nþ h as the case may be. It follows that the mean

squared signal extraction error, where the “signal” is now the growth rate, is given by

ðet 2 et2pÞ
0Mðet 2 et2pÞ ¼ Mtt þMt2p;t2p 2 2Mt;t2p

The above formula gives ~Dtj
n
1

and ~D
tj
nþh
1

, so that

~RtðhÞ ¼ MðnÞ
tt þMðnÞ

t2p;t2p 2 2MðnÞ
t;t2p 2MðnþhÞ

tt 2MðnþhÞ
t2p;t2p þ 2MðnþhÞ

t;t2p

We should also consider the case that h ¼ 1, when an infinite amount of future

data is available to perform revisions. This is only an ideal situation, but the

corresponding revision error Rtð1Þ yields the maximal limiting value of this

increasing function of h, and thus serves as a suitable benchmark for the finite-lead

revisions. In the seasonal adjustment program SEATS (Maravall and Caporello 2004),

the following measure is used:

1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 RtðhÞ=Rtð1Þ

p
ð6Þ

The interpretation of this is given as follows: suppose that (6) exceeds some threshold

1 2 a; this implies that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rtð1Þ2 RtðhÞ

p
, a

ffiffiffiffiffiffiffiffiffiffiffiffi
Rtð1Þ

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

tj
nþh
1

2 Dtj
1
1

q
, a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtj

n
1
2 Dtj

1
1

q

Now the quantity D
tj
nþh
1

2 Dtj
1
1

is the variance of the revision obtained when we have

data up through time nþ h and we get infinitely more data; whereas Dtj
n
1
2 Dtj

1
1

is the

variance of the revision obtained when we have data up through time n and we get

infinitely more data. The former quantity is that portion of the revision variance Rtð1Þ that

remains after we have accounted for the revision variance RtðhÞ; thus

D
tj
nþh
1

2 Dtj
1
1

Dtj
n
1
2 Dtj

1
1

¼
Rtð1Þ2 RtðhÞ

Rtð1Þ

is the proportion of the infinite lead revision variance Rtð1Þ that remains after accounting

for the finite lead revision variance RtðhÞ. If the squared root of this ratio is less than a,

then most of the revisions have already occurred, and there is little additional benefit in

revising previous filter estimates. The calculation of Rtð1Þ is theoretically more

complicated than the finite-lead revision variances, since it cannot be accomplished with

filter matrices. The next section discusses various mathematical details needed to

compute these infinite-lead revision variances, following and adapting the exposition of

Bell and Martin (2004).

3. Filtering from a Semi-Infinite Sample

We first set out carefully the mathematics behind two-component partial fraction

decompositions for power series. The basic context is a signal-noise component model
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given by

fðFÞYt ¼ uðFÞe t

fSðFÞSt ¼ uSðFÞjt

fNðFÞNt ¼ uNðFÞht

where the f polynomials combine AR operators and differencing operators necessary to

produce a stationary time series model. The u polynomials are MA operators, acting on the

white noise sequences e,j, and h. Although it is unusual to write ARIMA models in terms

of the forward shift operator F ¼ B21, this is the form that is most convenient for

stating the mathematical results that follow (see Box and Jenkins (l976) for material

on “backwards models”). Later on we present some results for the more conventional

ARIMA equations, where F is replaced by B. Now the asymmetric signal extraction filters

are computed from various combinations of these model operators. Letting

pðzÞ ¼ fðzÞ=uðzÞ, the optimal signal extraction filter that uses m past observations and

an infinite number of future observations is

a
ðmÞ
S ðFÞ ¼

Bm

s 2
e

pðFÞ½pðBÞgSðFÞF
m�þ ð7Þ

where ½��þ is an indicator function for nonnegative powers of F and gSðzÞ is the

pseudo-autocovariance generating function for the signal. The formula (7) is analogous

to a result cited in Bell and Martin (2004, Equation (10)), but they consider an infinite

number of past observations and a finite number m of future ones; the modification to

our case is trivial (later we will see that the corresponding error process is uncorrelated

with all linear functions of the data, which is a verification that (7) is indeed the

minimum mean squared error signal extraction filter given Assumption A of Bell

(1984)). Now we have the following simplification, which is analogous to Bell and

Martin (2004, Equation (12)):

pðBÞgSðFÞF
m ¼

fSðBÞfNðBÞ

uðBÞ

uSðFÞuSðBÞ

fSðFÞfSðBÞ
Fms 2

j ¼
fNðBÞuSðFÞuSðBÞ

fðBÞfSðFÞ
Fms 2

j

¼ s 2
j

dðFÞ

fSðFÞ
þ

cðBÞ

uðBÞ

� �

for appropriate polynomials d and c. This last equality above is the partial fraction

decomposition, which is explored in the appendix below. It turns out that the

polynomial c(z) satisfies c0 ¼ cð0Þ ¼ 0, i.e., there is no order zero coefficient. This

implies that the last term involves only negative powers of F. Hence

½pðBÞgSðFÞF
m�þ ¼ s 2

j

dðmÞS ðFÞ

fSðFÞ

where dðFÞ ¼ dðmÞS ðFÞ is given the subscript S to denote the signal, and the superscript m

for the number of past observations required. Substituting into (7) yields

a
ðmÞ
S ðFÞ ¼

s 2
j

s 2
e

fNðFÞdðmÞS ðFÞ

uðFÞ
Bm
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which is analogous to Bell and Martin (2004, Equation (14)). This is for the signal; similar

calculations yield for the noise

a
ðmÞ
N ðFÞ ¼

s 2
h

s 2
e

fSðFÞdðmÞN ðFÞ

uðFÞ
Bm

Essentially the main challenge is to produce the polynomials dðmÞS and dðmÞN which is

described in great detail in the appendix below.

Now for t within the data span, the error process for signal extraction is given by

St 2 a
ðmÞ
S ðFÞYt ¼ 2a

ðmÞ
S ðFÞNt þ ð1 2 a

ðmÞ
S ðFÞÞSt ¼ 2a

ðmÞ
S ðFÞNt þ a

ðmÞ
N ðFÞSt

¼ 2
s 2

j

s 2
e

dðmÞS ðFÞuNðBÞ

uðFÞ
Bmht þ

s 2
h

s 2
e

dðmÞN ðFÞuSðBÞ

uðFÞ
Bmjt

The processes given above are stationary, being ARMA filters of white noise.

The autocovariance generating function is then given by (cf. Bell and Martin 2004,

Equation (30))

s 2
js

2
h

s 4
euðBÞuðFÞ

s 2
hd

ðmÞ
N ðBÞdðmÞN ðFÞuSðBÞuSðFÞ þ s 2

jd
ðmÞ
S ðBÞdðmÞS ðFÞuNðBÞuNðFÞ

h i
ð8Þ

We are interested in the coefficient of F 0, which is the mean squared error of the signal

extraction estimate. But this mean squared error can be expressed as the sum of the

variances of the following two ARIMA processes:

u ðBÞUt ¼ dðmÞN ðBÞ=ðdðmÞN Þ0
� 	

uSðBÞzt zt , WNð0; ðdðmÞN Þ
2

0s
4
hs

2
j=s

4
e Þ

u ðBÞVt ¼ dðmÞS ðBÞ=ðdðmÞS Þ0
� 	

uNðBÞxt xt , WNð0; ðdðmÞS Þ
2

0s
4
js

2
h=s

4
e Þ

Here ðdðmÞN Þ0 ¼ dðmÞN ð0Þ is the leading coefficient of the polynomial. The autocovariances

of such ARIMA processes can be determined using standard algorithms (see Tunnicliffe-

Wilson 1979). Next, we show that the stated signal extraction filters yield the minimum

mean squared error linear estimates. Following Bell and Martin (2004), we have

etj1t2m
¼ Ŝtj1t2m

2 St ¼ Ŝtj121
2 St

� �
þ Ŝtj1t2m

2 Ŝtj121

� �
¼ etj121

þ a
ðmÞ
S ðFÞ2 a

ð1Þ
S ðFÞ

� 	
Yt

Now the error etj121
is the symmetric bi-infinite Wiener-Kolmogorov signal extraction

error, and hence is orthogonal to any linear combination of the data, at all times. The

corresponding filter is að1Þ
S ðFÞ ¼ pðFÞpðBÞgSðFÞ=s

2
e , and hence

a
ðmÞ
S ðFÞ2 a

ð1Þ
S ðFÞ ¼ 2

1

s 2
e

BmpðFÞ½pðBÞgSðFÞF
m�2 ¼ 2

1

s 2
e

BmpðFÞ
cðmÞS ðBÞ

uðBÞ
s 2

j

where ½��2 means to take only negative powers of F. Here cðmÞS corresponds to the

polynomial c used earlier, but we use subscripts and superscripts to call attention to its

dependence on the signal and m. Now the second equality follows because cðmÞS ð0Þ ¼ 0.
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Hence in analogy with Bell and Martin (2004, Equation (36))

etj1t2m
¼ etj121

2
s 2

j

s 2
e

cðmÞS ðBÞ

uðBÞ
e t2m

so that the second term only depends on the innovations e s at times before t2 m. Now

letting Wt ¼ dðFÞYt be the differenced observed process, it follows that e tj1t2m
is

uncorrelated with Ws for s $ t2 m. By Assumption A, the initial values Y* are orthogonal

to {Wt} and hence to {e t}, and therefore the error process is orthogonal to the observations

Yt2m; Yt2mþ1; : : : This shows optimality of the filter.

Next, suppose that we have more conventional models for the components:

fðBÞYt ¼ uðBÞe t ð9Þ

fSðBÞSt ¼ uSðBÞjt

fNðBÞNt ¼ uNðBÞht

This can be recast into the previous “backwards model” framework by letting ~gðzÞ ¼

zbgðz21Þ for any polynomial g of order b (this has the effect of reversing the coefficients).

Using this device, (9) can be written as a backwards model by reversing the coefficients of

all the polynomials and redefining new innovation sequences if necessary. Then the

optimal signal extraction filter for (9), denoted by ~a
ðmÞ
S ðFÞ, is given by

~a
ðmÞ
S ðFÞ ¼

s 2
j

s 2
e

~fNðFÞ~d
ðmÞ

S ðFÞ

~uðFÞ
Bm

Here ~fN and ~u are the reverse polynomials of fN and u, respectively, and ~d
ðmÞ

S is

obtained by solving the corresponding system of equations as in the backwards model

case. It can be seen that ~d
ðmÞ

S is also the reverse polynomial of dðmÞS . If we now compute the

error process corresponding to the filter ~a
ðmÞ
S , we see that its autocovariance generating

function is also given by (8); this uses the fact that ~gðBÞ~gðFÞ ¼ gðBÞgðFÞ for any

polynomial g. In summary, the spectrum of the error process corresponding to the optimal

signal extraction filter for the conventional model (9) is the same as the error spectrum in

the backwards model, and (8) can therefore be used to compute autocovariances of the

error process. In particular, the signal extraction mean squared error Dtj
1
1

is the lag zero

term of (8) with the choice of m ¼ t2 1.

The autocovariance generating function (8) can also be applied to the revision variance

for growth rates. It is required to compute the variance

~Dtj
1
1
¼ E ðŜtj11 2 StÞ2 ðŜt2pj

1
1
2 St2pÞ

� �2
� �

¼ VarðŜtj11 2 StÞ þ VarðŜt2pj
1
1
2 St2pÞ2 2E ðŜtj11 2 StÞðŜt2pj

1
1
2 St2pÞ

h i
Now the covariance term is equal to

E ðŜtj1pþ1
2 StÞðŜt2pj

1
1
2 St2pÞ

h i
ð10Þ
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which is true because the difference between them is equal to the covariance of Ŝt2pj
1
1
2

St2p with Ŝtj11 2 Ŝtj1pþ1
, and this latter term is a linear function of Y1; Y2; · · ·. Now the

covariance in (10) is seen to be the lag p autocovariance of the signal extraction error

process with the filter a
ðt2p21Þ
S ðFÞ, and this can be extracted from (8) as well. If we denote

the autocovariance function corresponding to the signal extraction error process for the

filter aðmÞ
S ðFÞ by gðmÞe , then we have

~Dtj
1
1
¼ gðt21Þ

e ð0Þ þ gðt2p21Þ
e ð0Þ2 2gðt2p21Þ

e ð pÞ

Since ~Dtj
n
1

would be computed with matrices, as described in Section 2, we can now

obtain the growth rate revision variance ~Rtð1Þ.

4. Empirical Illustrations of Revision Variances

This article has so far discussed a method for computing revision variances, where the

revision is defined by (3). This expression describes changes in the estimate of St when our

sample expands from Y1; : : : ; Yn to Y1; : : : ; Ynþh. However, a different (and less exact)

approach is adopted in the ARIMA model-based seasonal adjustment program SEATS

(see Maravall and Caporello 2004). Following the work of Pierce (1980) and Maravall

(1986), SEATS utilizes a method for computing revision variances that is appropriate

when there is an infinite amount of past data. In terms of our notation, SEATS computes

the variance of Ŝ
tj
nþh
21

2 Ŝtjn21
, where 0 , h # 1 (note that this variance will not depend

on n). The assumption that an infinite amount of past data is available allows for the

mathematical development of SEATS’s approach to revision variances; however, it is an

unrealistic assumption in practice. One motivation for the present work is to update the

revision variance calculations of SEATS to handle finite samples.

The next pertinent question is: how much do SEATS’s revision variances differ

from the exact revision variances? If there is little discrepancy and the exact revision

variances require much more computational time, then SEATS users may prefer the

current (incorrect) output. The following empirical illustrations demonstrate how

the two approaches generate divergent revision variances, and show how these

discrepancies can depend upon sample size n, the model parameters, and the revision

lead h. In order to fix ideas, we will consider the Airline Model (Box and Jenkins

1976) for monthly data, with a signal-noise decomposition into nonseasonal Nt

(or “seasonally adjusted”) and seasonal St:

ð1 2 BÞð1 2 B12ÞYt ¼ ð1 2 uBÞð1 2QB12Þe t

ð1 2 BÞ2Nt ¼ uNðBÞht

ð1 þ Bþ · · · þ B11ÞSt ¼ uSðBÞjt

for independent white noise sequences e t, jt, and ht. These component models will be

obtained via the method of canonical decomposition (Hillmer and Tiao 1982). Now

because Q is associated with B 12, it will have a more enduring impact than u on signal

extraction filter coefficients, so we focus on how the revision variances are affected by

various values of Q. In our study we consider samples of 5 through 11 years, where u ¼ :9

and Q takes on the values .6, .7, .8, and .9 (note that all the calculations are purely derived
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from the model, and thus it is not necessary to consider simulations). We are interested in

the relative revision variance measure given by (6) for h ranging from 1 to 5 years (for

most cases, revision variances had essentially converged beyond 5 years revision lead).

We can expect revisions to be greatest for the concurrent filter, so we let t ¼ n. The results

are displayed in the tables below.

Reading across the rows, we see that the measure (6) decreases in n, and gets fairly close

to the SEATS value. This approximation is even tighter for higher revision leads when

Q ¼ :6 and .7. Reading down the columns, we see the expected behavior that most of the

revisions have occurred by the fourth or fifth year; however, for larger values of Q this

convergence is considerably slowed. For Q ¼ :9, all the values are under 50 percent. The

largest discrepancies between SEATS and the finite sample approach occur for large Q

and small sample size; for Q ¼ :9 and h ¼ 5 years, the discrepancy can be almost 9

percent. Thus in general, the SEATS revision variances are too small, and the offset can be

considerable when Q is large or the sample size is small.

5. Conclusion

This article discusses the problem of revising concurrent signal extraction estimates, and

how to explicitly compute the variance of the revisions. In the case that there is only a

finite number h of additional data points, the procedure is a straightforward application of

finite-sample signal extraction formulas. When there is an infinite amount of additional

data, it is necessary to compute the variance of the corresponding error process. In order to

compute the filter coefficients, it is necessary to perform a partial fraction decomposition

and arrange the information appropriately. This semi-infinite sample revision error forms a

normalization for the h-step ahead revision error, allowing one to gauge the ultimate

stability of signal extraction estimates.

We have seen that in some cases there can be a considerable discrepancy between our

exact method and that of SEATS; this justifies the additional computation time required

to compute M in (2). Nevertheless, when the sample size is large and Q is smaller, some

users may judge that SEATS provides an adequate approximation to the revision

variance. The advantage of such an approximation is that it is much faster to compute;

the exact method requires the inversion of matrices with dimension of order n. The

prototype program X-13 ARIMA-SEATS, which is a hybrid of X-12 ARIMA and

SEATS, contains an implementation of the revision variance approach of this article.

Typically, a run of a standard length series (between 10 and 15 years of monthly data)

using the inexact method of SEATS takes a split second of time, whereas a run using

exact finite sample techniques takes several seconds – even as long as 10 seconds. This

would be prohibitively long for mass production. Therefore we propose the following

scheme (suggested by a referee): compute analogs of Tables 1–4 for a grid of models,

with various lengths and lead times, and store this as a lookup table. Then set up a

tolerance threshold – say 80 percent – for the revision measure, such that identified

models that fall under the threshold are required to use the exact method; the others can

safely use the approximate SEATS approach. This would give a practical means of

splitting the horns of the dilemma.
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6. Appendix: Partial Fraction Implementation

We are primarily interested in obtaining the autocovariance functions gðmÞe from the

autocovariance generating function (8), and the polynomials dðmÞS (F) and dðmÞN ðFÞ are

obtained by the use of partial fraction decomposition methods. We now describe two

alternative algorithms to accomplish this: the first algorithm safely handles the case

Table 1. Revision Measure for (.9, .6) Airline Model

Finite Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .4015 .4006 .4001 .3999 .3999 .3999 .3999 .3999
2 .6412 .6404 .6401 .6399 .6399 .6399 .6399 .6399
3 .7848 .7842 .7840 .7840 .7839 .7839 .7839 .7839
4 .8709 .8705 .8704 .8703 .8703 .8703 .8703 .8703
5 .9225 .9223 .9223 .9222 .9222 .9222 .9222 .9222

Table 2. Revision Measure for (.9, .7) Airline Model

Finite Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .3059 .3028 .3013 .3006 .3003 .3001 .3000 .2999
2 .5162 .5129 .5114 .5107 .5103 .5101 .5100 .5099
3 .6620 .6594 .6581 .6575 .6572 .6571 .6570 .6570
4 .7636 .7617 .7608 .7603 .7601 .7600 .7600 .7599
5 .8346 .8332 .8325 .8322 .8321 .8320 .8320 .8319

Table 3. Revision Measure for (.9, .8) Airline Model

Finite Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .2180 .2111 .2069 .2044 .2027 .2017 .2011 .2000
2 .3831 .3744 .3690 .3657 .3636 .3623 .3615 .3600
3 .5108 .5022 .4970 .4937 .4916 .4903 .4895 .4880
4 .6108 .6032 .5985 .5955 .5937 .5925 .5917 .5904
5 .6897 .6832 .6792 .6767 .6751 .6741 .6735 .6723

Table 4. Revision Measure for (.9, .9) Airline Model

Finite Sample Method

Lead 5 years 6 years 7 years 8 years 9 years 10 years 11 years SEATS

1 .1441 .1328 .1250 .1193 .1150 .1118 .1094 .1000
2 .2578 .2412 .2293 .2206 .2140 .2090 .2051 .1900
3 .3506 .3317 .3180 .3078 .3000 .2940 .2893 .2710
4 .4280 .4086 .3943 .3835 .3752 .3688 .3638 .3439
5 .4938 .4748 .4605 .4497 .4414 .4349 .4298 .4095
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where the number of past observations m .. 0; the second algorithm handles the

opposite case. Although many algorithms for partial fraction decompositions are

available, it seemed useful to provide explicit details for the revision variance

problem. Now we introduce the following notation for the degrees of model

polynomials: based on (9), the model AR polynomial fðzÞ has degree p, and is

the product of the signal AR polynomial fSðzÞ with degree pS and the noise AR

polynomial fNðzÞ with degree pN . (Of course these are generalized AR polynomials,

in that they may include differencing operators with unit roots.) The model MA

polynomial uðzÞ has degree q, where the signal and noise polynomials uSðzÞ and uNðzÞ

have degrees qS and qN , respectively, and where gSðzÞ represents the signal

autocovariance generating function. With this notation in hand, we discuss the two

partial fraction decomposition algorithms below, and also describe a useful iterative

procedure for determining dðmþ1Þ
S ðFÞ from dðmÞS ðFÞ. For ease of exposition, we restrict

ourselves to the case of the signal St.

6.1. First Partial Fraction Decomposition

An alternative partial fraction decomposition to the one discussed in Section 3, for

m $ pN þ qS, is as follows

pðBÞgSðFÞF
m ¼ s 2

j

fSðBÞfNðBÞuSðFÞuSðBÞ

uðBÞfSðFÞfSðBÞ
Fm

¼ s 2
j

uSðFÞ½FpNfNðBÞ�½FqSuSðBÞ�Fm2pN2qS

fSðFÞuðBÞ

¼ s 2
j

gðFÞ½FquðBÞ� þ kðFÞ

fSðFÞuðBÞ
¼ s 2

j

gðFÞFq

fSðFÞ
þ

kðFÞ

fSðFÞuðBÞ

¼ s 2
j

gðFÞFq

fSðFÞ
þ

bðFÞ

fSðFÞ
þ

cðBÞ

uðBÞ
¼ s 2

j

gðFÞFq þ bðFÞ

fSðFÞ
þ

cðBÞ

uðBÞ

¼ s 2
j

dðmÞS ðFÞ

fSðFÞ
þ

cðBÞ

uðBÞ

where the g(F) polynomial (with degree max{mþ qS 2 q; 0}) and the k(F) polynomial

(with degree at most q2 1) are found using polynomial division. That is,

uSðFÞ½FpNfNðBÞ�½FqSuSðBÞ�Fm2pN2qS

½FquðBÞ�
¼ gðFÞ þ

kðFÞ

½FquðBÞ�

Also, the b(F) polynomial has degree max{q2 1; pS} and the c(B) polynomial has

degree q in order to satisfy

kðFÞ ¼ uðBÞbðFÞ þ fSðFÞcðBÞ ð11Þ

The polynomial dðmÞS ðFÞ is given by

dðmÞS ðFÞ ¼ gðFÞFq þ bðFÞ ð12Þ
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and has degree max{mþ qS; q; ps} (again, suppose m is so large such that this holds). Now

the polynomial Equation (11) for k(F) in terms of unknown polynomials b(F) and c(B)

represents a system of max{q2 1; pS} þ qþ 1 equations with max{q2 1; pS} þ 1

unknown coefficients in b(F) and with qþ 1 unknown coefficients in c(B). Hence the

number of unknown coefficients is one plus the number of equations, so that the coefficient

c0 ¼ cð0Þ is chosen such that c0 ¼ 0. The unknown polynomial coefficients are found by

solving the following system of equations (in this case assuming pS . q)

02q

..

.

021

k0

..

.

kq21

..

.

0pS

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

¼

fS
0 · · · 0 uq · · · 0 · · · 0

..

. . .
. ..

. ..
. . .

. ..
. ..

. ..
.

fS
q21 · · · fS

0 u1 · · · uq · · · 0

fS
q · · · fS

1 u0 · · · uq21 · · · 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

fS
2q21 · · · fS

q 0 · · · u0 · · · upS02qþ1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 · · · 0 0 · · · 0 · · · u0

2
6666666666666666666664

3
7777777777777777777775

cq

..

.

c1

b0

..

.

bq21

..

.

bpS

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

ð13Þ

Here bj; j ¼ 0; : : : ; pS, denotes the coefficients of bðFÞ and cj; j ¼ 1; : : : ; q, denotes

the coefficients of cðBÞ. Also uj; j ¼ 0; : : : ; q, denotes the coefficients of uðBÞ and uj ¼ 0

for j . q, whereas fS
j , j ¼ 0; : : : ; pS, denotes the coefficients of fSðFÞ and fS

j ¼ 0 for

j . pS. Since fSðzÞ and uðzÞ can have no common zeroes by assumption, the above matrix

is invertible by application of the Lemma on page 25 of Bell and Martin (2002). Hence, we

can proceed as follows:

1. Determine g(z) and k(z) by the Euclidean division algorithm

2. Solve (13) for b(z)

3. Determine dðmÞS ðzÞ using (12)

6.2. Second Partial Fraction Decomposition

An alternative partial fraction decomposition for m , pN þ qS is given by

pðBÞgSðFÞF
m ¼

s 2
j½u

SðFÞFm�½fNðBÞuSðBÞ�

fSðFÞuðBÞ
¼

rðF;BÞ

fSðFÞuðBÞ
¼

dðFÞ

fSðFÞ
þ

cðBÞ

uðBÞ

where rðF;BÞ has degree pr ¼ mþ qS in F and degree qr ¼ pN þ qS in B. Here dðFÞ ¼

dðmÞS ðFÞ has degree pd ¼ max{mþ qS; pS} and c(B) has degree qc ¼ max{pN þ qS; q}, and

are defined such that they satisfy

rðF;BÞ ¼ uðBÞdðFÞ þ fSðFÞcðBÞ

The above polynomial equation for r(F,B) represents a system of pd þ qc þ 1 equations

in pd þ 1 unknown coefficients for d(F) and qc þ 1 unknown coefficients for c(B).
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Consequently, the coefficient c0 ¼ cð0Þ is chosen such that c0 ¼ 0. The unknown

coefficients for d(F) and c(B) are found by solving the following system of equations

r2qc

r2qcþ1

..

.

r21

r0

..

.

rpd21

rpd

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼

fS
0 0 · · · 0 uqc 0 · · · 0

fS
1 fS

0 · · · 0 uqc21 uqc · · · 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

fS
qc21 fS

qc22 · · · fS
0 u1 u2 · · · updþ1

fS
qc

fS
qc21 · · · fS

1 u0 u1 · · · upd

..

. ..
. ..

. ..
. ..

. ..
.

0 0 · · · fS
pd

0 0 · · · u1

0 0 · · · 0 0 0 · · · u0

2
66666666666666666664

3
77777777777777777775

cqc

cqc21

..

.

c21

d0

..

.

dpd21

dpd

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

ð14Þ

Here rj; j ¼ 0; : : : ; pr; denotes the coefficients of rðF;BÞ in F and rj ¼ 0 for j . pr,

whereas r2j, j ¼ 1; : : : ; qr; denotes the coefficients of r(F,B) in B and r2j ¼ 0 for j . qr.

Since the matrix is invertible, we can proceed as follows:

1. Write down r(F,B)

2. Solve (14) for d(z)

Note that this second alternative partial fraction decomposition can also be used to handle

m $ pN þ qS; however, the first alternative partial fraction decomposition is faster in

terms of software speed. As noted in Bell and Martin (2004), a direct partial fraction

decomposition method that avoids solving linear systems will be more efficient.

6.3. Sequential Partial Fraction Decomposition

Given that dðmÞS ðFÞ has been calculated via either of the two previous partial fraction

decompositions, it is possible to sequentially calculate dðmþ1Þ
S ðFÞ. Let dðmÞS ðFÞ and c ðmÞðBÞ

denote the polynomials obtained via partial fraction decomposition for the filter a
ðmÞ
S .

Then we have

pðBÞgSðFÞF
mþ1 ¼ ½pðBÞgSðFÞF

m�F ¼
dðmÞS ðFÞ

fSðFÞ
þ

c ðmÞðBÞ

uðBÞ

" #
F ¼

dðmÞS ðFÞF

fSðFÞ
þ

c ðmÞðBÞF

uðBÞ

¼
dðmÞS ðFÞF þ cðmÞ1 fSðFÞ

fSðFÞ
þ

c ðmÞðBÞF 2 cðmÞ1 uðBÞ

uðBÞ

¼
dðmþ1Þ
S ðFÞ

fSðFÞ
þ

c ðmþ1ÞðBÞ

uðBÞ

where cðmÞ1 is the coefficient associated with B1 in c ðmÞðBÞ. So we have the definitions

dðmþ1Þ
S ðFÞ ¼ dðmÞS ðFÞF þ cðmÞ1 fSðFÞ

c ðmþ1ÞðBÞ ¼ c ðmÞðBÞF 2 cðmÞ1 uðBÞ
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from which it follows, together with c ðmÞð0Þ ¼ 0 and u ð0Þ ¼ 0, that

c ðmþ1Þð0Þ ¼ 0

In this manner, dðmþ1Þ
S can be obtained from dðmÞS . Using the above sequential

decomposition, it is possible to calculate dðmþkÞ
S ðFÞ from the partial fraction decomposition

associated with dðmÞS ðFÞ, by sequentially calculating the partial fraction decomposition

associated with d
ðmþjÞ
S ðFÞ for each j ¼ 1; : : : ; k.

6.4. Discussion

The second partial fraction decomposition method will work in all cases that need to be

considered. The first decomposition, however, is somewhat faster and can be used when m

is sufficiently large. Both approaches, as well as the iterative algorithm for dS, have been

implemented in X-13 ARIMA-SEATS. The computational cost of each is related to the

size of the matrix that needs to be inverted; typically this is of the order T 3 operations,

where T is the size of the matrix (assuming that we are not taking advantage of any special

band structures). The first algorithm is therefore Oððqþ pSÞ
3Þ (the other aspects of the

algorithm will take negligible time compared with the matrix inversion), whereas the

second is OðT 3Þ with T ¼ max{pN þ qS; q} þ max{mþ qS; pS} which is dominated by m

when m is large.

These methods serve as an illustration of how the autocovariance functions of Section 3

might be computed. Based on our experience with X-13 ARIMA-SEATS, these partial

fraction decomposition routines perform well, being both flexible and fairly efficient. They

are mainly provided here for the benefit of readers who wish some assistance with

generating their own implementations of revision variance calculations.
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