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Motivated by the desire to project the financial solvency of Social Security, the article
discusses forecasts of labor force participation rates. The data are highly multivariate in the
sense that, at each time point, rates are disaggregated by gender, age, marital status as well as
the presence of young children in the household; taken together, there are 101 demographic
cells at each point in time. Thirty-one years of data from the U.S. Bureau of Labor Statistics
are available. As input to Social Security projections, it is desirable to produce forecasts over a
75-year time horizon.
The purposes of this article are to give a structure to the problem of forecasting labor force

participation rates, to summarize the data and to show how to implement different types of
basic models.
For the basic structure, the article explores the use of statistical techniques commonly

employed in demography for forecasting vital rates such as mortality and fertility.
Specifically, we examine principal components techniques popularized by Lee and Carter
(1992), as well longitudinal data techniques, for forecasting.
In summarizing the data, we find that differencing rates captures much of the dynamic

movement of rates, as measured by short-range out-of-sample validation. Moreover, a logistic
transformation stabilizes long-range forecasts.
The long-range forecasts varied substantially over the type of model selected, ranging from

an average of 88.9% for females (78.4% for males) to 65.1% (61.3%) over a 75-year horizon.
This large difference reflects the well-known fact that sex-specific models can summarize
small historical differences yet project them into large differences in the distant future. To
remedy this, we propose a simple autoregressive model that captures gender differences with
common parameters. This simple model generates a 71.4% average participation rate for
females (77.5% for males), a modest increase (decrease) compared to current rates.

Key words: Longitudinal data; principal components; demographic forecasting; JEL
classification; Primary J110; Secondary J210.

1. Introduction

Labor force participation rate (LFPR) forecasts, coupled with forecasts of the population,

provide us with a picture of a nation’s future workforce. This picture provides insights into

the future workings of the overall economy, and thus LFPR projections are of interest to a

number of government agencies. In the United States, LFPRs are projected by the Social

Security Administration (SSA), the U.S. Bureau of Labor Statistics, the Congressional

Budget Office, and the Office of Management and Budget. In the context of Social

q Statistics Sweden

1 University of Wisconsin, School of Business, 975 University Avenue, Madison, WI 53706, U.S.A. Email:
jfrees@bus.wisc.edu
Acknowledgments: I thank anonymous reviewers for comments on the article. The Assurant Health Insurance
Professorship and the National Science Foundation Grants SES-0095343 and SES-0436274 provided funding to
support this research.

Journal of Official Statistics, Vol. 22, No. 3, 2006, pp. 453–485



Security, policy-makers use labor force projections to evaluate proposals for reforming the

Social Security system and to assess its future financial solvency.

Is the quantity of the future labor force important to Social Security financial projections?

If Social Security were funded like private pension plans, the answer would be murky.

Funding of private pension plans is based on the principle of individual equity so that each

plan member supports his or her own benefits. As contributions increase through

employment, benefits increase commensurably. In contrast, funding for Social Security

lacks this direct link between contributions and benefits. Under Social Security, as the

populationworksmore, contributions increase. Further, benefits also increase becausemore

people are becoming eligible for Social Security, but the increase in benefits is lower than

would be under a private system.Thus, the number ofworkers can have a strong influence on

the financial solvency of the Social Security system. Because essentially all workers are

required to make Social Security contributions, this article focuses on the number of people

participating in the labor force. In this sense, forecasts of labor force participation rates are

critical to forecasts of financial status of the Social Security system.

This article is directed towards developing models that can be used for forecasting labor

force participation rates for Social Security projections or other policy purposes. As such,

we will develop LFPR projections by demographic cell, specifically using age, sex and

marital status breakdowns. Further, in addition to short-range, we will also be interested in

medium- and long-range projections; SSA currently publishes projections up to 75 years.

Other government agencies focus their LFPR projections on a ten-year period that is

critical for budgeting purposes. In lieu of projections by demographic cell, we could

decompose the labor force by sector of the economy or geographic region. However,

because of the interest in longer run projections, the SSA does not decompose LFPRs by

means of economic or geographic breakdowns, focusing instead on demographic

breakdowns. Because the purpose of this article is to propose models that can be used in

SSA projections, we also focus on disaggregation of the labor force by demographic cell.

The literature on forecasting labor force participation is relatively small, given the

extensive literature on the determinants of LFPRs in the labor economics, management

and pensions literatures. Most of this modeling research has focused on the causal nature

of these determinants, in contrast to the forecasting interest of this article. Still, these

literatures provide insights into the problem of forecasting; Section 2 contains a brief

survey. The modeling research on forecasting labor force participation seems to ignore the

age and marital status shape patterns, focusing instead on aggregate rates; see, for

example, Smith and Ward (1985). In contrast, there is substantial government published

work that considers projections of disaggregated labor force participation rates. Section 3

describes the projections by the U.S. Bureau of Labor Statistics.

This article uses statistical forecasting techniques for disaggregated rates that were

developed in demographic contexts. Bell (1997) describes two methods for fitting and

forecasting age-specific fertility and mortality rates: the curve fitting approach and the

principal components approach. That is, specialized time series techniques are required

because at each time point there are many rates when disaggregated by age. The many

rates can be expressed as a vector at a point in time; however, this vector has a high

dimension. Standard multivariate time series techniques are inadequate because of

dimensionality problems.
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The first approach for overcoming the dimensionality problem consists of fitting

parametric curves to rates and using multivariate time series techniques to forecast the

curve parameters. To illustrate, Thompson et al. (1989) fit Gamma curves to fertility rates,

treating each curve as a function of age of the mother. Four parameter Gamma curves, that

were scale and shape shifted, were fit to each year of data, thus reducing 32 observations

(one for each age of the mother, 14–45) to four statistics. The parameters were then

forecast using multivariate time series techniques, and these forecast parameters produced

a forecast fertility function. This approach not only reduces the dimensionality of the

problem but also ensures that forecast rates have a smooth shape across ages similar to that

of historical data.

The curve fitting approach is not considered in this article because we wish to

disaggregate labor force participation not only by age but also by marital status and the

presence of children. These discrete categorizations do not lend themselves readily to

smooth curve fitting with just a few parameters. Moreover, even when indexed only by age,

the economic labor force participation rates do not display the same smooth age patterns that

are enjoyed by the biological fertility rates. For example, there are abrupt discontinuities in

labor force participation at age 65 because of the “normal retirement age” that was available

for many generations as part of their public and private pension plans.

The second approach summarized by Bell (1997) is the principal components technique

that has been popularized by Lee and Carter (1992) in the demographic literature on

forecasting mortality and fertility rates. Here, one decomposes the vector of rates and

focuses on those components that account for most of the variability, the so-called

“principal” components. The principal components are forecast using multivariate time

series techniques; forecasts of the principal components are then used to provide forecasts of

the vector of rates. For our application, an important advantage compared to the parametric

curve fitting approach is that the vector need not be indexed by a smooth function, such as

age. This allows us to readily incorporate discrete indices such as marital status and the

presence of children. Like the parametric curve fitting approach, the principal components

approach reduces the dimensionality of the problem and ensures that forecast rates have a

smooth shape across ages similar to that of historical data. Lee and his co-workers have

established that this approach has been very fruitful for forecastingmortality and fertility in

a Social Security context; see Carter and Lee (1992), Lee (2000), Lee, Carter, and

Tuljapurkar (1995), Lee and Miller (2001), and Lee and Tuljapurkar (1994, 1997).

We also use a third type that we refer to as the “longitudinal data technique.” Here, the

rates are organized by demographic cell and each rate is considered a response in a

regression model. We use longitudinal data methods to investigate the sharing of

parameters across responses from different demographic cells. This being a regression

based methodology, we can easily incorporate the effects of explanatory (exogenous)

variables. Thus, in contrast to the principal components approach, this approach will allow

us to readily incorporate known future events that affect specific demographic cells, such

as the increase in the normal retirement age for Social Security. We will also be able to

assess the effect of different policy reform proposals that may affect future labor force

participation rates. Moreover, following the “seemingly unrelated regressions” literature,

we can incorporate contemporaneous correlations through the covariance structure.

A drawback of this approach is that, without appropriate modifications, it does not
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guarantee that forecast rates have a smooth shape across age, marital status and the

presence of children similar to that of historical data, as with the first two types of

techniques considered.

Section 4 describes the longitudinal data techniques in greater detail. The details of

forecasting with principal components are widely available; the Appendix provides an

introduction in order to keep this article self-contained.

An advantage of the projection models that are described in this article is that they are

stochastic. Stochastic projection models provide a mechanism for assessing the

uncertainty of the projections. We anticipate that underlying economic and demographic

conditions in which the system operates will change in the future. Models that incorporate

uncertainty will allow us to assess the robustness and sustainability of the system in the

presence of changing economic and demographic conditions. For example, some policy

designs will be adaptable (“immune”) to changing economic conditions whereas other

designs are insensitive to current economic conditions. This adaptability can be measured

using ideas of variance, a concept that is not available when using deterministic projection

techniques. In the interest of brevity, we will not take advantage of stochastic features of

the model in this article. However, the advantages of stochastic projection systems have

been made forcefully elsewhere; see, for example, Lee and Tuljapurkar (1997).

We do not compare our forecasts with those produced by the Social Security

Administration (SSA). The SSA forecasts are based on a deterministic projection system.

Forecasts of LFPRs use a static structural model that relates LFPRs to various economic

and demographic factors. As such, it is highly multivariate. The goal of this article is to

present and interpret the LFPR data and show how some simple models can be used to

provide desirable forecasts.

The outline for the rest of the article follows. Section 2 describes some background

literature on labor force participation, focusing on aspects that may influence future labor

force participation patterns. Section 3 examines labor force participation data that are in

focus in this article. Section 4 describes the statistical models used for forecasting. Results

for short-range forecasts are in Section 5 and implications for long-range forecasts are in

Section 6. A simple model that addresses many of the concerns raised in this article is

provided in Section 7. Section 8 provides a summary and concluding remarks.

2. Literature Review

The composition of the workforce has changed dramatically in the last century. These

changes have been influenced heavily by our changing attitudes towards retirement and by

the larger presence of women in the workforce. This section reviews the bases for each of

these influences, with a focus on forecasting.

2.1. The Role of Retirement

The word retirement generally connotes a complete and permanent withdrawal from paid

labor. Some definitions supplement this with the idea of the receipt of income from

pensions, Social Security, and other retirement plans (Purcell 2000).

In contrast, long-range historical retirement patterns are typically assessed based on the

concept of “gainful” employment (Costas 1998). This construct measures the proportion of
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individuals who claim to have had an occupation in the year before the census was taken.

With this construct, it can be seen that labor force participation for the elderly has changed

dramatically over the last century. In 1900, 65% of men age 65 and over were in the labor

force, primarily in the agricultural sector.Many left the labor force because of poor health or

diminished employment prospects and became dependent on their children for support.

By 1990, fewer than 20%ofmen age 65 and over were in the labor force, primarily inwhite-

collar jobs. A large fraction of the elderly retires to enjoy leisure time in retirement. Health,

unemployment, and income also play important roles in the retirement decision.

The data that we examine beginning in Section 3 is based on the current definition of

labor force used by the Current Population Survey produced by the U.S. Bureau of Labor

Statistics. This definition, initiated in 1940, is based on whether an individual worked for

pay or sought employment during the survey week (not on his or her having an

occupation). In particular, the labor force includes both the employed and unemployed.

There are several potential determinants that may explain the much lower labor force

participation of elderly men at the end of the twentieth century compared to the beginning.

Perhaps the most important reason is the availability of retirement income. In 1900, very

few private pension plans were in operation, a national social retirement scheme was not

available and organized tax-shelters to encourage private savings, such as 401(K)s, were

not available. By the end of the twentieth century, each of these three institutional

mechanisms provides important sources of income for the nation’s elderly population.

In addition to providing retirement income, both Social Security and private pension

plans offer substantial financial incentives to retire early (more so for private plans).

Estimates of the effect of private plans on labor supply are large, although there is

considerable disagreement (Anderson, Gustman, and Steinmeier 1999).

The size of wealth and wages may also influence retirement rates through eventual

retirement income. To illustrate, Costas (1998) argues that increased wealth for a group of

Civil War Union Army pensioners had a substantial effect on retirement.

For assessing retirement patterns over the last century, it is also important to note the

shift in the economy from its agricultural basis to the manufacturing and service sectors.

Retirees age 65 and over in 1900 had begun their working lives when the U.S. was

primarily agricultural. Those in farming generally had phased retirements rather than a

complete and abrupt withdrawal from the labor force. In contrast, by the end of the

century, relatively few switch from full to part time and about 75% switch from full to zero

percent time (Rust 1990). Further, the employment structure may have shifted to

encourage occupations with lower retirement ages (Perrachi and Welch 1994).

The changing role of disability benefits may have an important influence of the

changing retirement patterns. When introduced, the Social Security disability program

was small and inconsequential. The liberalization of qualifying rules for disability benefits

and the increasing generosity of these benefits may be partially responsible for declines in

LFPR for workers age 50–64.

Modeling changes in attitudes towards retirement may be the most daunting task. It

seems clear that retirees today enjoy better health than in the past. Quinn and Burkhauser

(1990) suggest that health is an important factor in the retirement decision. Retirees are

unlikely to live in their children’s homes. They enjoy better recreational amenities, a better

climate and have more entertainment options, such as golf and TV. Costas (1998)
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documents an increasing number of retirees that cite a preference for leisure as their main

motivation for retirement.

2.2. The Role of Women

As documented by papers in Smith (1980) and Blau (1998), women’s participation in the

labor force changed fundamentally in the latter part of the twentieth century. Unlike men,

the trend of labor force participation rates for women continues to increase, although rates

of increase for periods 1990–1998 are lower than in prior years (Fullerton 1999b).

Increases in female labor force participation rates can be seen on both a period and a

cohort basis (Blau 1998; Goldin 1990; Fullerton 1999b). The cohort of women born during

1926–1945 seems to have had the largest increase in labor force participation. From 1960

to 1970, they were in the 16–24 and 25–34 age groups. They had 8.5% (16–24) and 9%

(25–34) increases from 1960 to 1970. From 1970 to 1980, they were in the 25–35 and

35–44 age groups. They had 20.5% (25–34) and 14.4% (35–44) increases from 1970 to

1980.

There are several explanations for increased female labor force participation. These

include young women postponing and reducing fertility, reduction of marriage and

increases in divorce. Further, there seems to be a substantial rise in attachment to the labor

force among new mothers, particularly married women (Olsen 1994; Blau 1998).

Other important determinants of female labor force participation rates include education

and the presence of young children. It is well documented that levels of education affect

labor force participation rates. Although the rates for less educated males have fallen over

the last twenty-five years, corresponding female rates have not risen as quickly as other

education level groups (Blau 1998). There is also strong evidence that the presence of

young children in the household tends to reduce the labor participation of women

(Killingsworth and Heckman 1986).

3. Data

The data for this article were provided by the SSA; these data are used by the SSA for their

projections of Social Security financial status. The data are compiled by the U.S. Bureau of

Labor Statistics, which also makes short-range projections of the labor force as

summarized in Fullerton (1999a, 1999b) and the BLS Handbook of Methods (1997,

Chapter 13). The U.S. Bureau of Labor Statistics also uses a demographic cell approach

although it uses age, gender and race origin groups, compared to the age, gender, marital

status and presence of young children groups used by the SSA. This section summarizes

the key features of the data; additional summary information can be found in Fullerton

(1999a, 1999b). Specifically, this section demonstrates the strong patterns of LFPRs by

age, gender and the presence of children and underscores the distinct differences between

males and females.

The labor force participation rates are the civilian labor force divided by the civilian

noninstitutional population. The data are broken down by gender and 29 age categories

corresponding to 16–17, 18–19, 20–24, 25–29, : : : , 45–49, 50–54, 55, 56, : : : , 73, 74.

For the quinquennial age brackets from ages 20 through 54, there are three categories of

marital status, corresponding to never married, married with spouse present and married
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with spouse absent. Moreover, for females age 20–44, we also have breakdowns

according to whether their own child under the age of six is present in the household. Thus,

we consider a total of 101 demographic cells in this article, 43 for males and 58 for

females. For the quinquennial age brackets from ages 20 through 54, the civilian labor

force and civilian noninstitutional population come from the Current Population Survey

for the month of March. For the other data, the civilian labor force and civilian

noninstitutional population come from the U.S. Bureau of Labor Statistics Annual

Household Survey. We consider data from 1968 through 1998.

Because numerical details of the data are readily available (Fullerton 1999a, 1999b), we

focus on graphical summaries. Figure 1 summarizes the total labor force participation rate

for each year during the period 1968–1998. Here, we see that total LFPR has increased

due to the increased labor force participation rates of females. Male LFPRs have declined

over the period, from 81% in 1968 to 78% in 1998.

Figure 2 shows the labor force participation rate as a function of age, by gender, with a

comparison of the first year 1968 to the most recent year 1998. It is useful to compare the

shape of the curve between years, for males and females. For males, we see that the

difference between the two LFPR curves, that measures the drop in labor force

participation, decreases as age grows over the working years, 20–55, and is constant after

age 55. In contrast, for females we see that the difference between the two LFPR curves is

large and constant over the primary working years, 20–55, and declines after age 55.

Figures 3a–4b provide further information on the change in LFPRs over time, by age.

Figures 3a and 3b focus on the teen and working careers ages 16–54. Figure 3a shows that

labor force participation rates for male teens, 16–17 and 18–19, has been relatively

constant. This is also true of the 20–24 age group. All other male age groups exhibit a small

but steady decline in labor force participation rates. In contrast, Figure 3b shows a steady

increase in female LFPRs for all age groups, except for teens ages 16–17 and 18–19.

Fig. 1. Multiple time series plot of the Total Labor Force Participation Rate (LFPR), with breakdowns by

gender

Frees: Forecasting Labor Force Participation Rates 459



Figures 4a and 4b focus on the later working years, 55–74. Figure 4a shows a steady

decline in male LFPRs for those prior to eligibility for Social Security early retirements

benefits, ages 55–61, with more rapid declines for ages 62–64. Although difficult to see in

this figure, there is also a decline at age 65. For ages 66–74, labor force participation rates

are relatively stable. In contrast, Figure 4b shows steady increases in female LFPRs for ages

55–61. Further, female LFPRs for ages 62–74 appear stable over the period 1968–1998.

Most of our analyses examine movements of rates from calendar year to calendar year,

known as the “period” basis in the demography literature. It is also possible to follow rates

Fig. 2. Labor Force Participation Rate (LFPR) by age, for 1968 and 1998 male and females

Fig. 3a. Multiple time series plot of male Labor Force Participation Rate (LFPR) by age. Each line corresponds

to an age group. Groups 16–17 and 18–19 are marked; the remaining are the quinquennial age groups 20–24,

25–29, : : : , 50–54
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according to year of birth, known as the “cohort” basis. Figure 5 illustrates this approach.

Here, each line follows a group of workers over the ages 55–74, where the group is

defined by the workers’ year of birth. However, long histories of labor force participation

are required for a complete picture of a cohort’s working career. For example, with 31

years of data, we can observe the complete primary working experience over ages 25–54

for only two cohorts; moreover, no cohorts are completely observed over ages 25–74.

Further, although not presented here, the figures corresponding to Figures 1–4 on a cohort

Fig. 3b. Multiple time series plot of female Labor Force Participation Rate (LFPR) by age. Each line

corresponds to an age group. Groups 16–17 and 18–19 are marked; the remaining are the quinquennial age

groups 20–24, 25–29, : : :, 50–54

Fig. 4a. Multiple time series plot of male Labor Force Participation Rate (LFPR) by individual ages 55–74.

Each line corresponds to an age. Ages 55–61 are graphed with solid lines, ages 62–64 are graphed with dashed

lines and 65–74 are graphed with dotted lines
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basis are more erratic than on a period basis. This lack of stability makes the forecasting

problem more difficult. For these two reasons, we follow the method of analysis that is

customary in the demography literature and examine our data on a period basis.

Figures 6 and 7 suggest the importance of examining labor force participation rates by

marital status and presence of children under the age of six within a household. Figure 6

shows female labor force participation by marital status and presence of children,

summarized over age groups 20–24, 25–29, : : : , 40–44. This figure underscores the

Fig. 4b. Multiple time series plot of female Labor Force Participation Rate (LFPR) by individual ages 55–74.

Each line corresponds to an age. Ages 55–61 are graphed with solid lines, ages 62–64 are graphed with dashed

lines and 65–74 are graphed with dotted lines

Fig. 5. Plot of male Labor Force Participation Rate (LFPR) versus age. Each line follows a birth cohort
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importance of considering the presence of children under the age of six within a household

as a separate category. Further, Figure 6 shows that females that are married with the

spouse present have historically behaved differently than females that were never married

or with the spouse absent although, beginning in the 1990’s, they now behave similarly to

these other categories. However, for a larger number of age categories, Figure 7 suggests

that females married with the spouse present still have different, and lower, participation

Fig. 6. Plot of female Labor Force Participation Rate (LFPR) versus year, by marital status and presence of

children under the age of six in the household, ages 20-44

Fig. 7. Plot of Labor Force Participation Rate (LFPR) versus year, by gender and marital status, ages 20–54
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rates than females that were never married or whose spouse is absent. Figure 7 also

emphasizes the importance of marital status for male LFPRs.

In the demography literature, it is customary to summarize age-specific rates to provide

an overview of the behavior of several rates simultaneously. For example, one often

summarizes mortality rates using an expectation of life at birth. Similarly, one summarizes

fertility using the “total fertility rate.” Because of our interest in Social Security, we

summarize labor force participation rates using the “expected number of working years,”

defined as follows. Let a denote the initial age and let b denote the last age under

consideration. Further let tpa denote the probability that a life aged a survives an additional

t years. Then, we define

Ea;b ¼
Xb2a

t¼0

tpaLFPRaþt

to be the expected number of years that a life aged aworks over the next b2 a years. Here,

LFPRaþt denotes the probability that a life aged aþ t works during the year. Thus, for

example, E16;24 denotes the expected number of years that a life age 16 will work over the

next nine years. To estimate Ea;b, we use a constant 1995 U.S. Population mortality (by

gender, as appropriate), so that we summarize the changing effect of labor force

participation rates, not mortality. Most calculations of Ea;b will use labor force

participation rates for a single year; thus Ea;b provides a summary statistic on a period

basis. We will also follow cohorts over time.

To illustrate, Figure 8 shows E25;54, E55;64 and E65;74 for both males and females. Each

calculation of Ea;b is done for a calendar year and thus summary statistics are available for

each year 1968–1998. Figure 8 shows the convergence of male and female expected

working years. The greatest strides in narrowing the gap, though it is still the largest gap,

are for the 25–54 age group. The expected number of working years for males aged 55–64

Fig. 8. Plot of expected number of working years versus year. Female age groups are indicated by a solid line,

male age groups are indicated by a solid line plus a circle
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has dropped considerably, from 7.94 in 1968 to 6.36 in 1998, yet has increased for females

aged 55–64, going from 4.07 in 1968 to 4.86 in 1998. The difference for the elderly labor

force participants, aged 65–74, is small and relatively constant. Although not shown in

Figure 8, a similar pattern holds for young workers age 16–24.

Figure 9 summarizes the expected number of working years on a cohort basis, not the

period basis that was used in Figure 8. We do not present the calculation of E25;54; this

calculation requires following a cohort over 30 years. With 31 years of data, complete

information was available for only two cohorts. Instead, Figure 9 presents E16;24, E55;64

and E65;74 for both males and females. This figure again shows that the gap between males

and females is becoming narrower for each age group.

4. Models and Approach

Labor force participation rates, like mortality and fertility rates, are count data, expressed

as a proportion of some total population. Count data often displays heteroscedasticity, with

the variability as a function of the mean. For forecasting, it is customary to consider

transformations of the rates to mitigate the heteroscedasticity. Logarithmic transforms are

often considered for mortality and fertility data. However, mortality and fertility are

infrequent events compared to labor force participation; thus, we consider alternatives to

the logarithmic transform.

Specifically, we consider models where the response is the labor force participation rate

(yit ¼ LFPRit), the logarithmic rate (yit ¼ logLFPRit) and the logistic transform of the rate

(yit ¼ logðLFPRit=ð12 LFPRit)). To handle time trends, we also consider differencing each

transform. Specifically, we consider the difference of rates (yi;t ¼ LFPRi;t 2 LFPRi;t21), the

difference of logarithmic rates (yi;t ¼ logLFPRi;t 2 logLFPRi;t21) and the difference of the

logistic transform, (yi;t ¼ logðLFPRit=ð12 LFPRitÞ2 logðLFPRi;t21=ð12 LFPRi;t21Þ). In

Fig. 9. Plot of expected number of working years versus year of birth. Calculations are done on a cohort basis.

Female age groups are indicated by a dotted line, male age groups are indicated by a solid line
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eachcase, amodelwill beused topredict the response.Then, the appropriate transformationwill

be made to convert the predicted responses into predictions for labor force participation rate. In

our models, we use the symbol yit to denote response for the ith cell at time t. These cells are

formed using age,marital status and the presence of children under sixwithin the household. As

described in Section 3, we have 43 categories for males and 58 categories for females. Because

of the distinct gender patterns discussed in the Section 2.2 literature review and observed in the

Section 3 data summaries, we run models separately for males and females.

Government projections of labor force participation rates by the U.S. Bureau of Labor

Statistics and SSA consider each cell separately. In the context of fertility and mortality,

Bell (1997) notes the drawbacks in forecasting each cell separately. First, the long-run

forecast curves may show irregular shapes that are not evident in historical data. Second, it

is difficult to assess the forecast uncertainty for summary measures of the forecast curves

since forecasting individual cells separately does not directly provide estimates of the

correlations among different ages. Given the smooth shape of both fertility and mortality

curves, one would expect correlations to be high. Similarly, in our labor force participation

context, we would expect rates for cells that share similar gender, age, marital status and

children status characteristics to be highly correlated.

4.1. Longitudinal Data Models

In contrast to modeling each cell separately, Section 4.1 and the Appendix review

techniques that can be used to forecast all cells simultaneously. One set of forecasting

techniques is based on longitudinal data models of the form

yit ¼ z 0itai þ x 0itbþ 1it ð4:1Þ

for demographic cell i and time t; see, for example, Frees (2004). The term ai is a vector of

cell-specific parameters and zit is the corresponding vector of explanatory variables that

are known when yit is observed. The term b is a vector of parameters common to all cells

and xit is the corresponding vector of explanatory variables. For example, the model where

zit ¼ 1 without any common parameters is

yit ¼ ai þ 1it ð4:2Þ

Assuming that the errors {1it} are i.i.d., the forecast of all future values for the ith cell is

yi, the average response for the ith cell. When the responses are differences of labor force

participation rates, Equation (4.2) represents a random walk model of the original rates

with a drift term. When considering fertility and mortality, Bell (1997) found that no curve

fitting or principal component model dominated this simple alternative using short-term

out-of-sample criteria.

As another example without common parameters, we may take zit ¼ ð1 yi;t21Þ
0, so that

the model is:

yit ¼ ai;1 þ ai;2yi;t21 þ 1it ð4:3Þ

This is an autoregressive model of order 1, AR(1), for each cell. A version of this model

is currently being used by the SSA for their forecasts (Frees 1999).
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The model in Equation (4.3) has two regression parameters for each group, totaling

202ð¼ 2 £ 101Þ for our case. A more parsimonious version of this model is

yit ¼ b1 þ b2yi;t21 þ 1it ð4:4Þ

This model may be arrived at from Equation (4.1) by omitting cell-specific parameters

and using xit ¼ ð1 yi;t21Þ
0 for the explanatory variables associated with common

parameters in the vector b.

The models in Equations (4.2)–(4.4) constitute what we call the “basic” longitudinal

data models. As an example of a more complex type of longitudinal data model, we also

consider a version of the model in Equation (4.2) but with the cell-specific terms treated as

a random variable, not an unknown parameter. This representation is known as a “random

effects” model. This change affects the forecast through both the mean and the variance

function. In particular, a random ai that is common to all responses within the ith cell

affects the serial correlation of the series yi1; : : : ; yiT . To allow a more flexible

representation of the serial correlation structure, we also consider models such as in

Equation (4.2) where ai is random and the series {1i1; : : : ; 1iT} has an AR(1) structure.

Each longitudinal data model that we have discussed so far has assumed that responses

from different cells are independent. However, as with mortality and fertility data, it seems

reasonable to suppose that the response from “neighboring” cells will in some way derive

from similar experiences. A companion article that focuses on modeling variance

components, Frees (2003), finds large positive correlations among teen cells and among

older worker cells. Section 7 introduces a model where parameters from closely related

cells are taken to be identical. Alternatively, the principal components model incorporates

this feature by considering the appropriate linear combinations of cells most suitable for

forecasting.

4.2. Model Selection Criteria

As described in the introductory part of this section, we allow the response variable y to be

either the original rates LFPRs, the logged rates, the logistic transform of the rates or the

corresponding differenced versions. Each unit of measurement has advantages relative to

other units of measurement. The original measurement unit is the easiest to explain and

interpret. The logarithmic measurement is useful because negative forecasts occasionally

appear; the anti-logarithmic transformation (exponential) forces the forecasts to be

positive. Similarly, the logistic transformation forces the forecasts to lie in the unit [0,1]

interval. The difference transformation accounts for trends in the data; further, the

difference of logarithmic values can be interpreted as proportional changes.

To compare results from different models and different units of measurement, we use

two out-of-sample summary statistics. The first is based on the mean absolute percentage

error, defined as

MAPEt ¼
i

X LFPRi;t 2 LFP̂Ri;t

LFPRi;t

����

����

Here, LFPRi;t is the (actual) cell i labor force participation rate (LFPR) at time t, Si

represents the sum over all cells (that may include combinations of age, marital status and
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presence of a child under six) and LFP̂Ri;t is the forecast of LFPRi;t. For example, when

the response was logarithmic LFPRs, we estimated the model using past logarithmic

LFPRs, forecast future logarithmic LFPRs, and converted these forecasts by taking

exponents to get the forecasts LFP̂Ri;t. The second out-of-sample summary statistic is the

mean absolute error, defined as

MAEt ¼ 100 £
i

X
LFPRi;t 2 LFP̂Ri;t

�� ��Ni;t

X

i

Ni;t

This statistic is weighted by Ni;t, the number of people in cell i at time t. See for

example, Ahlburg (1982) for a discussion of advantages and disadvantages of these and

alternative summary measures of forecasting accuracy.

5. Short-Range Out-of-Sample Results

This section summarizes the results of the model estimation and forecasting over a limited

number of years, that we call “short-range.” Forecasts from different models tend to be

highly correlated with one another when based on a single in-sample period; thus, we used

different in-sample periods to see the effects of the model adoption at different points in

time. Specifically, we consider several in-sample periods, each beginning with 1968, and

ending in the years 1982, 1986, 1990, and 1994, respectively. For each in-sample period,

we forecast t ¼ 1, 2, 3, 4 periods in advance and computed the out-of-sample statistics,

MAPEt and MAEt. When comparing models, we report the average MAPE and MAE for

the four-year period.

To illustrate, Table 1 reports the mean absolute errors, for t ¼ 1, 2, 3, 4, using female

labor force participation rates as the in-sample data from 1968–1994, inclusive. Four

models are considered, the model corresponding to Equation (4.2) that uses the cell-

specific average value as the forecast, the AR(1) model for each cell, corresponding to

Equation (4.3), and the AR(1) model with common parameters, corresponding to Equation

(4.4). We also present the forecast using the most recent observation from a cell; this

forecast, a constant over time, corresponds to a random walk model with known drift

parameter equal to zero. Table 1 shows theMAEt for each value of t, as well as the average

over four years. In subsequent tables, we present only the four-year average. Models with

low errors are desirable; based on the four-year average MAE criterion in Table 1, we

would choose the model that uses the most recent cell observation as the constant (over

time) forecast.

Tables 2a and 2b summarize the results for the “basic” longitudinal data models. These

are the same models considered in Table 1, yet including male and female, MAPE and

MAE, as well as the six units of measurement: the original percent units, logarithmic units,

logistic transforms, differences, differences of logarithmic units and differences of the

logistic transforms.

Several conclusions are evident from Tables 2a and 2b. The “constant” forecasts, based

only on the most recent observations, do well for males, where rates have been relatively

stable over the 1980s and 1990s, yet do not fare as well for females, where rates have
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increased for many combinations of age, marital status and presence of young children.

Using the time series average for each cell to forecast fares poorly, for the original percent

units as well as the logarithmic and logistic transforms. One must use either differences or

autocorrelations to handle the time trends; these two techniques seem to work equally

well. The transformations display few strong advantages or disadvantages for short-range

forecasting. In subsequent discussions, we focus on the autoregressive model with a

common parameter, estimated using logistic transformation of LFPRs. This is a

parsimonious model that will always have forecasts that lie within the unit interval and that

seems to perform competitively in relation to alternatives based on the out-of-sample

statistics in Tables 2a and 2b.

Tables 3a and 3b summarize the results for models based on principal components

estimation. As in Tables 2a and 2b, we consider both male and female rates using the six

units of measurement and summarize results with the four-year averages of MAPE and

MAE. The principal components models include the model with one principal component,

using this component with an adjustment for the mean of the series and for the most recent

value of the series. The principal component was forecast using an integrated AR(1) model

for responses that were not differenced and was forecast using an AR(1) model for

differenced data. We experimented with other forecasting models for the time-varying

components {kt} that are not reported here. The results reported are the best of those that

we examined.

From Tables 3a and 3b, we conclude that use of only one principal component, without

adjustment, on the original or transformed data, is a poor choice. For models where the

responses were not differenced, the adjustment of the principal components using the most

recent value of the series outperformed the adjustment based on the mean of the series for

short-term forecasting. For models based on differenced data, the three principal

component forecasting techniques performed equally well. The simplest model that does

well is the one principal component model, without adjustments, based on either the

differences or the differences of the transformed units. These models performed well for

both male and females using both theMAE andMAPE basis. The performance of either of

these models is comparable to the autoregressive model with a common parameter,

estimated using logistic transforms of LFPRs, that was reported in Tables 2a and 2b.

Tables 4a and 4b summarize the results for another type of longitudinal data models, the

so-called “random effects” type described in Section 4.1. For these models (without

autocorrelation), the forecast is a weighted average of the cell-specific average response

and the overall average response. Thus, it is not surprising that the forecast did poorly on

both the original and transformed units because, in Table 2, we saw that the average was

Table 1. Mean Absolute Errors (MAE) by year

Females. In-sample period is 1968–1994.

1995 1996 1997 1998 Four-year average

Constant 1.466 1.217 1.927 1.982 1.648
Average 8.075 8.146 8.749 8.761 8.433
AR(1) 1.442 1.722 2.383 2.737 2.071
AR(1) Common 1.473 1.396 1.997 2.195 1.765
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Table 2a. Short-term out-of-sample statistics for basic longitudinal data models

Female

Response
units

Forecasting
technique

Mean absolute error
Most recent in-sample year

Mean absolute percentage error
Most recent in-sample year

1994 1990 1986 1982 1994 1990 1986 1982

Percent Constant 1.648 1.816 2.374 2.176 3.123 3.124 4.261 3.325
Percent Average 8.433 8.123 8.228 7.033 7.440 6.424 6.584 6.645

AR(1) 2.071 1.868 1.830 1.863 3.651 3.305 3.685 3.687
AR(1) Common 1.765 1.872 2.082 2.252 4.628 4.787 4.215 5.343

Logarithmic Average 8.879 8.489 8.516 7.222 7.848 6.759 6.827 6.624
AR(1) 2.140 1.958 1.889 1.920 3.857 3.529 3.847 3.627
AR(1) Common 1.544 1.677 2.117 1.978 3.155 3.144 3.900 3.362

Logistic Average 8.278 8.024 8.161 6.999 7.450 6.442 6.562 6.543
AR(1) 1.967 1.769 1.793 1.783 3.652 3.327 3.690 3.596
AR(1) Common 1.615 1.703 1.992 1.987 3.469 3.412 3.605 3.646

Difference Average 2.045 1.997 1.950 1.469 3.275 3.507 4.603 3.115
AR(1) 2.077 2.072 1.990 1.362 3.084 3.559 4.556 3.468
AR(1) Common 1.488 1.871 2.003 1.782 2.980 3.583 3.803 4.233

Difference of
logarithms

Average 2.413 2.408 2.100 1.667 3.461 3.748 4.657 3.206

AR(1) 2.449 2.516 2.184 1.587 3.240 3.789 4.605 3.062
AR(1) Common 1.598 1.929 2.160 1.764 2.849 3.118 3.988 3.107

Difference of
logistics

Average 1.865 1.834 1.910 1.422 3.215 3.408 4.499 3.066

AR(1) 1.883 1.877 1.939 1.323 3.035 3.440 4.450 3.300
AR(1) Common 1.422 1.757 1.993 1.757 2.757 3.042 3.702 3.554

Jo
u
rn
a
l
o
f
O
ffi
cia

l
S
ta
tistics

4
7
0



Table 2b. Short-term out-of-sample statistics for basic longitudinal data models

Male

Response
units

Forecasting
technique

Mean absolute error
Most recent in-sample year

Mean absolute percentage error
Most recent in-sample year

1994 1990 1986 1982 1994 1990 1986 1982

Percent Constant 1.134 1.240 1.194 1.206 1.377 1.418 1.189 1.861
Percent Average 2.367 2.666 2.742 2.863 2.728 4.193 4.636 5.459

AR(1) 1.295 1.367 1.280 1.254 1.516 1.411 1.637 2.074
AR(1) Common 1.690 0.996 1.968 1.266 1.871 1.473 2.028 1.655

Logarithmic Average 2.301 2.597 2.674 2.814 2.496 3.912 4.370 5.261
AR(1) 1.287 1.371 1.279 1.259 1.490 1.412 1.616 2.101
AR(1) Common 1.867 0.991 2.120 1.358 1.854 1.343 1.936 1.611

Logistic Average 2.389 2.666 2.761 2.891 2.684 4.113 4.570 5.433
AR(1) 1.276 1.293 1.267 1.240 1.491 1.369 1.607 2.060
AR(1) Common 1.573 0.969 1.846 1.189 1.572 1.286 1.635 1.615

Difference Average 1.435 1.422 1.812 1.385 2.067 1.727 2.195 1.796
AR(1) 1.442 1.442 1.805 1.535 2.121 1.731 2.271 1.869
AR(1) Common 1.619 1.011 2.145 1.326 1.940 1.317 1.939 1.552

Difference of
logarithms

Average 1.380 1.393 1.734 1.349 1.899 1.559 1.902 1.674

AR(1) 1.411 1.413 1.740 1.499 2.008 1.567 1.995 1.730
AR(1) Common 2.189 1.416 3.121 2.225 1.928 1.269 1.996 1.873

Difference of
logistics

Average 1.503 1.353 1.858 1.405 2.059 1.636 2.114 1.820

AR(1) 1.517 1.383 1.821 1.544 2.144 1.638 2.166 1.895
AR(1) Common 1.407 0.990 1.921 1.078 1.946 1.283 1.935 1.452
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Table 3a. Short-term out-of-sample statistics for principal component models

Female

Response
units

Forecasting
technique

Mean absolute error
Most recent in-sample year

Mean absolute percentage error
Most recent in-sample year

1994 1990 1986 1982 1994 1990 1986 1982

Percent Basic PC 6.057 6.089 5.425 4.879 5.161 5.266 5.508 6.704
PC with mean adj 3.044 3.578 2.527 1.960 4.536 5.019 4.763 3.599
PC with recent adj 1.710 1.832 1.955 1.756 3.125 3.450 4.412 3.149

Logarithmic Basic PC 6.886 7.046 8.570 7.193 6.077 6.204 6.900 6.610
PC with mean adj 3.553 3.740 3.013 2.282 4.766 5.276 5.189 3.490
PC with recent adj 1.737 1.971 2.127 1.966 3.137 3.594 4.363 3.227

Logistic Basic PC 8.132 7.714 7.538 6.452 6.951 6.839 7.695 6.154
PC with mean adj 2.769 3.125 2.477 1.904 4.480 4.789 4.680 3.407
PC with recent adj 1.645 1.684 1.952 1.758 3.107 3.352 4.321 3.157

Difference Basic PC 1.652 1.796 2.376 2.221 3.037 3.235 4.262 3.644
PC with mean adj 2.035 1.994 1.948 1.514 3.119 3.537 4.546 3.439
PC with recent adj 2.262 2.803 2.187 1.535 3.568 5.978 4.940 3.605

Difference of logarithms Basic PC 1.648 1.809 2.386 2.214 3.037 3.220 4.267 3.255
PC with mean adj 2.407 2.407 2.088 1.691 3.292 3.736 4.620 3.055
PC with recent adj 2.971 3.489 2.187 1.699 4.887 7.052 4.950 3.225

Difference of logistics Basic PC 1.651 1.794 2.379 2.207 3.036 3.222 4.255 3.581
PC with mean adj 1.854 1.831 1.910 1.456 3.067 3.444 4.453 3.332
PC with recent adj 1.953 2.462 2.041 1.473 3.225 5.489 4.650 3.491
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Table 3b. Short-term out-of-sample statistics for principal component models

Male

Response
units

Forecasting
technique

Mean absolute error
Most recent in-sample year

Mean absolute percentage error
Most recent in-sample year

1994 1990 1986 1982 1994 1990 1986 1982

Percent Basic PC 3.618 3.421 4.521 4.273 2.218 3.810 4.181 4.801
PC with mean adj 1.586 1.609 1.693 1.759 2.360 1.583 1.916 1.573
PC with recent adj 1.381 1.473 1.671 1.437 1.980 1.761 2.052 1.879

Logarithmic Basic PC 1.823 2.047 2.811 2.323 2.005 1.671 2.222 1.920
PC with mean adj 1.428 1.572 1.840 1.897 1.752 1.460 1.979 1.517
PC with recent adj 1.260 1.419 1.636 1.390 1.698 1.578 1.866 1.742

Logistic Basic PC 2.398 2.673 3.048 2.973 3.028 3.891 5.240 5.910
PC with mean adj 1.729 1.579 1.765 1.671 2.707 1.583 1.859 1.617
PC with recent adj 1.460 1.404 1.772 1.472 1.999 1.658 2.095 1.908

Difference Basic PC 1.159 1.305 1.281 1.189 1.476 1.529 1.282 1.677
PC with mean adj 1.445 1.424 1.830 1.446 2.089 1.728 2.225 1.843
PC with recent adj 1.416 1.334 2.038 1.492 2.218 1.669 2.649 1.911

Difference of logarithms Basic PC 1.196 1.349 1.399 1.225 1.691 1.593 1.558 1.676
PC with mean adj 1.418 1.405 1.758 1.385 2.015 1.577 1.940 1.682
PC with recent adj 1.487 1.350 1.775 1.461 2.068 1.582 2.178 1.779

Difference of logistics Basic PC 1.134 1.207 1.205 1.189 1.377 1.396 1.198 1.758
PC with mean adj 1.502 1.332 1.849 1.427 2.059 1.628 2.107 1.840
PC with recent adj 1.916 1.306 1.832 1.498 2.214 1.624 2.290 1.902
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a poor forecast. Use of the autocorrelation correction improved the performance for males

although the performance for females remained poor. As with Tables 2a and 2b,

differencing the data improved the forecasts markedly. Also as in Tables 2a and 2b the

transformations did not adversely affect the performance of the forecasts, and have the

advantage of restricting the range of forecasts to desirable intervals.

6. Long-Range Results

Unlike other government agencies, the Social Security Administration is deeply interested

in the quality of the forecasts over a longer period. Specifically, this section considers

forecasts 25 and 75 years into the future from the most recent available set of observations.

Of course, we will not be able to compare the forecasts to actual held-out results, as in

Section 5. We will, however, be able to make qualitative statements about the

reasonableness of the forecasts; these statements will further influence the model selection.

For the accuracy of short-term forecasts, Section 5 showed that it is important to consider

models based on differences of rates. Hence, this section only presents models based on

differenced rates, althoughwe still consider alternative transformations. As in Section 5, we

consider the demographic cell to be the unit of analysis although we will often combine the

forecasts from different cells to interpret results. Throughout, when combining forecasts

based on different cells, we use the 1998 actual population. An alternative would be to use a

forecast of the population. However, this wouldmean disentangling differences due to labor

force participation and population. To keep the story simple, we use a single reference

population with our forecasts, the 1998 actual population.

We begin by considering autoregressive models whose short-term performances were

summarized in Tables 4a and 4b. Specifically, Figure 10 summarizes the 75-year forecasts

of the autoregressive model with parameters that are cell-specific for males. Figure 10

shows that the forecasts of labor force participation rates without transformations can be

both over one and less than zero. Further, forecasts based on logarithmic transformations

can be over one. Thus, forecasts without any transformation or based on a logarithmic

transformation require modification in order to be plausible. By using the logistic

transformation, we constrain forecasts to lie between zero and one. Based on this logic, we

henceforth consider only forecasts based on the logistic transformations.

Even with the logistic transformation, Figure 10 shows an undesirable feature of the

autoregressivemodel with cell-specific parameters. That is, for the later working years, ages

55–74, we see that forecasts are jagged, in contrast to the smooth pattern in the actual 1998

rates. This erratic behavior is counterintuitive if one believes that labor force participation is

a smooth function of ability towork as proxied by age. This point is emphasized in Figure 11

where this series is compared to forecasts based on an autoregressive model with common

parameters. Intuitively, the jagged patterns in the cell-specific autoregressive forecasts are

attributable to the fact that these forecasts use the time series pattern of each cell without

regard to other cells that are close in age. In contrast, the forecasts based on common

autoregressive parameters use the same estimates for updating each cell.

Thus, we see that the requirement of forecast rates lying between zero and one and the

requirement that forecasts exhibit a smooth pattern across ages allow us to rule out some of

the models presented in Section 5. Figures 12a and 12b summarize the forecasts from three
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Table 4a. Short-term out-of-sample statistics for random effects longitudinal data models

Female

Response
units

Forecasting
technique

Mean absolute error
Most recent in-sample year

Mean absolute percentage error
Most recent in-sample year

1994 1990 1986 1982 1994 1990 1986 1982

Percent Random effects 8.439 8.131 8.254 7.069 7.363 6.377 6.631 6.765
Logarithmic Random effects 8.901 8.508 8.551 7.261 7.843 6.757 6.853 6.669
Logistic Random effects 8.287 8.033 8.181 7.023 7.418 6.418 6.581 6.597
Difference Random effects 1.518 1.685 1.974 1.830 3.274 3.504 3.727 3.709
Diff of logarithms Random effects 1.604 1.746 2.096 1.800 3.004 3.181 4.037 3.219
Difference of logistics Random effects 1.464 1.606 1.962 1.808 3.027 3.108 3.735 3.339
Percent RE with AR(1) 3.828 4.277 5.116 5.456 4.177 3.911 4.793 5.540
Logarithmic RE with AR(1) 5.329 5.714 6.172 5.896 5.015 4.722 5.437 5.530
Logistic RE with AR(1) 3.832 4.280 5.046 5.339 4.185 3.891 4.815 5.249
Difference RE with AR(1) 1.711 1.983 2.365 2.091 4.007 3.929 4.390 4.040
Diff of logarithms RE with AR(1) 1.822 2.013 2.645 2.062 3.267 3.554 4.545 3.483
Difference of logistics RE with AR(1) 1.589 1.884 2.388 2.090 3.248 3.429 4.175 3.594
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Table 4b. Short-term out-of-sample statistics for random effects longitudinal data models

Male

Response units Forecasting technique Mean absolute error
Most recent in-sample year

Mean absolute percentage error
Most recent in-sample year

1994 1990 1986 1982 1994 1990 1986 1982

Percent Random Effects 2.370 2.676 2.745 2.866 2.747 4.222 4.669 5.495
Logarithmic Random Effects 2.300 2.610 2.670 2.810 2.503 3.928 4.388 5.278
Logistic Random Effects 2.395 2.675 2.769 2.898 2.707 4.146 4.609 5.481
Difference Random Effects 1.666 1.007 1.956 1.277 1.840 1.360 1.768 1.594
Diff of logarithms Random Effects 2.140 1.252 2.403 1.635 1.825 1.282 1.827 1.761
Difference of logistics Random Effects 1.518 1.002 1.769 1.140 1.837 1.337 1.768 1.559
Percent RE with AR(1) 1.197 1.172 1.264 1.205 1.315 1.488 1.203 2.050
Logarithmic RE with AR(1) 1.264 1.112 1.323 1.163 1.375 1.403 1.216 1.925
Logistic RE with AR(1) 1.339 1.386 1.263 1.479 1.502 1.980 1.405 2.754
Difference RE with AR(1) 1.748 1.068 2.029 1.231 1.910 1.392 1.909 1.653
Diff of logarithms RE with AR(1) 2.131 1.183 2.305 1.483 1.865 1.320 1.912 1.778
Difference of logistics RE with AR(1) 1.626 0.987 2.011 1.185 1.925 1.368 1.919 1.604
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competing models that satisfy these additional requirements: the autoregressive model

with common parameters, the principal components method (without mean or bias

adjustment) and the random effects model with a common autocorrelation parameter. We

do not present the principal components method with mean adjustment; this model gives

rise to the same pattern of jagged forecasts as the individual-cell autoregressive model

because it is based on time series averages of individual cells. As noted earlier, the effect

Fig. 10. Plot of 75-year forecasts of male Labor Force Participation Rates (LFPR) using the individual

autoregressive model

Fig. 11. Plot of 75-year forecasts of male Labor Force Participation Rates (LFPR). Both sets of forecasts are

based on the autoregressive (AR) model. The AR model with cell-specific parameters exhibits jagged forecasts at

the higher working ages when compared to actual 1998 rates and the forecasts based on the AR model with

common parameters
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of bias adjustment is minimal in models based on differenced data and thus we do consider

this additional complication now. For the random effects model, we retained the

autocorrelation parameter to allow for additional long-run patterns to emerge. Figure 12a

summarizes the 75-year forecasts for females for each model; Figure 12b gives the

corresponding forecasts for males.

Perhaps the most important conclusion that emerges from Figures 12a and 12b is that

the choice of forecasting matters a great deal. Figure 12a shows that forecasts for the

random effects and autoregressive models are close to one another, in contrast to the

principal components forecasts. Conversely, Figure 12b shows that principal components

and autoregressive model forecasts are close whilst the random effects model forecasts are

more distant.

Table 5 summarizes the mean forecast of labor force participation for each forecasting

method, over the 75-year period considered in Figures 12a and 12b, as well as 10-, 25- and

50-year forecasts. As before, the means are weighted by the 1988 actual population. From

Table 5, we see that the principal components forecasts are flat over all forecast periods.

Additional analysis shows that this is also true for each demographic cell, not just the

overall mean. In contrast, both the autoregressive and random effects models extrapolate

the female increasing and male decreasing labor force participation into the future,

although at different rates.

Table 5 highlights another undesirable aspect of long-run projections. For forecasts

based on the autoregressive and random effects models, male and female average labor

force participation rates are about equal at the 25-year forecast horizon. As we saw in

Section 3, male labor force participation rates have historically exceeded those for

females, although the trends point to females closing the gap. The models with sex-specific

parameters project closing the gap over the 25-year horizon and, continuing this trend,

forecast female labor force participation rates exceeding male after this point. Although

Fig. 12a. Plot of 75-year forecasts of female Labor Force Participation Rates (LFPR). The figure shows

forecasts from each of the autoregressive, principal components and random effects models
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this is certainly possible, the large differences in participation rates are certainly not a

feature of the historical data upon which the forecasts are based.

As noted by Chu (1998), population dynamics derived solely from male vital rates and

those derived solely from female vital rates will show ever-increasing differences with the

passage of time. Of course, there are many possible modifications to each of the three basic

models to mitigate this difficulty. The following section presents a modification of the

autoregressive model that is simple and easy to apply.

Fig. 12b. Plot of 75-year forecasts of male Labor Force Participation Rates (LFPR). The figure shows forecasts

from each of the autoregressive, principal components and random effects models

Table 5. Mean Forecast Labor Force Participation Rate (Percentage)

Forecasting model Forecast horizon

10 years 25 years 50 years 75 years

Females
Autoregressive – common

parameters
69.4 75.3 83.1 88.9

Principal components 65.0 65.0 65.1 65.1
Random effects – with

autocorrelation parameter
68.4 73.2 79.9 85.2

Autoregressive – parameters
varying by age group

66.0 67.4 69.5 71.4

Males
Autoregressive – common

parameters
77.9 77.2 75.9 74.5

Principal components 78.5 78.5 78.4 78.4
Random effects – with

autocorrelation parameter
76.4 73.3 67.6 61.3

Autoregressive – parameters
varying by age group

78.5 78.4 78.1 77.5
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7. A Simple Model

This section describes the performance of a simple modification of the autoregressive

model. Specifically, we now allow model parameters to vary by three age groups: less than

20, 20–54, and 55–74. Moreover, parameters vary by gender for the two older age groups,

for a total of five sets of parameters. Section 3 showed that labor force participation rates

for teens are currently similar, so the parameters (not the rates) were combined for the

purposes of simplicity. Thus, the simple model combines features of the cell-specific and

common parameter autoregressive models in Equations (4.3) and (4.4).

Table 5 summarizes forecasts from the simple model under the heading

“Autoregressive – parameters varying by age group.” Here, we see that the mean labor

force participation rate increases for females and decreases for males as the forecast

horizon increases. Figure 13 provides additional information about the vector of forecasts

for the 75-year horizon. At 75 years, forecasts for male and female teens are nearly equal.

Males in the primary working years, 20–54, have changed little since 1998 whereas

females have increased, although still less than males. In the later working years, 55–74,

the gap between males and females has closed so that differences are relatively small.

Figure 14 allows us to see the development of the forecasts over time. Figure 14 extends

the Figure 8 times series plot of expected number of working years to include the forecast

labor force participation rates (in addition to the 31 years of actual rates). Like Figure 8,

Figure 14 shows the anticipated convergence in expected number of working years for

each age group.

Thus, this simple model provides intuitively plausible long-range forecasts of future

labor force participation rates. Although the details are not reported here, the model did as

well on the short-range tests documented in Section 5 as the other models considered

(although no model was uniformly superior to the others). The most compelling aspect of

this model is its simplicity. Dynamics are handled through the differencing of rates and the

autoregressive parameters. No arbitrary truncation of the rates is required because of the

logistic transformation. The model does not require that we set male equal to female rates

at some arbitrary time point in the future. Nor does it require that we stop using the data at

some arbitrary time point in the future and use instead an “expert” opinion about future

labor force participation rates. This is not to say that expert opinions are not desirable in

many circumstances; we merely point out that a strength of the model is that it allows past

experience to be our primary guide to forecasts of the future.

How reliable are the forecasts of this model? A companion article, Frees (2003),

explores the forecasting accuracy of the model predictions. This article employs both a

hierarchical (multilevel) model and a variant of a seemingly unrelated regression model to

represent the complex variance structure of this high dimensional forecasting problem.

With a model of both contemporaneous and dynamic sources of variation, the article

develops forecasting prediction intervals. In part because of the natural bounds induced by

the logistic transform, the forecast intervals turn out to be intuitively plausible for 10-year

forecasts, such as those produced by the U.S. Bureau of Labor Statistics. Not surprisingly,

for 75-year forecasts such as those required by the Social Security Administration (SSA),

the bounds are uncomfortably wide (and are not explicitly provided in that article).

Nonetheless, SSA is ultimately interested in providing accurate forecasts of the financial
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solvency of the Social Security system, not labor force participation rates. Of course, with

other things being equal, a forecast of LFPRs with small forecast intervals is more useful

than a forecast with large intervals. However, a forecast of LFPRs is just one of many

components that are inputs to the forecasts of financial solvency, and the interaction of

these forecasts with other forecasts would be critical for this type of forecasting exercise.

The position of this article is that a stochastic model to forecast LFPRs is a critical input

into a larger forecasting system for projecting Social Security funds; wide forecast

Fig. 13. Plot of Labor Force Participation Rates (LFPR) versus age. The figure shows actual 1998 rates and 75-

year forecasts. The forecasts are from the autoregressive model where parameters vary by age group and sex

Fig. 14. Plot of expected number of working years versus year. Based on actual LFPRs up to 1998 and forecasts

after 1998. Female age groups are indicated by a solid line, male age groups are indicated by a solid line plus a

circle
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intervals are a reflection of the data and the forecast horizon and do not mean that one

should not produce stochastic forecasts. We note that the most recent government

projection of the finances of the Social Security system (Board of Trustees 2003) does

contain a stochastic projection model.

8. Summary and Conclusions

In this article, we have treated the problem of forecasting labor force participation rates as

one might treat the forecasting of a demographic vital rate such as mortality or fertility.

Although we recognize that labor force participation is an economic choice problem, one

could make the same argument for fertility decisions and even, given the individual’s

lifestyle choices, mortality. The position of this article is to use statistical tools commonly

employed in demography to forecast labor force participation rates by demographic cell;

these forecasts can be used in Social Security as well as other government planning

exercises.

By looking at short-term forecasting over alternative time horizons, we learned in

Section 5 that it is useful to use the change in labor force participation rates as the unit

of analysis. Section 6 on long-range forecasting showed us that a logistic

transformation of the rates performs well; this transform ensures that forecast rates

will lie between zero and one, thus avoiding any abrupt truncation of forecast rates.

This article considered a variety of models based on past and current values of labor

force participation rates, including autoregressive, random effects and principal

components models. We documented that these models give a wide range of forecast

values of labor force participation rates. Section 7 introduced an autoregressive model

with parameters that are gender and age-group specific. This simple model relies only

on past experience as a predictor of future behavior; thus, it is less sensitive to political

intervention than alternatives.

Forecasting of cell-specific labor force participation rates is complex because the

demographic cells are not independent of one another. To illustrate, labor force

participation for females age 20–24 who were never married, one demographic cell, is not

independent of the experience of females age 20–24 with the spouse absent, another

demographic cell. Intuitively, this is one reason that cell-specific autoregressive models,

which use individual parameters for each demographic cell, do not fare well in our

analysis. In this article, we mitigated this problem by allowing different demographic cells

to share common parameters. In a companion article, Frees (2003), complex models of the

variance structure are developed in order to develop forecast intervals.

The dependence of demographic cells is also related to the issue of incorporating

additional exogenous variables into the forecasting problem. That is, in Section 2, we

reviewed the literature that suggests other potential variables that may influence future

values of labor force participation rates. However, to assess the effect of these

potential variables, we need to understand the standard errors of estimators that

summarize this fit. Conventional standard errors are calculated assuming independence

of demographic cells. Thus, an understanding of the relationships among demographic

cells will also be useful in building a more complete forecasting model of labor force

participation rates.
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Appendix: Principal Component Models

A basic principal component model is of the form:

yit ¼ bikt þ 1it; i ¼ 1; : : : ;C; t ¼ 1; : : : ; T ðA:1Þ

Here, the parameter bi describes the patterns of deviation by cell i and the term kt is a

time-varying stochastic process that does not depend on the index i. Unlike the

longitudinal data models in Section 4.1, there are no observables on the right-hand side of

Equation (A.1). For identifiability, we need to impose further restrictions and require that

Sibi ¼ 1 and Stkt ¼ 0.

For additional notation, we let yt ¼ ð y1t; : : : ; yCtÞ
0 be the vector of responses for time t.

Let Y ¼ ðy1; : : : ; yT Þ
0 be the C £ T matrix of responses. Further, let L be the C £ J

matrix corresponding to the first J eigenvectors of Y. Specifically, the jth column of L is

the eigenvector corresponding to the jth largest eigenvalue of Y, for j ¼ 1; : : : ; J. In our

application, we use only the first principal component, so that J ¼ 1.

With these restrictions on the model, the least squares estimators are easy to derive. It

turns out that the least squares estimator of the vector {bi} is L. Further, the least squares

estimator of kt is given by k̂t ¼ L0yt.

Given the least squares estimators, forecasting the series is now straightforward. We

first use ARIMA time series methods to produce forecasts of {k̂t}; denote the L-step

forecast as k̂TþL, for L ¼ 1; 2; : : :. We then use these forecast values to forecast the series

with the Expression ŷTþL ¼ Lk̂TþL.

For estimating and forecasting age-specific mortality rates, Lee and Carter (1992) used

the model

yit ¼ ai þ bikt þ 1it; i ¼ 1; : : : ;C; t ¼ 1; : : : ; T ðA:2Þ

Adding the cell-specific intercept accounts for the average shape of the age profile. The

least squares estimator of this parameter turns out be yi, the time series average over cell i.

Thus, when forecasting, one first subtracts cell-specific means and then uses a one-

dimensional principal components method. (This yields a new version of L.) As another

modification, Lee and Carter (1992) also required that the fitted numbers of deaths in year

t equals the actual number of deaths when determining the estimator of kt in lieu of the

constraint that Stkt ¼ 0. For forecasting labor force participation rates, we do not use a

similar constraint in order to separate the LFPR forecasting from the population

forecasting, although it is certainly a possibility.

A variation described by Bell (1997) involves subtracting the most recent series yT , in

lieu of the cell-specific average. This produces no approximation error in the last year of

data, implying a better position for short-run forecasting. Because this approach fared well

in Bell’s analysis of fertility and mortality rates, we document how this alternative fares in

our Section 5 results section.
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