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We investigate frequency domain properties, revealed by the squared gain and phase delay
functions, of short and moderate-length linear seasonal adjustment filters of the ARIMA-
model-based signal extraction method of SEATS. X-11/12-ARIMA filters are also considered
to a limited extent. The focus is on the one-sided (concurrent) and symmetric (central) filters
associated with the Box and Jenkins’s airline model for monthly time series of lengths 49 and
109. A Digital Signal Processing perspective on filter properties, favoring interpretability of
the filter output, is presented. We show that important features of the finite filters actually used
are often not visible in the diagnostics of the infinite filters, such as the Wiener-Kolmogorov
symmetric filter gain functions provided by SEATS. For comparing competing adjustments,
properties of concurrent filters, especially their phase delays, can be more important than
properties of symmetric filters. Our phase delay results illustrate that adjusters who favor
smoother seasonal adjustments, or who favor trends for their greater smoothness, must usually
reckon with greater delay of turning point and business cycle information for the most recent
months. Trend filters are considered briefly. New analytical results are obtained for transfer
functions and phase delays.

Key words: Gain function; phase delay function; seasonal adjustment; trend estimation;
ARIMA-model-based signal extraction; X-11-ARIMA; X-12-ARIMA.

1. Introduction and Overview

Seasonal adjustment is a signal extraction procedure in which seasonal movements

constitute the “noise” that must be suppressed to better reveal the “signal” of interest. In

the simplest situation, often achieved by taking logs, the observation Zt of each month t can

be decomposed as Zt ¼ St þ Nt, where St denotes the seasonal component to be

suppressed, and Nt denotes the nonseasonal component, i.e., the signal to be estimated.

To obtain such a decomposition for a span of data Zt, 1 # t # T (from which any

detected trading day, moving holiday and outlier effects have been removed), the most

widely used seasonal adjustment methods estimate Nt, 1 # t # T by applying linear
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filters. That is, the estimates N̂t have formulas of the form

N̂t ¼
Xt21

j¼2ðT2tÞ

cTt;jZt2j; 1 # t # T ð1:1Þ

with T- and t-dependent filter coefficients cTj;t that are determined by the methods and

software options chosen. In principle, this makes possible the use of standard linear filter

diagnostics to analyze properties of these methods, at least for the times t of greatest

interest, usually including t ¼ T for the concurrent adjustment. However, the versions of

these diagnostics provided by software or presented in the published literature are those for

large T, in fact, infinite T in the case of minimum-mean-square-error signal extraction

filters from ARIMA models for St and Nt, hereafter referred to as ARIMA-model-based

(AMB) filters. Also, the diagnostics usually presented are for the symmetric filter that

produces the adjustment of the midpoint of a series, which is rarely the time point of

greatest interest.

This article studies frequency domain filter diagnostics for monthly series of small and

moderate lengths, mainly T ¼ 49 and T ¼ 109, for filters that produce concurrent and

central seasonal adjustments. The main focus is on filters for the canonical ARIMA

decomposition of Hillmer and Tiao (1982) utilized by SEATS (Gómez and Maravall 1994)

in the situation in which the series to be adjusted is modeled with the airline model of Box

and Jenkins (1976) with various typical pairs of coefficient values. This small subset of

SEATS’s possible filters is adequate for demonstrating the general phenomena and

conclusions we wish to present. Also the airline model deserves detailed attention because

it is a very frequently used default model of TRAMO and SEATS. (Fischer and Planas

2000 find it adequate for half of 13,222 Eurostat series.) Certain default seasonal

adjustment filters of X-12-ARIMA (Findley, Monsell, Bell, Otto and Chen 1998) are also

considered. The same filters are available in X-11-ARIMA (Dagum 1980), so we use the

hybrid name X-11/12-ARIMA filters. The diagnostics investigated are the squared gain

functions of both the concurrent and symmetric filters and the phase delay functions of

concurrent filters. Squared gains indicate which frequency components of the data are

suppressed or amplified by the filter, and phase delays indicate how frequency components

are shifted in time by the filter; see Section 2 as well as Subsection 5 of Appendix A.

As mentioned, filters for the midpoint of an observation interval of odd length

T ¼ 2tþ 1;

N̂tþ1 ¼
Xt

j¼2t

cTtþ1;jZtþ12j ð1:2Þ

are symmetric, i.e.,

cTtþ1;j ¼ cTtþ1;2j; j ¼ 1; 2; : : : ; t ð1:3Þ

This is true both for X-11/12-ARIMA with forecast and backcast extensions of equal

length and for ARIMA-model-based seasonal adjustments like those of SEATS. In

Journal of Official Statistics2



contrast to (1.2)–(1.3), the concurrent adjustment N̂T is obtained from a one-sided filter,

N̂T ¼
XT21

j¼0

cTT ;jZT2j ð1:4Þ

For AMB signal extraction methods, the nonstationary generalization of Bell (1984) of the

Wiener-Kolmogorov formula for the gain function of the symmetric signal extraction filter

for bi-infinite data, Zt, 21 , t , 1, given as (A.3) in Appendix A, is the only simple3

general formula available for the gain function of a seasonal adjustment filter directly in

terms of coefficients of the models for Nt and Zt. SEATS provides graphs of this and

analogous gains for other components, and in several articles, e.g., Maravall (1999) and

Gómez and Maravall (2000), frequency domain properties of these bi-infinite model-based

symmetric filters are compared to those of a default symmetric X-11 filter for series of

length T $ 169 (without forecast or backcast extension). However, in the published

seasonal adjustment literature, there are no frequency domain analyses of SEATS

symmetric filters for finite T or of the concurrent seasonal adjustment filters of SEATS for

infinite or finite T. Also, this literature does not provide a systematic approach to the

interpretation and application of frequency domain filter diagnostics. The present article is

intended to fill both of these gaps.

In Section 2, we review definitions and some basic properties of gain and phase delay

functions and summarize the literature on gain and phase diagnostics for X-12-ARIMA

filters. The core phenomenological results of the article are the diagnostic graphs and

detailed discussions of their features presented in Section 3 for a range of SEATS seasonal

adjustment filters of various lengths, mainly in Subsection 3.2. Before this, in Subsection

3.1, graphs are shown in which a SEATS filter’s diagnostic is plotted together with the

diagnostic of a comparable X-11/12-ARIMA filter from the set of filters available for

automatic choice by X-11/12-ARIMA. To provide a perspective on the differences

between gain and phase delay plots of finite and infinite SEATS filters, the plots for two

models’ infinite symmetric and concurrent filters are presented in Figure 6 of Subsection

3.2. alongside the plots for the corresponding filters for length T ¼ 109. These plots show

that it can be impossible to infer important properties of the finite filters from properties of

the infinite filters, an important conclusion of this article.

To provide a perspective for evaluating the plots, we present, in A.2 of Appendix A, a

Digital Signal Processing (DSP) perspective stressing interpretability of the filter output.

For the squared gain functions, our development is based on Wecker (1979). Although

there is some overlap, the DSP perspective is different from the perspective of mean

square optimal estimation of the unobserved nonseasonal component of the time series.

SEATS’s method is motivated by the second perspective, but SEATS cannot achieve such

optimality, if this is desired, without an unambiguously optimal model. Model ambiguity

is illustrated in Section 4 with two models that provide comparable and acceptable fits to a

U.S. Census Bureau time series but whose SEATS seasonal adjustment filters have

squared gain and phase delay diagnostics which differ in ways that will cause each model

3 Somewhat more complex and less direct formulas are available for the asymmetric seasonal adjustment filters
for semi-infinite data Zt;21 , t # T ; see Bell and Martin (2004).
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to be the preferred model for some users. An example of a suboptimal model preferred by

experts because of the interpretability of its seasonal adjustment is analyzed with a new

squared gain comparison diagnostic for models with different qualities of fit in A.3 of

Appendix A. A.5 provides basic results for the interpretation of phase delays and gains.

In Section 5, we briefly consider trend estimation in order to show that concurrent trend

filters can have much greater phase delays than concurrent seasonal adjustment filters of

the same model, a further illustration of the principle that greater smoothing usually results

in greater phase delay, another important conclusion of the article. Section 6 is a summary

of our conclusions.

Appendix B describes methods for obtaining the needed coefficients of finite filters.

Appendix C establishes that all finite AMB filters for Nt contain the differencing operator

of the ARIMA model for St. Appendix D applies this result to develop a continuous phase

delay function for concurrent filters that reveals fundamental properties of such filters. The

Appendices A, C, and D contain the conceptual and theoretical contributions of the article.

2. Gain, Phase and Phase Delay Functions

Using powers of the backshift operator BZt ¼ Zt21, a linear filter applied to data Zt
resulting in output Yt ¼

P
j cjZt2j can be expressed as the function CðBÞ ¼

P
j cjB

j, i.e.,

Yt ¼ CðBÞZt. For monthly data, the transfer function of the filter is the generally complex-

valued function defined by Cðe2ið2p=12ÞlÞ ¼
P

j cje
2ið2p=12Þjl, 26 # l # 6, when l is in

units of cycles per year. Its amplitude function, GðlÞ ¼ jCðe2ið2p=12ÞlÞj, is called the gain

function of the filter. The squared gain G(l)2 has the important property that if Zt is a

stationary time series with spectral density f ZðlÞ, then the spectral density f Y ðlÞ of the

filter output series Yt is given by

f Y ðlÞ ¼ GðlÞ2f ZðlÞ ð2:1Þ

(see Bloomfield 2000, pp. 171–172 for example). Thus, there is suppression of the

variance component of frequency l by the amount of the factor G(l)2 when GðlÞ , 1 and

amplification of the component by this factor when GðlÞ . 1. For nonstationary series

such as ARIMA processes, there is a generalization of (2.1), (see Subsection A.1), but also

ambiguity about how to define frequency variance components (see Wildi 2004). We shall

assume that suppression of these components occurs over intervals where GðlÞ , 1,

amplification where GðlÞ . 1, and that the effect is larger the farther G(l)2 is from one.

A real-valued function f(l) that is defined whenever Cðe2ið2p=12ÞlÞ – 0 and has the

property that Cðe2ið2p=12ÞlÞ ¼ ^GðlÞe ið2p=12ÞfðlÞ holds is a phase function of the filter. Here

^G(l) denotes a real-valued function some of whose values can be negative but whose

absolute value is G(l) and which is an even function, ^Gð2lÞ ¼ ^GðlÞ for all l. Usually,

one defines fðlÞ ¼ ð12=2pÞ arctan ðImCðe2ið2p=12ÞlÞ=ReCðe2ið2p=12ÞlÞÞ to obtain

Cðe2ið2p=12ÞlÞ ¼ GðlÞe ið2p=12ÞfðlÞ; but a different definition with ^G(l) different from

G(l) is sometimes needed to obtain a continuousf(l) (see (D.4) of Appendix D). For seasonal

adjustment filters, Cð1Þ ¼
P

j cj ¼ 1, so fð0Þ ¼ 0, and Cðe2ið2p=12ÞlÞ ¼ 0 at the seasonal

frequencies l ¼ ^1; : : : ;^6 (see Appendix C). We can restrict attention to the frequencies

0 # l # 6 because^G(l) is even and phase functionsf(l) are odd,fð2lÞ ¼ 2fðlÞ. Gain

and phase functions are discussed in many books, e.g., Priestley (1981).
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The simplest phase functions are those of the backshift operator and its powers,

BkZt ¼ Zt2k, for k ¼ 0;^1;^2: : :. Since the transfer function of B k is e2ið2p=12Þkl, one

can take its phase function to be the continuous function fðlÞ ¼ 2kl. Note that if l – 0,

then 2fðlÞ=l ¼ k, which is the delay (when k . 0) or advance (when k , 0) induced by

B k. In general, when f(l) is a continuous phase function for a filter with transfer function

Cðe2ið2p=12ÞlÞ such that Cð1Þ . 0 (so fð0Þ ¼ 0Þ, then for every l – 0 for which

Cðe2ið2p=12ÞlÞ – 0, the value of the function tðlÞ ¼ 2fðlÞ=l is interpreted as the (time)

delay, or the advance if t(l) is negative, induced by the filter on the frequency component

of Zt with frequency l. (Subsection A.5 justifies this interpretation of t(l) for stationary

Zt.) We call t(l) the phase delay function. (Rabiner and Gold 1975, p. 80 use this term for

2t(l), which Wildi 2004, p. 50 calls the time shift.) For example, the seasonal sum filter

for monthly data
P11

j¼0B
j, which is the shortest filter with transfer function zeros at all

seasonal frequencies, has the continuous phase function fðlÞ ¼ 25:5l and tðlÞ ¼ 5:5,

(see (D.4) of Appendix D, where our method for obtaining a continuous phase function for

a concurrent filter is described). Phase delays satisfy tð2lÞ ¼ tðlÞ. Delay properties are

the most useful information conveyed by the phase function, and the phase delay function

reveals delay properties more directly, so we use it instead. Except in Appendix D, we only

graph phase delays over 0 , l , 1, i.e., the frequencies of components with periods

greater than a year. In fact, the delays of greatest interest are those with frequencies in the

interval 0 , l , 1=2 associated with turning points or with business cycle movements

whose dominant components have periods greater than two years. (A trend whose

direction reverses sharply at a turning point could have components at higher frequencies.)

Our focus is on SEATS filters because frequency domain properties of X-11-ARIMA

seasonal adjustment filters have already been considered extensively. Dagum (1983)

provided plots of squared gain and phase functions for default concurrent filters of X-

11-ARIMA for series of length T ¼ 84 associated with various choices of time series

models used to provide twelve forecasts of the series. Her models include several Box-

Jenkins airline models. Dagum, Chhab and Chiu (1996) presented spectral analyses of

maximum-length concurrent seasonal adjustment, trend and irregular filters from all

combinations of 9-, 13-, and 23-term Henderson trend filters and 3 £ 3, 3 £ 5 and 3 £ 9

seasonal filters with forecast extrapolation from airline models as well as without

forecast extrapolation. For the case of no forecast extrapolation, Bell and Monsell

(1992) showed squared gain function graphs for all of the full-length symmetric X-11

filters. Huot, Chiu and Higginson (1986) analyzed revisions from X-11-ARIMA,

defined as the mean square difference between the transfer functions of the central and

concurrent filters over all frequencies. For short filters, there is only the unpublished

report by Cholette (1979), which provided plots of the gain functions of X-11

concurrent and symmetric filters for the seasonal factors of lengths 36, 48, 60, and 84,

together with comments about their phases.

3. Squared Gain and Phase Delay Functions from Airline Models

As mentioned before, the filters we consider are those that arise when an airline model is

used to determine the canonical model-based seasonal adjustment filters of SEATS or to

Findley and Martin: Frequency Domain Analyses of Seasonal Adjustment Filters 5



extend the data for X-11/12-ARIMA. Box-Jenkins airline models have the form

ð1 2 BÞð1 2 BpÞZt ¼ ð1 2 uBÞð1 2QBpÞat ð3:1Þ

where at denotes a series of independent random variables with mean zero and constant

variance s2
a. For monthly data, p ¼ 12. The coefficients u and Q, often called the

nonseasonal and seasonal moving average parameters, respectively, are usually

constrained to have magnitudes not exceeding one. This entails no loss of generality

when the at are Gaussian. For seasonal economic time series, the coefficient estimates are

usually nonnegative. Thus we only consider (u, Q) satisfying 0 # u # 1 and 0 # Q # 1.

As an aid to understanding the SEATS filter differences associated with different

parameter values, we start by considering how the properties of the time series from (3.1)

differ for some extreme coefficient pairs. Given initial values Z1; : : : ; Zpþ1, the solutions

Zt, t $ pþ 2 of the difference equation (3.1) can be written in the form

Zt ¼ bþ ct þ st þ vt ð3:2Þ

with st satisfying the “stable seasonality” condition st þ st21· · · þ st2pþ1 ¼ 0, and

therefore st2p ¼ st, for t $ pþ 1. The quantities b, c, and st are functions of the initial

values Z1; : : : ; Zpþ1, a1; : : : ; apþ1 and (u, Q).

The component vt is a linear function of apþ2; : : : ; at with coefficients determined by (u,

Q). When Q ¼ 1, then ð1 2 BÞvt ¼ ð1 2 uBÞat, and the seasonal component is st, i.e., it is

stable (periodic). Further, vt is at if u ¼ 1; but if u ¼ 0, vt is the random walk
Pt

j¼pþ2aj. The

closer u and Q are to one, the more linear the visible trend in data from (3.1) is likely to be,

and the more stable the visible seasonality. Findley and Martin (2003) provide formulas for

vt for other extreme cases in which u andQ have the values zero or one. When (u,Q) is close

to (1, 0), these formulas indicate that vt behaves effectively like a seasonal random walk

within each calendar period (calendar month if p ¼ 12) in a way that is independent for each

of the p periods, so the evolution of the observed seasonal pattern will be quite erratic. When

(u, Q) is close to (0, 0), the movement is even more complex, with the variance of vt
increasing as the cube of the series length divided by p. Diagnostics of some AMB filters

from models with Q ¼ 0 are presented in Subsections 3.2.3–4 and in A.3.

In practice, small estimated values of Q, especially for moderate T, are associated with

very erratic seasonal movements that can obscure trend movements. In this case, one

expects the seasonal frequency components to have power at frequencies spread across

broad intervals around seasonal frequencies (see Bloomfield 2000, pp. 81–82). Hence one

expects the seasonal adjustment filter squared gains to have broad troughs at seasonal

frequencies to suppress these components. This will be seen to happen for small Q in the

figures below (more clearly with larger T), just as narrow troughs will be seen when Q is

close to one, when the periodic component st in (3.2), whose spectrum is concentrated at

the seasonal frequencies, becomes dominant.

Our method of obtaining the SEATS and X-11/12-ARIMA filter coefficients cTs;t in

(1.1) is detailed in Appendix B. From the cTs;t, we calculated and plotted the squared

gain and phase delay function of the concurrent adjustment filters and the central

adjustment filters for series of lengths 37, 49, 61 and 109 months associated with the

airline model coefficient pairs (u, Q) with u ¼ 0:2; 0:4; 0:6; 0:8 and

Q ¼ 0:0; 0:4; 0:6; 0:8; 0:95. For reasons of space, plots for fewer values of (u, Q) and
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mainly for lengths 49 and 109 are shown below. Cholette (1979) emphasized that

seasonal adjustment of series shorter than five years should generally be avoided, if

possible. Our results will further illuminate why this is so. Thus the length 49 filters

that we analyze should be regarded as somewhat extreme. In fact, the plots for length

61 months, which are not presented, are less erratic than the plots provided for length

49 in some frequency intervals but more erratic in others and therefore not

convincingly better. The plots for length 37 are more erratic than those for T ¼ 49

except for the example with Q ¼ 0 discussed in Subsection 3.2.4, whose gain and

phase delay properties are nevertheless problematic.

X-11/12-ARIMA includes options that allow the user to specify various X-11 seasonal

and trend filters. For the plots that include squared gains or phase delays of X-11/12-

ARIMA filters, we always specified the 13-term Henderson trend filter. Except in Figures 1

and 2, we always used the x11default option of X-12-ARIMA, which specifies a 3 £ 3

seasonal filter for the initial seasonal factor estimates and the 3 £ 5 seasonal filter

thereafter (see Ladiray and Quenneville 2001, which also describes how the program

replaces any specified filter when the series is too short for its use; replacement filters were

needed for all finite lengths T of this article.) For simplicity, we refer hereafter to the

resulting seasonal adjustment filter, and to its modifications by model forecasts and

backcasts, as the X-11/12-ARIMA default filter for length T. The x11default specification

is the most frequent choice among the nine alternatives of the default automatic filter

selection procedure of X-11/12-ARIMA.

3.1. Diagnostics of Automatically Chosen X-11/12-ARIMA Seasonal Adjustment Filters

Can Be Close to Those of SEATS Filters for a Variety of Airline Models

As mentioned, our focus is on SEATS filters, not on their comparison with X-11/12-

ARIMA filters, which play an auxiliary role in the article. Only in Figures 1 and 2 do we

show diagnostics from comparable X-11/12-ARIMA and SEATS filters, mainly to

illustrate that some of our conclusions apply to filters from both approaches. The X-11/12-

ARIMA filters in Figures 1 and 2 are filters we have seen the programs automatically

choose for series with estimated airline model coefficients close to those of the figures.

(They were not chosen to be optimally close to the SEATS filters in any sense.)

Figure 1 contains plots of the squared gain function for series length T ¼ 109 of

concurrent (left side of figure) and symmetric (right side of figure) SEATS and X-11/12-

ARIMA filters resulting from a model with u ¼ 0:6 and either Q ¼ 0:4 (top), Q ¼ 0:6

(middle) or Q ¼ 0:8 (bottom), corresponding to rather erratic, average, and rather smooth

seasonal movements, respectively. The default filter described above was specified for the

middle plots, whereas alternative filters that can be specified automatically by X-11/12-

ARIMA appear in the top and bottom plots, with those on top involving the 3 £ 3 seasonal

filter specification and those in the bottom plots the 3 £ 9 specification. The phenomenon

that the squared gain troughs around the seasonal frequencies, l ¼ 1; 2; : : : ; 6

cycles/year, are deeper for the symmetric filters than for the concurrent filters is a

general one, explanations for which are given for SEATS filters in Subsection 3.2.1. So is

the decrease, for fixed T, in the size of the largest oscillations as Q decreases, also visible

in the phase delay plots of Figure 2, (see Subsection 3.2.2.)
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3.2. Properties of SEATS’ Squared Gain and Phase Delay Functions with Reference to

Default X-11/12-ARIMA Functions for Various u and Q

We now compare properties of SEATS filters for different models and series lengths, often

using the more fixed properties of the default X-11/12-ARIMA filters as a reference in the

Fig. 1. SEATS and X-11/12-ARIMA squared gain functions of concurrent (left) and symmetric (right) filters for

u ¼ 0:6 and Q ¼ 0:4; 0:6; 0:8: The default X-11/12-ARIMA filter’s squared gains appear in the middle graphs.

Those of other automatic choices of X-11/12-ARIMA filters appear in the top and bottom graphs. In each graph,

the squared gains of the X-11/12-ARIMA filters resemble those of SEATS filters
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Fig. 2. SEATS and X-11/12-ARIMA concurrent phase delay functions for u ¼ 0:6 and Q ¼ 0:4; 0:6; 0:8:

The default X-11/12-ARIMA filter’s phase delay appears in the middle graphs. Those of other automatic

choices of X-11/12-ARIMA filters appear in the top and bottom graphs. In each graph, the phase delays of

the X-11/12-ARIMA filters resemble those of SEATS filters

Findley and Martin: Frequency Domain Analyses of Seasonal Adjustment Filters 9



graphs to make differences between the properties of different SEATS filters easier to see.

Additional graphs illustrating the phenomena we mention can be found in Findley and

Martin (2003).

3.2.1. Squared Gain Functions

Squared gain graphs for length T ¼ 49 and u ¼ 0:2; 0:6; 0:8 are shown in Figure 3

(Q ¼ 0:4), and Figure 4 (Q ¼ 0:8). After identifying visual features of interest, we offer

analytic explanations for some of them. One thing to keep in mind is that, from the point of

view of interpretation, squared gain values larger than one suggest that the corresponding

frequency component is stronger in the estimate N̂t than in the component Nt, at least in the

sense of contributing more variability. This is especially relevant for the large peaks

associated with T ¼ 49. By contrast, squared gain values less than one are not always

problematic. See Subsection A.2 for a background discussion of these issues.

Effects of IncreasingQ

Figure 3 shows that when Q ¼ 0:4, the impact of u is greater on the concurrent filters than

on the symmetric filters and greater on the SEATS filters than on the X-11/12-ARIMA

filters, as would be expected since, for the latter, it is only the forecast and backcast

functions that change with u. For the concurrent filter squared gains, much more than for

symmetric filter squared gains, over the intervals between the seasonal frequencies, as u

increases, the average squared gain level decreases, indicating greater suppression of

frequency components on average for components with periods shorter than a year

(l . 1). This suppression becomes less pronounced as Q increases, being modest when

Q ¼ 0:8: compare the bottom graphs of Figure 3 for ðu;QÞ ¼ ð0:8; 0:4Þ with the bottom

graphs of Figure 4 for ðu;QÞ ¼ ð0:8; 0:8Þ.

Effects of Increasing Q

Comparing the graphs in each row of Figure 3 with the corresponding graphs in Figure 4,

and examining Figure 1 progressing from top to bottom, one sees that as Q increases,

resulting in an increasing contribution of the periodic component st to the seasonal

component as discussed below (3.2), the troughs at seasonal frequencies of the SEATS

squared gain functions of the concurrent filters become narrower and so do the sizes of the

largest oscillations of the SEATS functions, a phenomenon we discuss in Subsection 3.2.2.

Also, max0#l,1G
2ðlÞ, the maximum amplification over trend and cycle frequencies,

usually increases with Q.

Effects of Filter Length T

Compare the second row of Figure 3 with the first row of Figure 1 ððu;QÞ ¼ ð0:6; 0:4ÞÞ and

the second row of Figure 4 with the third row of Figure 1 ððu;QÞ ¼ ð0:6; 0:8ÞÞ. The shorter

filters have larger oscillations than their counterparts in Figure 1. The troughs at the

seasonal zeros of the symmetric filters are broader for the shorter filters.

The broad troughs are just one example of the tendency of the squared gains of the

symmetric filters for short series to have rapid changes of amplitude over intervals away

from the seasonal frequencies, i.e., away from the frequencies of the components targeted for

suppression. When they are not near seasonal frequencies, such changes seem undesirable
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because they indicate that some nonseasonal frequency components of the data at

frequencies close to one another will be treated substantially differently by the filter. Such an

“inconsistent” treatment of neighboring frequency components could, if these components

are of significant size in the data, make certain aspects of the seasonally adjusted series

Fig. 3. SEATS and X-11/12-ARIMA squared gain functions for Q ¼ 0:4 and series of length 49. From top to

bottom, u ¼ 0:2; 0:6; 0:8: The impact of u is greater on the concurrent filters (left) than on the symmetric filters

(right), and greater on SEATS than on X-11/12-ARIMA, as would be expected since only the contribution of the

forecasts is changing for the latter

Findley and Martin: Frequency Domain Analyses of Seasonal Adjustment Filters 11



misleading or, at the very least, susceptible to large revisions when additional data enable the

use of longer filters with more stable squared gains. The greater tendency of the squared

gains to have values larger than one for larger values ofQ can also cause problems regarding

interpretation, (see Subsection A.2), and so is a further reason to consider series length 49 to

be quite short for seasonal adjustment, in agreement with Cholette (1979).

Fig. 4. SEATSandX-11/12-ARIMA squared gain functions forQ ¼ 0:8 and series of length49. From top to bottom,

u ¼ 0:2; 0:6; 0:8:These are rather similar toFigure. 3with SEATS concurrent functions even closer to oneaway from

seasonal frequencies, while being more oscillatory. Note that here as in Figures 1, 3, 6, 8, and 10, the concurrent

filters’ squared gain troughs around seasonal frequencies are narrower than those of the symmetric filters
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Zeros at Seasonal Frequencies and Associated Troughs

We now provide analytic explanations of the phenomenon that, for a given pair of model

coefficients, the symmetric filter’s squared gain has broader (deeper) troughs at the

seasonal frequencies than the squared gain of the concurrent filter. For infinite filters, this

phenomenon (visible in Figures 6 and 7) can be understood by noting that the factor

jdSðe
2ið2p=12ÞlÞj

2
in the final formula of (A.3) for the transfer function of the symmetric bi-

infinite seasonal filter is replaced by the factor dSðe
2ið2p=12ÞlÞ in the formula (15) of Bell

and Martin (2004) for the transfer function of the infinite asymmetric filters, and that

dSðBÞ ¼
P11

j¼0B
j for seasonal adjustment filters of the airline model. Hence, the zeros of

the squared gains of symmetric filters at seasonal frequencies have order (multiplicity)

four, whereas those of the asymmetric filters have order two, with the result that squared

gains of the symmetric filter must have smaller amplitudes near these frequencies, and

therefore broader troughs.

Appendix C shows that the zeros at seasonal frequencies of the transfer functions of all

the symmetric and asymmetric finite AMB filters are of order (at least) one. For the odd-

length symmetric filters, it is further shown that the zero at l ¼ 6 always has order two.

However, limited numerical results (not presented) indicate that, for symmetric filters for

monthly data, there is always a k such that e2ið2p=12Þk is a zero of CðzÞ ¼
Pt

j¼2tcjz
j of

order one. Interestingly, such a zero was always close to another zero of this transform,

i.e., was “almost” a zero of order two. For concurrent filters, each e2ið2p=12Þk was an

isolated zero of order one.

Remark 3.1 Because of its narrower squared gain troughs at seasonal frequencies, one

might expect the concurrent filter to be less able than the symmetric filter to track a

variable seasonal pattern to such an extent that the concurrent adjustment could have a

nonnegligible seasonal component. But for long enough series from a sufficiently good

model, this does not happen. More precisely, when the time series conforms to the

seasonal ARIMA model used to obtain the filters, Bell (1995) shows that, under the

assumption of Appendix D below, the series of concurrent model-based adjustments from

the infinite past has a nonseasonal ARIMA model.

3.2.2. Sources of Oscillatory and Related Behavior

For fixed Q, the sizes of the largest oscillations decrease with increasing T (see Figures 1,3,

and 4) and vanish whenT ¼ 1 (see Subsection 3.2.4 and Figure 6). The fact that, for fixedT,

they decrease as Q decreases can be explained by the fact that the filter coefficients decay

more rapidly for smaller Q, with the result that the filters resemble more the filters with

larger T (see Figure 7). Although the infinite filters of our examples have transfer functions

that are continuous, the oscillatory behavior of the associated finite-filter transfer functions

resembles the well-known Gibbs phenomenon that is associated with the approximations to

a discontinuous transfer function. However, we are not able to make quantitative statements

about the oscillations of squared gains of seasonal adjustment filters like those available for

the Gibbs phenomenon (see pp. 112–114 of Bloomfield 2000). We can offer a qualitative

conjecture concerning the phenomenon that, for a given model coefficient pair and series

length T, the symmetric filter’s squared gain has larger oscillations than the squared gain of

the concurrent filter. Two sources for this phenomenon suggest themselves. First, the many
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symmetry constraints on the symmetric filter’s coefficients restrict the flexibility of its gain

function: the symmetric filters have only ðT þ 1Þ=2 distinct coefficients, whereas the

concurrent filters have T. Second, the symmetric filter squared gains have amplitudes

between seasonal frequencies that are farther from zero on average, resulting in a

persistently larger range of movement. With fewer distinct coefficients than the concurrent

filter, this larger range must necessitate larger ancillary movements.

3.2.3. Phase Delay Functions

Figures 2 and 5–10 show concurrent filter phase delay functions over the frequency interval

0 , l , 1. As we noted, this interval includes the frequencies usually associated with

trends and business cycles. Beyond this interval, the continuous phase delays tend to the

value 5.5 as l! 6 (see Appendix D and Figure 11). For small values of T, Figures 5 and 6

show that finite concurrent filter phase delay functions can have large oscillations that show

the possibility of somewhat inconsistent delays of neighboring frequency components.

Oscillations, if they occur, are smaller for T ¼ 109 than for T ¼ 49; but apart from this

difference, for a given pair of coefficient values, the basic features of the phase delays are the

same for both series lengths. For the SEATS filters, except at the lowest trend frequencies, it

can be seen that, for a given u, phase delay increases asQ decreases (see Figures 2, 5 and 7).

Also, for a given Q, phase delay increases as u increases: compare the successive graphs in

Figure 2 (where u ¼ 0:6) with those of the second column of Figure 5 (where u ¼ 0.8).

Although the phase delay value at a given frequency can be influenced by gain function

values at distant frequencies (see Appendix D), phase delay is often greatest near where the

squared gain values in 0 # l , 1 are smallest, i.e., where frequency component

suppression is greatest: compare the squared gains of the first column of Figure 1 with the

corresponding phase delays of Figure 2, and the squared gain pairs of the second rows of

Figures 6 and 8 with the phase delay pairs of the third rows. Also compare the SEATS and X-

12-ARIMA functions for identical values of u and Q in Figures 1,2,3, and 5.

We conclude from these observations that greater smoothing (suppression) usually

leads to greater phase delay of components associated with business cycle frequencies.

The smaller airline model phase delays at higher frequencies in Figure 10 (which is

discussed in Subsection A.3) appear to be an exception, but this might be due to the fact

that its filter does substantially less suppression at frequencies l . 2. A further analysis of

the graphs supports the observation of M. Wildi (personal communication) that larger

amplifications at frequencies close to zero usually leads to smaller phase delays. The phase

delay graphs of Figure 8 (which is discussed in Section 4) over frequencies roughly

between 0.1 and 0.4 appear as an exception, but the explanation may lie in the fact that the

airline model squared gain does much less suppression at most frequencies l . 1.

3.2.4 Comparison of Finite and Infinite Length Concurrent and Symmetric Filter

Functions

In Figure 6, squared gain and phase delay plots are shown for filters of length 109 (on the

left) and infinite length (on the right) for airline models with u ¼ 0:8 and Q ¼ 0:8; 0:95.

One sees from Figure 6 and from the third row of Figure 4 ððu;QÞ ¼ ð0:8; 0:8ÞÞ that
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squared gains of the infinite filters often give no indication of whether or where the finite

filters will have broad troughs, rapid movements or oscillations. The squared gains of the

infinite filters never have rapid oscillations like those of the finite filters. Similarly, the

infinite-filter phase delays are smooth and offer no information about the location or size

of oscillations in the finite-filter phase delay functions, but they do seem to suggest where

the phase delays of the finite filters will be large.

Fig. 5. SEATS and X-11/12-ARIMA concurrent filter phase delay functions for u ¼ 0:8: From top to bottom,

Q ¼ 0:4; 0:6; 0:8 for series lengths 49 (left) and 109 (right)
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Turning to the differences between the graphs for Q ¼ 0:8 and Q ¼ 0:95 in Figure 6,

although the infinite symmetric filter squared gains are quite distinct, the finite symmetric

filter squared gains are very similar and rather different from the infinite filter functions.

Indeed, in several ways, the latter are not very indicative of the former. The finite-filter

Fig. 6. Squared gain and phase delay functions for SEATS filters of length 109 (left) and infinite length (right)

for models with u ¼ 0:8 and Q ¼ 0:8; 0:95: For the symmetric filters, the infinite filters’ squared gains give little

indication of shapes of the finite filters’ squared gains, which differ little. For all of the finite-filter functions, the

larger oscillations of the Q ¼ 0:95 functions make their filters seem less desirable than the filters of the model

with Q ¼ 0:8
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Q ¼ 0:0: The spectral functions are almost indistinguishable because of the rapid decay of the coefficients of the

infinite filter
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symmetric squared gains have almost identical troughs at the seasonal frequencies, and the

slight narrowing at the tops of the troughs for Q ¼ 0:95 comes at the cost of more

extended rapid movements throughout the graph. Considering this feature of the Q ¼ 0:95

example together with the very rapid oscillations of its concurrent squared gain, it appears

that, when parameter estimates around u ¼ 0:8 and Q ¼ 0:95 are obtained for a series of

length 109, it might be preferable to use Q ¼ 0:8 filters to obtain the seasonal adjustment.

These observations demonstrate important inadequacies of the squared gains of the

infinite filters as diagnostics. They cannot generally be used to predict which trend or

cyclical components of the observed series that are of possible interest to the data user are

likely to be amplified or treated somewhat inconsistently by the finite length filters.

Similarly, the infinite filter squared gains should generally not be used to make inferences

about differences between X-11/12-ARIMA and SEATS adjustments, because these are

always produced by finite filters.

There are exceptions. For example, when ðu;QÞ ¼ ð0:8; 0:0Þ the filter coefficients (not

shown) decay so rapidly that there is essentially no difference in Figure 7 between the

infinite filter functions and those from length T ¼ 37. These filters strongly suppress

frequency components with l . 1 but the large peaks of the values G2ðlÞ . 1 roughly

centered about l ¼ 1=3 show that the concurrent filters can strongly exaggerate business

cycle components. This property, and the large phase delays, indicate that seasonal

adjustments via models with Q ¼ 0 may have limited value for current economic analyses

(see also Subsection A.3 below).

4. Applying the Diagnostics to Choose Between AMB Filters from Competitive

Models

We now consider a series fit almost equally well by two models whose seasonal

adjustment filters have important differences that are revealed by the squared gain and

phase delay functions.

The series X41020 of monthly U.S. Exports of Cookware, Cutlery, House and

Gardenware from January 1989 through November 2001 is one for which the BIC model

selection criterion of Schwarz (1978), used by TRAMO to select models for SEATS,

prefers the 1-12-13 model of Findley, Martin, and Wills (2002),

ð1 2 BÞð1 2 B12ÞZt ¼ ð1 2 u1B2 u12B
12 2 u13B

13Þat ð4:1Þ

with BIC ¼ 4803:96, over the airline Model (3.1), which imposes the constraint u13 ¼

2u1u12 and has BIC ¼ 4804:73. For this series Zt is the log of the trading day and outlier

adjusted data. The parameter estimates from X-12-ARIMA are u1 ¼ 0:3569,

u12 ¼ 0:6589, u13 ¼ 20:4245 for Model (4.1) and u ¼ 0:4182, Q ¼ 0:6351 for Model

(3.1). The Ljung-Box Q statistic at lag 24 has the p-values 0.275 for Model (4.1) and 0.304

for Model (3.1), so both models are acceptable by the criteria of TRAMO. Within the lag

range l , 24, there are three lags, l ¼ 6; 9; 10, for which the Model (4.1) has Q’s with

p-values less than 0.05 (the respective p-values are 0.041, 0.043 and 0.037), something

that does not occur for Model (3.1), a fact that could lead some modelers to prefer Model

(3.1) for this series. The models are therefore competitive.
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Figure 8 shows that their seasonal adjustment filters have quite different frequency

domain characteristics. The concurrent phase delays are comparable for long-term trend

movements associated with quite small l, but for Model (4.1) the phase delay becomes

more than one month for any cyclical component whose period is shorter than five

years, in contrast to the phase delay of Model (3.1). The squared gain functions of

Model (4.1) show much more smoothing of higher frequency components and short-

term business cycle components. The concurrent filter of Model (4.1) has a greater

tendency to emphasize, and perhaps exaggerate, some long-period components.

Given the information provided by the diagnostics of Figure 8, we would expect few

seasonal adjusters to be indifferent about which of these two models was used

for seasonal adjustment and, also, that a number of seasonal adjusters would prefer

seasonal adjustments from Model (3.1), even though they will be less smooth than

those from the Model (4.1) preferred by BIC. (Although smoothness is not an intrinsic

quality of a good seasonal adjustment, among two adjustments of comparable

credibility, the smoother one is often preferred in the hope that it will be more

interpretable, usually with no recognition of the possible consequences of greater phase

delay usually associated with greater smoothing.) Thus it is important that the

frequency domain diagnostics discussed in this article be made available to users of

model-based seasonal adjustment software. Additional examples of competitive model

pairs whose seasonal adjustment filters have substantially different squared gain and

phase delay properties are presented in Findley, Martin, and Wills (2002).

5. Trend Filters

An analogous analysis of model-based trend filters, which suppress seasonal and irregular

components, can be expected to yield squared gains with features qualitatively similar to

those seen in Figures 1–7, except that the squared gain values will be much closer to zero

from some point near the first seasonal frequency on and the phase delays can be much

greater (see Figure 9 for the case ðu;QÞ ¼ ð0:8; 0:4Þ with length 109). The phase delay of

the concurrent trend filter in Figure 9 is essentially twice that of the concurrent seasonal

adjustment filter throughout most of 0 , l , 1. When ðu;QÞ ¼ ð0:6; 0:8Þ, the concurrent

trend filter phase delay (not shown) is mostly more than three times that seen in Figure 2

for the seasonal adjustment filter. The trend filter gain and phase graphs of Dagum and

Luati (2002) and the trend time shift graphs of Wildi (2004) offer further illustrations that,

when one trend filter effects greater smoothing than another, it will usually also have

greater phase delay.

6. Concluding Remarks

Our main findings are the following. (1) The squared gains of the infinite AMB filters are

not reliable diagnostics for series of the lengths considered in this article. They generally

fail to show where the squared gains of the finite filters actually used are larger than one

and where they have large and rapid changes away from seasonal frequencies, information

that can help to avoid misinterpretations of the adjusted series. (2) The squared gains and

phase delays of the concurrent adjustment filters provide information that is different from
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Fig. 8. Squared gains and phase delays of filters of length 109 for the Models (3.1) (solid line) and (4.1) (dashed

line) for an Exports series. Although the models have similarly good fits to the data, the plots reveal that their

seasonal adjustment filters have substantially different properties
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(and more valuable for real-time analyses than) that provided by the squared gains of the

symmetric filters. (3) The phase delays of concurrent filters indicate that the extent to

which concurrent filters delay business cycle information increases with increased

smoothing, in a way that depends more strongly on the seasonal than on nonseasonal

moving average parameters, perhaps because the former usually have more influence on

the decay rate of filter coefficients. (4) Trend filters can have much larger phase delays

than seasonal adjustment filters. They illustrate the phenomenon that greater smoothing

usually results in greater phase delay. (5) For short series, with roughly 60 observations or

less, the squared gain analyses indicate that seasonal adjustment is likely to be

problematic. Except with series whose frequency components are mostly restricted to

short frequency intervals around trend and seasonal frequencies, e.g., series with nearly

stable seasonals, almost linear trends and quite moderate irregularity, interpretation of the

Fig. 9. Squared gains and phase delays of concurrent SEATS seasonal adjustment and trend filters of length 109

for (3.1) with u ¼ 0:8 and Q ¼ 0:4: Note that the phase delay of the trend filter is roughly twice that of the

seasonal adjustment filter. Consequently the trend could have large timing distortions for many business cycle

components
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seasonally adjusted series will be difficult. (6) Airline models with Q ¼ 0 produce series

with very erratic seasonals and very short AMB seasonal adjustment filters that effect

extreme suppression with very large phase delays (see Figure 7). Hence they result in

model-based seasonal adjustments likely to be quite difficult to interpret reliably. These

models are used by SEATS as an (optionally) automatic alternative to inadmissible models

and were used in the study of X-12-ARIMA of Matas Mir and Rondonotti (2003) to

illustrate performance with changing seasonality.

With appropriate reinterpretations of Conclusions (3) and (6), whose formulations

depend in part on the parameterization of ARIMA-models, one can expect our conclusions

to apply to the seasonal adjustment filters of other model-based signal extraction methods,

e.g., those of BAYSEA (Akaike and Ishiguro 1980, based on Akaike 1980), DECOMP

(Kitagawa 1985, based on Kitagawa 1981) and STAMP (Koopman, Harvey, Doornik, and

Shepherd 1995, based on Harvey 1989).

Appendix A: Perspectives for Evaluating Squared Gains and Phase Delays

A.1. Pseudo-spectral Generalizations of Spectral Density Identities

In the case in which Zt is a zero-mean covariance stationary time series having the

decomposition Zt ¼ St þ Nt, where St and Nt are uncorrelated series with spectral

densities f SðlÞ and f NðlÞ respectively, the spectral density of Zt has the decomposition

f ZðlÞ ¼ f SðlÞ þ f NðlÞ ðA:1Þ

We assume that f ZðlÞ . 0 for all l. At frequencies at which f NðlÞ . 0, it follows from

(2.1) that for any estimator N̂t ¼
P

j cjZt2j, model-based or not, with

GðlÞ ¼ j
P

j cje
2ið2p=12Þjlj, we have

f N̂ðlÞ ¼ G 2ðlÞ
f ZðlÞ

f NðlÞ

� �
f NðlÞ ðA:2Þ

In the nonstationary case, if Zt has an ARIMA model, there is a generalization of the

argument leading to (A.2) that requires the components St and Nt to follow ARIMA models

whose differencing polynomials dSðBÞ and dNðBÞ have no common zero (as happens with

dSðBÞ ¼ 1 þ Bþ · · · þ Bp21 and dNðBÞ ¼ ð1 2 BÞ2 in the airline model (3.1)). Then

dZðBÞ ¼ dSðBÞdNðBÞ transforms Zt into a stationary ARMA process zt ¼ dZðBÞZt whose

spectral density f zðlÞ is assumed to be strictly positive. Concerning the spectral densities

f sðlÞ and f nðlÞ of the respective ARMA processes st ¼ dSðBÞSt and nt ¼ dNðBÞNt; we

further assume that when f sðlÞ or f nðlÞ is zero for some l0; the associated value of its

differencing polynomial, dSðe
2ið2p=12Þl0Þ or dNðe

2ið2p=12Þl0Þ, respectively, is nonzero.

Then (A.1) holds for what are called the pseudo-spectral density functions (Hillmer

and Tiao, 1982), f ZðlÞ ¼ f zðlÞ=jdZðe
ið2p=12ÞlÞj

2
, f SðlÞ ¼ f sðlÞ=jdSðe

ið2p=12ÞlÞj
2
, and

f NðlÞ ¼ f nðlÞ=jdNðe
ið2p=12ÞlÞj

2
, and so does (2.1) in the sense that correct results are

obtained for zt ¼ dZðBÞZt: The pseudo-spectral density version of (A.2) follows from these
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generalizations of (A.1) and (2.1). We note that

f NðlÞ

f ZðlÞ
¼

dN e2ið2p=12Þl
� ��� ��22

f nðlÞ

dS e2ið2p=12Þl
� ��� ��22

f sðlÞ þ dN e2ið2p=12Þl
� ��� ��22

f nðlÞ

¼
dS e2ið2p=12Þl
� ��� ��2f nðlÞ

dN e2ið2p=12Þl
� ��� ��2f sðlÞ þ dS e2ið2p=12Þl

� ��� ��2f nðlÞ ðA:3Þ

As Bell (1984) shows, the functionGWKðlÞ ¼ f NðlÞ=f ZðlÞ is the transfer function of a mean

square optimal linear estimator of Nt of the form N̂t ¼
P1

j¼21cjZt2j minimizing the mean

squared error EðN̂t 2 NtÞ
2: Thus it is the pseudo-spectral density generalization of the

Wiener-Kolmogorov transfer function for stationaryZt given as (10.3.7) of Priestley (1981).

A.2. The Digital Signal Processing and Mean Square Optimal Filtering Perspectives

A.2.1. Competing Criteria

It was demonstrated in Section 4 that AMB filters from competitive models can have quite

different squared gain and phase delay properties. In fact, the minimum mean square

signal extraction error criterion that gives rise to the AMB filters does not insure that an

AMB filter with smaller mean squared error will have smaller phase delay over trend and

business cycles frequencies, or have gain function properties there that are likewise better

from the perspective of interpretability of the filter output. For the purposes of seasonal

adjustment and related analyses, the classical Digital Signal Processing (DSP) perspective

of Rabiner and Gold (1975) and Oppenheim and Schafer (1975) generally favors filters

supporting interpretability in the sense of having phase delays small enough for the user’s

purposes and gain properties that cause the filter output to have spectral properties like

those of the signal being estimated, in the sense we now describe.

A.2.2. Interpretability and Squared Gains

When phase properties are not an issue, the implicit signal extraction ideal of the DSP

perspective seems to be an estimator N̂t ¼
P

j cjZt2j such that

f N̂ðlÞ ¼ f NðlÞ ðA:4Þ

holds, at least over the frequency intervals of greatest interest (see Rabiner and Gold 1975

or Bloomfield 2000). As Wecker (1979) observed, and as follows from (A.2), (A.4) is

achieved by any filter whose gain function is

GDSPðlÞ ¼ GWKðlÞ1=2 ðA:5Þ

The functions GDSPðlÞ ¼ GWKðlÞ1=2 are not rational functions of e ið2p=12Þl and, for the

necessarily infinite filters with this transfer function, no tractable finite approximations

with some ideal property are known, so this ideal does not provide finite filters directly.

Instead, it sometimes offers an ideal squared gain GDSPðlÞ2 ¼ GWKðlÞ to which squared

gains of competing finite filters can be compared to see which is closer to the ideal over the
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frequency interval (or intervals) of greatest interest. This requires a preferred model from

which to obtain GWKðlÞ:

When the model choice is ambiguous, then the fact that every candidate model’s

GWKðlÞ satisfies GWKðlÞ # 1 makes certain statements possible. First, it follows from

(A.2) that whenever a filter defining an estimate N̂t ¼
P

j cjZt2j is such that GðlÞ ¼

j
P

j cje
2ið2p=12Þjlj . 1 over an interval where GWKðlÞ . 0; then GWKðlÞ21 $ 1 and (A.2)

yield f N̂ðlÞ . f NðlÞ: Thus, N̂t has larger variance in its components associated with these

frequencies than the corresponding components of Nt and so could misrepresent frequency

domain properties of Nt: Further, given two filters whose squared gains are such that

G ð1ÞðlÞ2 . G ð2ÞðlÞ2 . 1 holds over an interval containing important frequencies for the

filtered series, then the squared gain G ð2ÞðlÞ2 will be closer to any choice of GDSPðlÞ2 ¼

GWKðlÞ over this interval, so its filter will be preferred (if the phase delay properties of

both filters are acceptable).

A.3. An Application of GDSPðlÞ2 ¼ GWKðlÞ

We give an illustrative example using the series of sales volumes of large department

stores (Grands Magasins) from January, 1990 through March, 2004 (T ¼ 171) produced

by the Chamber of Commerce and Industry of Paris (CCIP). J. Anas of CCIP

communicated that CCIP found the SEATS seasonal adjustment obtained with TRAMO’s

automatically chosen (0, 1, 2) (0, 1, 0) model to be too smooth and used instead the

adjustment from the estimated airline model, a model whose goodness-of-fit diagnostics

are much worse but whose seasonal adjustment shows one or more known, nonseasonal,

recent economic events of interest to CCIP not visible in the better-fitting (0, 1, 2) (0, 1, 0)

model’s adjustment.

Our fitted (0, 1, 2) (0, 1, 0) model4 with ðu1; u2Þ ¼ ð1:0770;20:3739Þ, had BIC ¼

907:76 and very good modeling diagnostics, e.g., Ljung-Box Q-statistics whose p-values

increased from a minimum of 0.118 at lag 2 to 0.899 at lag 24. By contrast, the fitted airline

model, with ðu;QÞ ¼ ð0:8169; 0:1454Þ; had the much larger BIC ¼ 924:68 and much

worse modeling diagnostics, e.g., the Q-statistic at lag 24 was the first to have a p-value as

large as 0.05. Therefore GWKðlÞ of the (0, 1, 2) (0, 1, 0) model was used to define the DSP

ideal squared gain.

Figure 10 shows overlay plots of this function with the squared gain functions of the two

models’ symmetric and concurrent filters of length 171. Our comparisons ignore

frequencies at which the competing filters’ square gains are visually very close. For the

symmetric filter, this includes the interval 0 # l , 1: Over the remaining frequencies, the

(0, 1, 2) (0, 1, 0) model’s squared gain is closer to the DSP ideal somewhat more often than

not. By contrast, for the concurrent filters, whose performance is more relevant for CCIP’s

concerns, the squared gain of the airline model is closer to the DSP ideal somewhat more

often than not, especially over most of 0 # l , 1; a fact that supports CCIP’s preference

4 We used the same outlier regressor as CCIP, but did not have enough information to replicate the adjustments
for French holidays used by CCIP. The only holiday regressor in our model is an Easter regressor automatically
selected by X-12-ARIMA. Our use of different regressors could result in different ARIMA coefficient estimates
and therefore different seasonal adjustment filters and squared gains, so our analyses might not apply to CCIP.
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Fig. 10. Squared gains of the symmetric (top) and concurrent filters (middle), and the latter’s phase delays

(bottom), for the (0, 1, 2) (0, 1, 0) and airline models for the CCIP series of length 171. The squared gain plots

also include the DSP ideal, defined as the WK gain function (A.3) of the better-fitting (0, 1, 2) (0, 1, 0) model. For

the concurrent filters, comparison with the DSP ideal favors the airline model more often than not. However, the

airline model’s phase delays are greater over the trend and business cycle frequency range
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for this model. However, the phase delay graph of Figure 10 of the concurrent filters shows

that this advantage must be weighed against the interpretative disadvantage arising from

the airline model’s greater phase delay over 0 , l , 0:57:

A.4. Situations in Which the Mean-Square-Optimal and DSP Approaches Yield Similar

Results

For a given l, GWKðlÞ and GDSPðlÞ coincide if and only if GWKðlÞ has the value zero or

one. This occurs for all l only when the functions GWKðlÞ and GDSPðlÞ coincide with the

function defined by

G* ðlÞ ¼
1; f NðlÞ . 0

0; f SðlÞ . 0

(
ðA:6Þ

Many ideal filters of digital signal processing, e.g., ideal low pass filters, have gain

functions with only the values zero and one. The function G* ðlÞ has discontinuous jumps,

so a filter with this gain function must have infinitely many coefficients decaying so slowly

that their absolute values sum to infinity. Finite filters whose gains approximate G* ðlÞ

must be used in practice.

In the AMB seasonal adjustment case, each squared gain function is a rational function

of e il whose maximum value is one. It can take on the values zero and one, and any other

values, only finitely many times, not more than the sum of the degrees of the numerator

and denominator polynomials. GWKðlÞ from the canonical decomposition in the sense of

Hillmer and Tiao (1982) has the maximal number of l at which (A.5) holds (among the

GWKðlÞ from all related admissible decompositions) but, being continuous, it can only

approximate (A.6) (see Figure 6 for a “close” example produced by Q ¼ 0:95Þ:

Wecker (1979) derived a formula for the increase in mean squared estimation error

when GDSPðlÞ – GWKðlÞ and the filter with transfer function GDSPðlÞ is used instead of

the WK filter from correct stationary models for Zt and Nt: Under the assumptions of Bell

(1984), this formula can be extended to the ARIMA model case.

A.5. Interpretation of Gains and Phase Delays for Frequency Components

Where they are continuous (see Appendix D), gains and phase delays have simple

interpretations for the frequency components of weakly stationary Zt: From the spectral

representation Zt ¼
Ð 6

26
e ið2p=12ÞltzðdlÞ (see Priestley 1981, p. 151), the filter output has

the representation

j

X
cjZt2j ¼

ð6
26

j

X
cje

ið2p=12Þlðt2jÞzðdlÞ ¼

ð6
26

e ið2p=12ÞltCðe2ið2p=12ÞltÞzðdlÞ

¼

ð6
26

^ GðlÞe ið2p=12Þ{ltþfðlÞ}zðdlÞ ¼

ð6
26

^ GðlÞe ið2p=12Þl{t2tðlÞ}zðdlÞ

(For simplicity, we assume that fðlÞ is differentiable at l ¼ 0 so that we can define

tð0Þ ¼ f 0ð0Þ: This property can be verified for filters we consider using the decomposition
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of Appendix D.) Consider some 26 , l , 6 and G ¼ GðlÞ; t ¼ tðlÞ: From continuity at

l; we obtain that for small enough 1 . 0;

ðlþ1

l21

^ GðlÞe ið2p=12Þl{t2tðlÞ}zðdlÞ ¼ ^G

ðlþ1

l21

e ið2p=12Þlðt2tÞzðdlÞ

¼ ^GB t

ðlþ1

l21

e ið2p=12ÞltzðdlÞ ðA:7Þ

This indicates that the filter changes the magnitude of the variate
Ð lþ1

l21
e ið2p=12ÞltzðdlÞ;which

is effectively the l-frequency component of Zt; by the factor G approximately and delays

the result approximately by t:However, unless restrictions are imposed on l and t; there are

ambiguities with this interpretation of t; arising from the fact that e2ið2p=12Þlt ¼

e2ið2p=12Þðlt212kÞ for integer k. We only consider the case t . 0;which is the case of interest

for concurrent estimates. Suppose the frequency components with jlj , l* are the ones

important to the analyst. Then for t such that tl* , 12; (A.7) shows unambiguously that

the filter, to good approximation (for small enough 1), delays the contribution of the

component
Ð lþ1

l21
e ið2p=12ÞltzðdlÞ of Zt by t: For example, usually maxltðlÞ # 6; so this

interpretation applies unambiguously to components with frequencies jlj , 2; which is

more than adequate for most analyses. By contrast, for frequency components with l .

12k=t for k $ 1; even when the filter is exactly ^GB t for some fixed G . 0 and t . 0; its

output ^G
Ð lþ1

l21
e ið2p=12Þlðt2tÞzðdlÞ is approximately ^G

Ð lþ1

l21
e ið2p12Þl{t2ðt2ð12k=lÞÞ}zðdlÞ ¼

^GB t2ð12k=lÞ
Ð lþ1

l21
e ið2p=12ÞltzðdlÞ; indicating the smaller delay t2 ð12k=lÞ as an

alternative. Where G(l) is nearly zero, the value of t(l) is of no interest.

With nonstationary Zt; we assume that the greater t(l) is over an interval where it is

unambiguously defined, the more delayed will be the appearance in the filtered series of

components with frequencies in the interval, as the experiments with a polygonal turning

point of Findley (2000) demonstrate for a suite of trend filters.

Appendix B: Calculating the Filter Coefficients

We obtained the filter coefficients of (1.1) of SEATS and X-11/12-ARIMA by the usual

impulse response method (see p. 204 of Bloomfield 2000 or p. 49 of Ladiray and

Quenneville 2001), which finds the matrix representation of a linear transformation by

applying the transformation to input sequences that are the columns of an identity matrix.

For a fixed value of ðu;QÞ and a prescribed length T, SEATS was applied to each of the T

impulse series,

dðT2uþ1Þ
t ¼

1; t ¼ T 2 uþ 1

0; t – T 2 uþ 1
1 # t # T

(
ðB:1Þ

specified by 1 # u # T : If we designate the resulting seasonally adjusted series by NðuÞ
t ;

1 # t # T; then the coefficients of (1.1) arise as

cTt;2ðT2tÞþu21 ¼ NðuÞ
t ; 1 # u # T ðB:2Þ
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The X-11/12-ARIMA seasonal adjustment filter coefficients were obtained analogously,

by applying X-11/12-ARIMA, with fixed trend and seasonal filters, to the impulse series

extended by twelve backcasts and forecasts from the airline model.

All filter coefficients and model coefficient estimates of this article were obtained from

an enhanced version of the X-12-ARIMA program being developed by the U.S. Census

Bureau in collaboration with the Bank of Spain which incorporates SEATS (see Monsell,

Aston and Koopman 2003). For the case of an airline model with ðu;QÞ ¼ ð0:8; 0:8Þ;

below is an example of a command file (.spc file) for X-12-ARIMA/SEATS (a temporary

name for the program) for producing a set of output files from which the coefficients of the

default X-11/12-ARIMA seasonal adjustment filters, or with a slight change those of the

SEATS filters, can be calculated by means of (B.2). The file, which we name filters88.spc,

will be applied to T input files, each containing one of the series (B.1). The name of each

input file must be listed in a data metafile whose filename has the extension.dta, for

example, Tfilters88.dta, as described in the X-12-ARIMA documentation. Assuming the

X-12-ARIMA/SEATS executable file is named x12as.exe and is in the same directory as

the data files and data metafile, the command

x12asfilters88 2 dTfilters88

will cause the program to run as specified on all T series of (B.1) and to output each

adjusted series into a file having the filename of its input series file but with the

extension.d11 (or.s11 when the seats spec is used). The comment indicator # causes the

program to ignore the line with the seats spec. If # is instead placed before the x11 spec,

a SEATS adjustment results.

series{start ¼ 1970.jan period ¼ 12}

transform{function ¼ none}

arima{model ¼ (0 1 1) (0 1 1) ma ¼ (0.8f 0.8f)}

x11{seasonalma ¼ x11default trendma ¼ 13 sigmalim ¼ (9.90

9.95) save ¼ (d11)}

#seats{IMEAN ¼ no QMAX ¼ 900 save ¼ s11)}

forecast{maxlead ¼ 12 maxback ¼ 12}

Because the series (B.1) are not seasonal and not well modeled by the specified airline

model, some default settings have to be overridden. The setting sigmalim ¼ (9.90

9.95) in the x11 spec causes the program to not do extreme value adjustment of the input

series dðT2uþ1Þ
t : For the SEATS adjustments, it is necessary to set IMEAN ¼ 0 to prevent

mean correction of these input series and also to set QMAX to a high value, e.g.,

QMAX ¼ 900, to make certain that SEATS does not, because of a poor Ljung-Box Q

value, reestimate the fixed model coefficients.

Instead of the impulse response function method, to obtain AMB filters the matrix

formulas of Bell and Hillmer (1988), which are simplified in McElroy and Sutcliffe

(2004), or the state space method of Koopman and Harvey (2003) could be used.

Appendix C: Zeros of Finite-Filter Transfer Functions

Let Zt ¼ St þ Nt; 1 # t # T be a decomposition with ARIMA component models for

which the assumptions of Subsection A.1 or the slightly weaker assumptions of Bell and
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Hillmer (1988) or McElroy and Sutcliffe (2004) are satisfied. With dSðBÞ ¼

1 2 dS1B2 · · · 2 dSdSB
dS denoting the differencing polynomial of the ARIMA model for

St; we now prove that each transfer function of a finite AMB filter estimate N̂t of Nt

contains dSðe
2ið2p=12ÞlÞ as a factor. This result, in a slightly different formulation with a

less direct proof, is due to William Bell (private communication).

Let F denote the matrix that transforms ½Z1 · · · ZT �
0 to ½N̂1 · · · N̂T �

0: Formula

(10) of McElroy and Sutcliffe (2004) shows that F ¼ QD*
S ; where Q is a T £ T 2 ds

matrix and D*S is the T 2 dS £ T band matrix representing the action of dSðBÞ : for

1 # t # T 2 dS;

D*S ¼

2dSdS · · · 2dS1 1

. .
. . .

. . .
.

1

2dSdS · · · 2dS1 1

2
66664

3
77775

For 1 # t # T; it follows that the filter for N̂t of the form (1.1), whose coefficients can be

obtained from row t of F, has the decomposition

Xt21

j¼2ðT2tÞ

cTj;tB
j ¼ B2ðT2tÞqtðBÞdSðBÞ ðC:1Þ

with qtðzÞ ¼
PT212ds

j¼0 Qt;T2dS2jz
j: Hence its transfer function has the factorization

e ið2p=12ÞðT2tÞlqtðe
2ið2p=12ÞlÞdSðe

2ið2p=12ÞlÞ with dSðe
2ið2p=12ÞlÞ as a factor. Similarly, each

AMB signal extraction filter for St has a factorization analogous to (C.1) with dNðBÞ in

place of dSðBÞ; hence its transfer function includes dNðe
2ið2p=12ÞlÞ:

From (A.3), one sees that each zero of dSðe
2ið2p=12ÞlÞ of order m is a zero of order 2m for

the bi-infinite symmetric WK filter transfer function. Numerical results show that most

finite symmetric filter transfer functions do not share this property. However, it can be

proved for odd-length symmetric filter transfer functions that a zero at l0 ¼ 6 always has

order at least two.

Appendix D: Analytical Properties of Concurrent Phase and Phase Delay Functions

We continue with the assumptions and notation of Appendix C, where it was established

that an AMB concurrent seasonal adjustment or concurrent trend filter CðBÞ ¼
PT21

j¼0 cjB
j

has a decomposition

CðBÞ ¼ DðBÞdSðBÞ ðD:1Þ

with DðBÞ ¼
PT212ds

j¼0 djB
j; and we add the assumption that DðzÞ – 0 when jzj # 1: We

have verified this property for several airline model concurrent seasonal adjustment and

trend filters and for the concurrent seasonal adjustment filter of the 1-12-13 model of

Section 4 (all with dSðBÞ ¼ 1 þ Bþ · · · þ B11Þ: We also note that from Cð1Þ . 0 and

dSð1Þ . 0; we obtain Dð1Þ . 0: As a result of these properties, D(B) has a phase function

fDðlÞ (such that Dðe2ið2p=12ÞlÞ ¼ jDðe2ið2p=12ÞlÞje ið2p=12ÞfDðlÞÞ which is continuous on
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26 # l # 6; satisfies

fDð26Þ ¼ fDð0Þ ¼ fDð6Þ ¼ 0 ðD:2Þ

and, for 26 , l , 6; has a formula relating it to the gain function of D(B),

fDðlÞ ¼
1

12
lim 1#0

ðl21

26

þ

ð6
lþ1

8<
:

9=
; log Dðe2ið2p=12ÞvÞ

�� �� cot
2p

12

v2 l

2

� �
dv ðD:3Þ

(see Subsection 7.2. of Oppenheim and Schafer 1975).

Using fdS ðlÞ to denote a linear phase function of dSðBÞ (see Section 3.4 of Rabiner and

Gold, 1975 for general formulas), we can define a continuous phase function of C(B) via

fCðlÞ ¼ fDðlÞ þ fdSðlÞ; leading to tCðlÞ ¼ tDðlÞ þ tdS ðlÞ for the phase delay function

and to fCð6Þ ¼ fdS ð6Þ and tCð6Þ ¼ tdSð6Þ because of (D.2). Thus, the phase properties of

dSðBÞ effectively determine those of C(B) for the highest frequency components. Usually

dSðBÞ ¼ 1 þ Bþ · · · þ B11; with

dSðe
2ið2p=12ÞlÞ ¼ sinpl= sin

p

12
l

n o
e2ið2p=12Þ5:5l ðD:4Þ

for l – 0; leading to fdSðlÞ ¼ 25:5l: This yields the phase delay function tCðlÞ ¼

tDðlÞ þ 5:5; which is graphed in Figure 11 (bottom) along with the squared gains of dSðBÞ

(top) and D(B) (middle) for the concurrent seasonal adjustment and trend filters of the

airline model with ðu;QÞ ¼ ð0:8; 0:4Þ: For the graphs, we calculated fDðlÞ using the

arctangent formula of Section 2 and then tDðlÞ from fDðlÞ:

The simple filter dSðBÞ ¼ 1 þ Bþ · · · þ B11 strongly suppresses higher frequency

components but introduces a large phase delay. Through D(B), the filter C(B) compensates

for these features of dSðBÞ: Since DðBÞ ¼ dSðBÞ
21CðBÞ; the formula (D.3) reveals that the

values of fCðlÞ and tCðlÞ at each frequency l – 0;^6 are influenced by the values of the

gain functions of dSðBÞ and C(B) at all frequencies, not just by their values at frequencies

close to l.

If, instead of using the components of the decomposition (D.1) to define the phase and

phase delay of C(B), they are defined directly by the arctangent formula of Section 2, a

phase and a phase delay are obtained that have discontinuities at the zeros of dSðBÞ; in

particular, at l ¼ 1 when dSðBÞ ¼ 1 þ Bþ · · · þ B11: This gives rise to discontinuous

phase delay or time shift plots like those of Chapter 8 of Wildi (2004) that are difficult to

interpret for 1 , l , 2; even though, as discussed in Subsection A.5, the continuous

phase delay is unambiguously interpretable there.

We shall refer to D(B) as the minimum delay factor of the concurrent filter, because our

assumption concerning the zeros of D(z) is equivalent to the assumption that D(B) is a

minimum delay (or minimum phase lag) filter; see Subsection 7.2 of Oppenheim and

Schafer (1975) for several characterizations of such filters and for their formula (7.21)

which shows that the continuous phase function fDðlÞ carries enough information that it

determines jDðe2ið2p=12ÞvÞj and therefore Dðe2ið2p=12ÞvÞ and D(B), up to a positive,

constant multiplier. Oppenheim and Schafer also explain that if D(z) has a zero in jzj , 1;

then D(B) can be written as the product of a minimum delay filter and a filter whose gain

function is constant with value one (an all pass filter). The latter has a phase delay function
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that is positive at all (nonzero) frequencies. Thus such a D(B) has greater phase delay than

its minimum phase factor.

The results cited show that gain and phase properties of concurrent filters are strongly

interlinked. Thus it can be impossible to optimize both for interpretability. Section 5.4 and
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Fig. 11. Diagnostics from the decomposition (D.1) for the length 109 SEATS concurrent seasonal adjustment and

trend filters for ðu;QÞ ¼ ð0:8; 0:4Þ: squared gains of dSðBÞ ¼
P11

j¼0B
j (top) and ofminimumdelay factors (middle);

continuous phase delays of concurrent filters obtained as the sum of the component phase delays (bottom)
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Chapter 7 of Wildi (2004) describe and apply a concurrent filter design criterion based on

minimizing mean square revision error subject to an inequality constraint associated with

the phase delay.

7. References

Akaike, H. (1980). Seasonal Adjustment by a Bayesian Modeling. Journal of Time Series

Analysis,1, 1–13.

Akaike, H. and Ishiguro, M. (1980). BAYSEA: A Bayesian Seasonal Adjustment

Program. Computer Science Monographs No. 13. Tokyo: The Institute of Statistical

Mathematics.

Bell, W.R. (1984). Signal Extraction for Nonstationary Time Series. Annals of Statistics,

12, 646–664.

Bell, W.R. (1995). Seasonal Adjustment to Facilitate Forecasting: Arguments for Not

Revising Seasonally Adjusted Data. Proceedings of the American Statistical

Association, Business and Economic Statistics Section, 268–273.

Bell, W.R. and Hillmer, S.C. (1988). A Matrix Approach to Likelihood Evaluation and

Signal Extraction for ARIMA Component Time Series Models. U.S. Bureau of the

Census, Statistical Research Division Report Number: Census/SRD/RR-88/22, at

www.census.gov/srd/papers/pdf/rr88-22.pdf

Bell, W.R. and Martin, D.E.K. (2004). Computation of Asymmetric Signal Extraction

Filters and Mean Squared Error for ARIMA Component Models. Journal of Time Series

Analysis, 25, 603–625.

Bell, W.R. and Monsell, B.C. (1992). X-11 Symmetric Linear Filters and Their Transfer

Functions. Statistical Research Division Research Report 92/15, U.S. Bureau of the

Census, Washington, D.C.

Bloomfield, P. (2000). Fourier Analysis of Time Series: An Introduction. 2nd Ed. New

York: Wiley.

Box, G.E.P. and Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control

(revised edition), San Francisco: Holden Day.

Cholette, P.-A. (1979). Spectral Diagnosis and Marginal Improvements of the X-11

Seasonal Adjustment Method for Short Series. Technical Report of the Seasonal

Adjustment and Time Series Staff. Ottawa: Statistics Canada.

Dagum, E.B. (1980). The X-11-ARIMA Seasonal Adjustment Method. Catalogue No. 12-

564E. Ottawa: Statistics Canada.

Dagum, E.B. (1983). Spectral Properties of the Concurrent and Forecasting Seasonal

Filters of the X-11-ARIMA Method. Canadian Journal of Statistics, 11, 73–90.

Dagum, E.B., Chhab, N., and Chiu, K. (1996). Derivation of Properties of the X11ARIMA

and Census X11 Linear Filters. Journal of Official Statistics, 12, 329–347.

Dagum, E.B. and Luati, A. (2002). Smoothing Seasonally Adjusted Time Series.

Proceedings of the American Statistical Association, Business and Economic Statistics

Section [CD-ROM]. Alexandria, VA.

Findley, D.F. (2000). Discussion of Session 14: Trend Estimation. In Proceedings of the

International Conference on Establishment Surveys II, 809–811, Alexandria: American

Statistical Association.

Journal of Official Statistics32



Findley, D.F., Martin, D.E.K., and Wills, K.C. (2002). Generalizations of the Box-Jenkins

Airline Model. Proceedings of the American Statistical Association, Business and

Economic Statistics Section [CD-ROM], Alexandria, VA: American Statistical

Association.

Findley, D.F. and Martin, D.E.K. (2003). Frequency Domain Analyses of SEATS and X-

11/12-ARIMA Seasonal Adjustment Filters for Short and Moderate-length Time Series.

Research Report S2003-02, Statistical Research Division, U.S. Census Bureau.

Findley, D.F., Monsell, B.C., Bell, W.R., Otto, M.C., and Chen, B.-C. (1998). New

Capabilities and Methods of the X-12-ARIMA Seasonal-adjustment Program. Journal

of Business and Economic Statistics, 16, 127–177.

Fischer, B. and Planas, C. (2000). Large Scale Fitting of Regression Models with ARIMA

Errors. Journal of Official Statistics, 16, 173–184.
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