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Generalized Linear Modeling of Sample
Survey Data

Lennart Nordberg'

Abstract: The theme of this paper is regres-
sion analysis — extended to Generalized
linear models (GLMs) - of sample survey
data, with the data obtained by a more or
less complex survey design and possibly
affected by nonresponse.

The suggested approach is neither purely
model based nor purely design based. In fact
we consider, simultaneously, three sources
of random variation, specified by a super-
population model (a GLM), the sampling
design and a response model.

Ordinary (ML-based) inference - being
based on the assumption of independent
observations - is not automatically valid in
this situation. It is, however, shown that

1. Introduction

The theme of this paper is regression analy-
sis of sample survey data, the data being
obtained by a more or less complex survey
design and possibly affected by nonresponse.
The word regression should be interpreted
in a fairly wide sense here. We will consider
generalized linear models (GLMs), c.f.
McCullagh and Nelder (1983), which
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ordinary inference does apply under certain
conditions. It is demonstrated — and illus-
trated by simulations — how these con-
ditions can be checked and met by incor-
porating variables associated with the
design and the response pattern into the
model.

Furthermore, it is demonstrated by simu-
lation results that ordinary, unweighted
GLM inference — when valid - can be con-
siderably more efficient than inference
based on Horvitz-Thompson weighting.
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models; nonresponse.

include, e.g., linear, logistic, probit, and
Poisson regressions.

Smith (1981) — who considers linear
regression for complex surveys - distin-
guishes between descriptive and analytic
inference, and we will use this terminology.

In descriptive inference, the objective is to
estimate a parameter, B, say, which is a
specified function of the elements of a given
finite population. In this approach one pays
attention only to random variation which
emanates from the sampling and the non-
response mechanism. If all the elements of
the whole population were to respond there
would be no uncertainty. A descriptive
approach to generalized linear modeling of
survey data is found in Binder (1983).
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Our approach in this paper will be
analytic. Then the interest focuses on the
(unknown) relation between some variables
y and x. This relation is assumed to be of
interest not only as a description of the
structure in the particular population at the
time of the survey, but also to have a more
general interpretation. The relation between
y and x is assumed to be expressable by a
family of statistical distributions, a super-
population model, indexed by a parameter
B. This model parameter — rather than the
fixed population quantity B - is in the focus
of interest in the analytic approach.

The present paper treats three main
topics. The first one concerns conditions
under which ordinary unweighted GLM
inference can apply to data obtained by
complex survey designs. It is shown in Sec-
tion 3 that the ordinary inference — which is
not automatically valid in this situation -
does apply under certain conditions, and
various ways to check these are suggested.

The following is a rough characterization
of these conditions. If the design — expressed
by first and second order inclusion prob-
abilities — does not contain any “‘relevant”
information on y which is not already
accounted for by x then the ordinary GLM
inference is valid. The conditions are
expressed in terms of correlations between
inclusion probabilities (regarded as random
variables) and model residuals.

The second topic is a comparison of
ordinary unweighted GLM inference to
inference based on Horvitz-Thompson
weighting - the latter is summarized in
Section 4. The unweighted GLM inference -
when valid - is more efficient than Horvitz-
Thompson based inference. The magnitude
of this efficiency gain can be substantial as
demonstrated by the simulation study in
Section 4.

If unweighted GLM inference does not
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apply, then Horvitz-Thompson weighting
can be recommended in some cases. How-
ever, an alternative and sometimes superior
approach is the following one. Since the
design now contains some residual infor-
mation on y, not accounted for by x, it may
be possible to use this information to
improve the model rather than just to
account for it by weighting. Suppose there is
a variable z, say, which is highly correlated
with the inclusion probabilities. Bring z into
the model building process if it makes sense
from a subject matter point of view. This
should result in an improved model, and the
validity conditions for unweighted inference
may now be met by the new model.

Although our emphasis is on model build-
ing rather than estimation of a fixed popu-
lation quantity, our approach is not purely
model based. In fact we consider three
sources of random variation, specified by a
superpopulation model, the sampling
design, and a response model. This is the
third main topic of the paper. We will
assume that data are generated by a three-
step process as follows.

i. A population of N elements is
generated by a specified superpopu-
lation model.

ii. From the population generated in (i)
a sample of prescribed size n, n < N,
is drawn according to a specific
sampling design.

iii. An element of the sample generated in
(ii) may or may not respond accord-
ing to a specific response model.

A more detailed and technical specifi-
cation of the above steps (i) through (iii)
follows. In particular we will concentrate on
GLM superpopulation models. To avoid
burdening the text by too many technical
details the introduction of nonresponse is
postponed until Section 5. In Section 2,
steps (i) and (ii) are specified and this frame-
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work is used in Sections 3 and 4. Step (iii) is
specified in Section 5 and the previous
results are then generalized to the full three-
step specification.

Related approaches - although restricted
to linear regression and without step (iii) -
are found in Du Mouchel and Duncan
(1983), Nathan and Holt (1980), and Ten
Cate (1986). Treatment of nonresponse
within the general framework of (i) through
(iii) is found in Rubin (1976, 1987), Little
(1982) and Little and Rubin (1987). Other
relevant references are Fay (1986) and Scott
(1987).

The approach advocated in the present
paper contains as special cases classical
regression — where data are generated as
independent observations from a family of
distributions — as well as the descriptive
approach to regression, c.f. Binder (1983),
which essentially builds on sample survey
theory. We may then have a way to bridge
the gap between the two approaches.

2. Specification of Superpopulation and
Sampling Mechanisms

Let {Y;}/_, be independent random vari-
ables, taking values in y = R, following a
generalized linear model, c.f. McCullagh
and Nelder (1983). The probability density
g, for Y, takes the form

gi(y’ B, (b)
0, — b(,
= ¢exp |:y'—(l) + ¢(y, ¢):|,
dw;
yev, @1

where B = (B, . . . B,,)’ and ¢ are unknown
parameters while 6,, i =1, 2, ..., N,
depends on B through a relation of the type

6 = f< z ﬁkxk,).

(2.2)
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The ws are known scale factors and the xs
are known covariates playing the role of
explanatory variables. (We could also
regard x as random and then make the infer-
ence conditional on x.) Furthermore the
functions b(+), ¢;(+) and f(+) are known and
sufficiently regular. Notice that w may be
contained in ¢; while b and f are free of w.
Let p; = E(Y;) and o? = Var (Y;). The
following relations are straightforward
consequences of (2.1)—(2.2), c.f. McCullagh
and Nelder (1983, pp. 20-21).

wPB) = 0,
oi(B) = b'(6)ow,.

Let the Y values generated through (2.1)
and (2.2) make up a population Q, =
{izi =1,2,..., N}. Now, a sample T, of
prescribed size n, n < N, is drawn from the
elements of Q,. Let fori = 1,2,..., N

lifieX,
S =
0 otherwise.

2.3)
(2.4)

2.5)

We assume that all the relevant infor-
mation about the sampling design is con-
tained in a set of, possibly multidimen-
sional, random variables 1z, i =1,
2, ..., N - the design variables. The first
and second order inclusion probabilities are
defined as follows.

o= P(S, =1z i=1,2.. . N
2.6)

n, = PG, =1 8§ = ljz)

ij,=1,2,...,N. 2.7)

Notice that the ms, being functions of z,
must here be regarded as random variables.
For notational convenience we introduce
the following vectors fori = 1,2, ..., N

t = (Y, x,z)

t = (tl$t2a""tN),
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where
> xmi ) .

Since z holds all relevant information about
the design, we have the following relations
which will be useful later.

x; = (X5 - - - (2.8)

E@l) = E@3lz) = mi(2)
i=1,2...,N. (2.9)

EG5|) = E(5l2) = m,(2)
ij=1,2...,N (2.10)

3. Unweighted Estimation

We will now derive sufficient conditions
under which ordinary unweighted GLM
inference is valid within the framework of
Section 2. The point of departure will be the
following equation

)y ( ¢:'(B))f P8, = 0,

1

ji=01,...,m, 3.1)

which can be identified as the likelihood
equation for B if sampling were done by
simple random sampling with such a small
sampling fraction that the sampled ys could
be regarded as independent.

In the special case of independent obser-
vations, although in general non-i.i.d. due
to the GLM form, it can be shown, under
various regularity conditions (see e.g.,
Habermann (1977), Nordberg (1980), and
Fahrmeir and Kaufmann (1985)), that the
likelihood equation has — with probability
tending to one as the sample size tends to
infinity — one root being arbitrarily close to
the true B. (Multiple roots may exist but
only one is arbitrarily close.) This root is an
asymptotically efficient and asymptotically
normally distributed estimator of .
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However, it is obvious that this theory
does not apply directly to the situation in
Section 2 where data cannot, even as an
approximation, a priori be regarded as
independent observations. Nevertheless, as
seen by Proposition 1, Equation (3.1) does,
under certain general conditions, have a
consistent and asymptotically normally dis-
tributed root.

Before proceeding we need some further
notation. It should be emphasized that, in
the sequel, when calculating probabilities,
expectations, etc., we consider the total ran-
dom variation induced by the GLM and the
design.

SetS,B,Y) = (SOB,Y),...
where, c.f. (3.1),

S (B, Y)

.S (B, Y)Y

l N
-1 ;( u,(B)>f( B
(3.2)
Let
D,(B,Y)
aSy) )
= '—{a—Bk, j,k=0,1,...,m}
3.3)
and
4,8) = ED.(B. Y)). (34

We are now ready to formulate the follow-
ing result on consistency and asymptotic
normality.

Proposition 1: Let assumptions be as in
Section 2, let B, be the true parameter point
and let V,(B,) be the variance-covariance
matrix of \/nS, (B, Y).

Suppose that

(Sa(Bo> Y) — E(S,(By, Y)) = 0

asn — o0. (3.5)



Nordberg: Generalized Linear Modeling of Sample Survey Data

¥, R (Bo) (S, (Bo, Y) — E(S,(Bo, Y))

- N@O,I) asn — oo. (3.6)

lim \JnE(S, By, Y)) = 0. (3.7)

If (3.5)~(3.7) as well as some additional
regularity conditions (to be discussed later)
are fulfilled then the following conclusions
hold.

Equation (3.1) has - with probability
tending to one as n — oo — exactly one root
B™ such that

|B(") — Byl < 6 for every 6 > 0. (3.8)
Furthermore,
VP (Bo) A, (Bo) B — Bo)
N N(O’ [) as n — o00. (39)

Remark: Conditions (3.5) through (3.7) are
vital for (3.8) and (3.9) while the additional
regularity conditions mentioned in the
proposition are of a more technical nature
such as the invertibility of certain matrices,
etc. A set of such regularity conditions is
specified in the Appendix where a more pre-
cise version of Proposition 1 is proved.

Conditions (3.5) and (3.6) state that
S, (By, Y) obeys the law of large numbers
and the central limit theorem. Sufficient
conditions for (3.5) and (3.6) to hold will
differ in appearance depending - among
other things - on the nature of the sampling
mechanism. There is a large literature on
this subject which we will not try to cover
here. We simply assume that (3.5) and (3.6)
are satisfied. We will, however, take a closer
look at (3.7) and also at V,(B,). If V,(B,)
and 4,(B,) coincide then (3.9) takes the
“classical” form, i.e., \/nAY*(B)(B” — By)
is asymptotically N(0, 7). Ordinary GLM
inference can then be applied. We will derive
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conditions which are sufficient for (3.7) and
for V,(By) and A,(B,) to coincide. The
essence of these conditions is that the mean
and variance structure of the model should
not be affected by the design variable.

Proposition 2: Let z be the design variable
and consider the following conditions.

E(Y, — w(Bo)l2) = E(Y; — w(By)) = 0,
i=1,2...,N (3.10)
E((Y; — w(Bo))’l) = E(Y; — w(By)),
i=1,2...,N (3.11)
E((Y; = mBo)(Y; — wi(Bo))lz)

= E(Y, — m(Bo))(Y; — w(Bo)

=0, i#] (3.12)

a. If (3.10) is fulfilled, then (3.7) holds.
b. If (3.10) through (3.12) are fulfilled, then
V.(By) = A,(B,) where entry (k, [) is

l E <’Z,=V: (0:'('303{“:".'30)) xkixﬁni>.

(3.13)

S

c. AXP)

1 X Gi(B)f/(xiB) ’
= ; g (T) X %;:0:(3.14)

is an asymptotically unbiased estimator of

A¥(B,) if B and ¢ are consistent estimators
of B and ¢.

Remark 1: Notice that (3.14) is the variance
estimator that one would use if ordinary
GLM inference is applied to the sample.

Remark 2: A consistent ¢ estimator is
required in (3.14). For many widely used



228

models, e.g., logit, probit, and log-linear
Poisson, this problem can be ignored since
¢ = 1. For normal regression ¢ equals the
residual variance. Although there might be
some GLMs for which ¢ estimation must be
treated with care we will not discuss this
problem any further in the present paper.

Proof:

By applying E(-) = EE(:|t) to (3.2) and
(2.9) it is seen that (3.7) is equivalent to

i (2 (™)

X f/(xiBO)xjini> =0,

j=0,1,...,m

(3.15)

Since © is a function of z, (3.10) implies
(3.15) and hence (3.7).

By (3.2)
1 Y, — w(Bo)
n {COV <Z': < dw, )

xfmmm@,z<£%§ﬁ@>

J w;
.

(3.16)

Entry (k, 1) of V,(B,) can thus be expressed
as follows

VB = —< <Z Z(
% <Y, - pj(ﬁO))
d)wj

X f/(xiBO)f/(ijO)xkixlj8i8j>

V,,(Bo) =

X f/(xjﬁo)xl]81>; k, 1 = 0, P

“’l(BO))
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Y, — wi(Bo)
e (®)
x f’(xiﬁo>xk,a,> E <Z (%@)

x f(x; Bo )xlj8j>> .

By (2.9) and (2.10) relation (3.17) takes the
form

1 Y, — w(Bo))
Vn(kl)(ﬁo) — ZE <Z( i ¢2]':}§B ))

X (f/(xiBO))zxkixlini>

i#j Ww;

Y, — Hj(Bo))
dw;

x f(x; Bo)f/(xjﬁO)xkiijnij>

1 Y, — wi(Bo)
T n (E <Zz: ( ow; )
X f/(xiBO)xkini>

Y, — uj(Bo)

< E <; ( dw; )

x f/(x;Bo )xljnj>> .

By differentiating (3.2) and noting (3.3),
(3.4), (2.3), (2.4) and (2.9) it is seen that

(3.17)

X

(3.18)

_entry (k, ) of 4,(B,) is

AP = — % E (z ( Y, —q)ui(BO))

i Ww;
X f”(xiBO)xkixlini>
1 o;(Bo)f " (x:Bo) ’

(3.19)
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Now, (3.10) through (3.12) imply (3.13)
since the last term of (3.19) equals the first
one of (3.18) while all other terms of (3.18)
and (3.19) disappear. The claim in (3.14)
holds if o; and f” are sufficiently regular
functions.

Conditions (3.10) through (3.12) can be
checked by various types of residual plots.
Prevalent methods for residual analysis with
special reference to GLMs are reviewed in
McCullagh and Nelder (1983). There are
also other ways to check the mean and vari-
ance structure here. It follows from the
proof that (3.10) can be replaced by the
slightly weaker (3.15) as consistency
“criterion. Notice that (3.15) can be identified
as the normal equations for the parameters
corresponding to =, mx,, . . ., nx,, if these
variables were included in the explanatory
vector. We are then led to the following
procedure, previously suggested in a special
case by Du Mouchel and Duncan (1983).

Extend the explanatory vector x; by
bringing in «; and its interactions T,x;;,
Jj=1,...,m, together with x; as addi-
tional variables. (x,; = 1 for convenience).
Then test the model specified by (2.1) and
(2.2) against this extended model using
regular GLM technique. If the extended
model does not significantly improve the fit,
then this suggests that (3.15) is reasonably
satisfied. On the other hand, if the extended
model significantly improves the fit then this
suggests that there is useful information in
the design which may be used to improve
model (2.1) and (2.2). Although one would
usually not want to keep = itself as an
explanatory variable there may be other
variables associated with z, which are highly
‘correlated with n, and which make more
sense — from a subject matter point of view —
as explanatory variables. By bringing such
variables into the model building process it
is possible to remove design bias and model
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bias simultaneously. This will be illustrated
by the simulation study in Section 4.

The assumed variance expression c2(-)
can be checked by estimating the first term
of (3.18) and compare it to (3.14) by check-
ing the following relation. Notice that ¢ can
be ignored here.

1

I ) (ZI_‘J‘}_@) (CACH ) EAEAE
ni Wi

~ Z’l <%ﬁ)> (f/(xiﬁ))zxkixlisi-

1

S |-

(3.20)

Let ¥, be a suitable design-based variance
estimate for \/ﬁ S.. A rough way of checking
the variance condition (3.13) is to compare
V. with A4,.

We end this section by comparing (3.10)
through (3.12) to the more general ignor-
ability conditions discussed by Rubin (1976,
1987), Little (1982), and Little and Rubin
(1987). The essence of ignorability is that the
sampling distribution of 8, conditioned on t,
must be independent of ys which are
unobserved due to sampling, and its pa-
rameters must not depend on .

One advantage of conditions (3.10)
through (3.12) compared to ignorability is
that they involve means and variances only
instead of full distributions.

4. Unweighted Versus Weighted
Estimation

4.1. General remarks

As shown in Section 3 the unweighted B is,
under certain conditions, consistent, and
ordinary GLM methods do apply. How-
ever, these conditions are not always ful-
filled and B may then be inconsistent.

One alternative to B is the following
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Horvitz-Thompson weighted estimator.
Consider the function

N1 Y.0. — b(0.
FB, §) = ;;((——' '¢w.( ')>

+ (Y, ¢)> 3, 4.1)
where 0, depends on B through (2.2).

F can be interpreted as a Horvitz—
Thompson weighted estimator of the log-
likelihood for the complete data (Y,, Y,,
..., Yy). By solving 8F/6B = 0 for B we
get the Horvitz-Thompson weighted B esti-
mator B®.

The estimator P is design consistent under
general conditions. However, as demon-
strated by the simulations ahead, f§ can be
misleading in spite of design consistency if
the superpopulation model is not properly
specified.

It can be shown that p — when valid - is
asymptotically more efficient than . The
efficiency gain can be substantial as shown
by the simulation study ahead. This study
will also illuminate the following point. If §
is not consistent then it is sometimes pos-
sible to find one or more new variables,
highly correlated with the inclusion prob-
abilities ©, to incorporate into the model.
This may remove design bias and model bias
simultaneously and be more efficient than
weighting which removes design bias only.

4.2. A simulation study

4.2.1. Background to the choice of
superpopulation model

The choice of the superpopulation model
used in the simulations was inspired by a
study of structural changes among Swedish
milk producing farms, c.f. Nordberg (1985).
The aim of this study was to determine
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factors which affect the tendency among
farmers to give up milk production. We
summarize only those parts of the study
which are relevant in the present con-
text.

Each farm which had at least one and at
most nine milk cows in 1983 — 12 195 farms
- was checked to see whether it still had milk
cows in 1984. In the case it did have cows,
the variable y was set to zero, otherwise
y = 1. A logit analysis was then performed
with y as the dependent variable. This analy-
sis was based on the full population so there
were no sampling errors. The following four
explanatory factors turned out to be the
most “‘relevant.”

- The size depicted by (S). S = 0 if the
number of cows was between 4 and 9 in
1983 while S = 1 otherwise.

— The type (T') of the farm where T = 0
if milk production is the major produc-
tion branch according to the Swedish
typology system while 7' = 1 other-
wise.

- Age (A) of the farmer - classified as
[-49], [50-59], [60-] years and rep-
resented by A4, and 4, where 4, = 1 if
age is 50-59 and zero otherwise while
A; = 1if age is 60 and over and zero
otherwise.

- The region (R) being either the most
productive farming area in the south
and the middle of the country or the rest
of the south and the middle or the
north. R is represented by R, and R;
where R, = 1 if the farm is in the
second region and zero otherwise while
R, = 1 in the third region, zero other-
wise.

The following model P(Y = 1) =
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exp (H)/(1 + exp (H)), where

H = — 25+ 1.65 — 0.34, + 0.84,

— 0.84; x §$+ 1.0T — 0.3R, x S

— 0.5R, x S 4.2)

was found to fit data well, c.f. Nordberg
(1985).

Table 1 presents P(Y = 1) according to
(4.2) as well as the number of observations,
N, in the population for the different com-
binations of the explanatory factors.

4.2.2. Design of the simulation
experiment

i. Superpopulation mechanism: A popu-
lation of 12 195 elements, divided into
36 groups was created. Each group
corresponds to one of the 3 x 3 x
2 x 2cells of Table 1. The number of
elements in a particular group equals
the value of N in the corresponding
cell of Table 1. In each group (cell) N,
independent 0-1 random variables
Y,, Y,,..., Y, (N, being the N
value of the cell) were generated by
the model (4.2).

ii. Sampling mechanism: The population
generated in (i) was then grouped into
four strata corresponding to the com-
binations of (S, 7), (0, 0), (0, 1), (1, 0)
and (1, 1), i.e., the main columns of
Table 1. In each stratum a sample was
drawn by simple random sampling
without replacement. The number of
observations drawn in each stratum
was 840, 521, 920, and 720 respect-
ively. These correspond to inclusion
probabilities 10, 100, 60, and 42%
respectively. Notice that the design
vector (S, T') here is a function of the
true explanatory vector. The reason is
that we want to demonstrate the
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effects of incorporating versus delet-
ing from the model such design vari-
ables which carry important infor-
mation on Y.

iii. Parameter estimation: A logit model
was fitted to the data generated
through (i) and (ii). Several choices of
explanatory vector were considered
and are discussed later. The unweighted
estimator P and its classical variance-
covariance matrix 1/n A~'(B) were
evaluated. In particular the vector of
estimated standard errors  &(B)
(square roots of the diagonal elements
of 1/n A~") was calculated. Finally
the Horvitz-Thompson weighted B
and Bpop, the latter being the MLE
based on the full population, were
evaluated.

iv. Replications: The above steps (i)
through (iii)) were repeated 500
times. The means - over the 500
replications — of P, B, ﬁpop, and &(B),
denoted MEAN (), MEAN (), etc.
were calculated. In addition, the
standard deviations (over the 500
replications) denoted STD (B), etc.
were calculated.

4.2.3. Results

Suppose that the chosen explanatory
vector includes Region and Age only. The
results of the simulations in this case are
presented in Table 2. A comparison of the B
estimators of Table 2 to the true B (see (4.2))
shows that all three estimators, including
Bpop, are biased. The main reason, of course,
is that Size and Type, which both have very
strong effects on Y, are not included in the
model.

The unweighted B has - in addition to this
model bias — also a strong design bias, as
seen by comparing MEAN (B) to MEAN
(Bpop). Notice that P lacks design bias. It
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might then be argued that P is preferable to
B in the present situation. However, it is
possible to remove the design bias and much
of the model bias simultaneously as the
following argument shows.

The design bias of B indicates that =
carries relevant information about y which
has not been accounted for by R and 4. The
stratification discussed earlier - Section
4.2.2. (ii) - implies that © = y, + v, S +
Y,T + v;ST for some vy,, v,, Y5, ¥3. Now if
S and T are included in the model building
process we can expect the model bias (due to
the missing variables S and T) and the
design bias (due to varying m) to disappear
simultaneously. Tables 3 and 4 support this
conclusion. Table 4 presents the case where
the explanatory vector contains all main
effects of R, 4, S, and T as well as all first
order interactions involving S and 7. In
Table 3 the explanatory vector contains
only the most significant variables, i.e., S, T,
As;and S x A5.

It is also seen from Tables 3 and 4 that
MEAN (6) ~ STD (B) which means that
the classical variance estimator is approxi-
mately unbiased. B is considerably more effi-
cient than P.

5. Nonresponse

Next we specify the response mechanism.
To each element in the sample we assign
a response probability P(u;, o), where
w,i=12,...,N,isa set of — possibly
multidimensional — explanatory variables
and o is a parameter. As a response model
P(u;, o) we may use, e.g., a logistic model
or a response homogenity groups model
to mention some possibilities, but we
will not make any specific assumptions
about the form of P(u;, o) in this paper,
except that it can be expressed by a para-
metric model.
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Letfori=1,2,..., N

{1 if 8, = 1 and element i responds
r. =

0 otherwise.

5.1
Extend t; (c.f. (2.8)) by the explanatory
vector u; of the response model. Hence
t, = (Y, x;,, z, u) and t = (Y, X, z, u).
Although it will be reasonable in many
applications to assume that u can be
expressed by a known function of (Y, x, z)
we will also cover cases where u cannot —
without random error -~ be expressed
through (Y, x, z). We will assume, however,
that u holds all the relevant information
about the response pattern. We then have

P(r,= 195 =1,¢
=1—-P@r =09 =11t
= P(u;, a). (5.2
Set
Py, ) = P(r; = 1,
=198 =18 = 1,t). (5.3)

In many applications one would assume
conditionally independent responses, i.e.,
P; = P,P. However, this will not be
necessary in order to reach our conclusions.

It is now straightforward to generalize
(2.9) and (2.10) as follows.

E(ri|) = m,(2) - P(u;, o),
E(rir;|t) = m;(z) - Py(u, o),

(5.4)
i #j. (5.5

The results of Sections 3 and 4 were derived
under the two-step specification in Section 2
of the superpopulation mechanism and the
sampling design. Now, with §; replaced by
r;, m; by M, P, m; by m,;P; and z by (z, u) it is
straightforward to show that the same
results hold also under the full three-step
specification which includes the response
mechanism as introduced earlier.
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Appendix

Let assumptions and notation be as in Sections 1 and 2. Notice that E(+) and P(*) below v
are supposed to take account of all the random variation induced by the superpopulation
and the design.

Theorem: Let B, be the true parameter point and consider the following conditions.
i.S,(B,, Y) = Oasn— oo.

ii. ThereisaA > Oandann, > 0such that the smallest eigenvalue of 4,(B,) = A > 0
forn > ny.

iii. |D,(By, Y) — A4,(Bo)l £, O (component wise convergence) as n — 00.

iv. For some 8, > 0 there is for every ¢ > 0 a C, < o and an n, < oo such that

( 25U
P n
BB,

v. /¥, P (Bo)S,(By, Y) = N(0, ) as n — 0.

vi. All components of ¥,(B,) are uniformly bounded for n > n,.

gCgforeveryIB—Bolsﬁ()); l—¢ n=2n jkiI=01...,m

vii. There is a A’ > 0 and an n, > 0 such that the smallest eigenvalue of
V.Bo) = A" > 0,n > ny.

a. If conditions (i) through (iv) are fulfilled then, with probability tending to one as
the sample size n tends to infinity, equation (3.1) has exactly one root B™ such that
B —.By| < & for every & > 0.

b. If conditions (i) through (vii) are fulfilled then
SV, (Bo) A, (Bo) B — By) > N(O, ) as n — oo.

This theorem and its proof are quite similar to Theorem 1 in Nordberg (1980). Since the
latter does not apply directly to the situation treated in this paper, various modifications
have been made to cover the present situation. The main ingredient of the proofis a version
of the implicit function theorem. See also Foutz (1977) for similar ideas. Foutz treats a
broad class of models but confines himself to i.i.d. observations. We will use the following
version of the implicit function theorem (and also prove it for completeness).

Lemma: Let g,(u) = V@ .. thy),...8"w ... u,),n =12 ... bea sequence of
three times differentiable functions from R™ to R™.

dal)
Set H,(u) = {g,, (u)’ J, k= 1,...m} n=12...
Ouy,

Let a € R” and suppose that there isa A > 0 and an

n, > 0 such that |H,(a)x| > Alx| for any x € R", n > n,. (A1)
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Furthermore, suppose that for some 3, > 0 and some G < o0
0’gy (u)
Ou, Ou,

< G < o forevery u e d(a, 3,), n > n,

(A2)
where d(a, 8,) = {wlu — a| < §,}.

Then thereisa 8, > 0 such that the restriction of g,(u), n > n,, to d(a, 8,) is one to one.
Furthermore, if 0 < 8 < §, and z € d(g,(a), A3/2) then there is exactly one u € d(a, §)
such that g,(u) = z, n > n,.

Proof of lemma: Let w’ and u” € d(a, §,) and suppose that u’ # u”. By (A2) we have for
n > n

g,) — g,@W") = H(@@W — ) + (H,u") - H@)w —uv)+R (A3)
where for some C < o

RI<Clw’ — w')%

But due to (A2) the following relation holds for some C’ < oo

I(H,(u") — H,(a))(w — u’)| < C'w — u’|ju” — a (A4)
and thus by (Al)
g, () — g,(u)| = A — u|-C’'lu" — u’|ju” — a] —Clu" — v’ (A5)
Set 8, = min (3,, A/2C" + 4C)). (A6)
Then the following relation holds as soon as u” and u” € d(a, §,):
AC’ 26C A
s _ A > ’ _ ” _ _ — s . ” A A
lg,(u) — g,(u)| > [u" — u (7» 3C +4C 20 1 4C> 5w — (A7)

We have thus proved thatifu” # u”theng,(u’) # g,(u”), which means that ifz € d(g,(a),
13/2) where 0 < 8 < 9, then there is at most one u € d(a, ) such that g,(u) = z.

We will now prove that if z € d(g,(a), 15/2) where 0 < & < §, then there is exactly one.
u € d(a, 8) such that g,(u) = z. Consider the function h,(u) = |g,(u) — z|? for u € d(a, 5).
Since h,(u) is defined on a closed set it has a minimum at @, say, and ii satisfies the equation

H,(W)(g,(@) —z) = 0.
Thus

H,(a)(g,(@) — 2) = — (H,@) — H,(a))(g,(@) — 2).
By (A4)

I(H, (@) — H,(2))(g,@) — z)| < C'dg,(@) — 2

AC’ A
where, by A(6), C’8 < 5

— <
2C" + 4C
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Therefore

Hn (a) (gn (l-l) - Z)

<>b i)
2g,,(u — 1z|.

But due to (Al)

|H,(a)(g,(@) — 2z)| > Alg,(w) — z|.
We have then arrived at a contradiction unless g,(@1) = z. This completes the proof of

the existence and uniqueness of a u € d(a, d) such that g,(u) € d(g,(a), Ad/2).

Proof of theorem: Let — S,(B, Y) correspond to g,(u), p and B, correspond to u and a
respectively.

Suppose that the smallest eigenvalue of D,(B,, Y) = A" > 0, n > n, (AB)
92 SY)

l " _| < G for every B e dBy, 8,),n > ng, j, k, 1 =0,...m (A9)
0B, IB,

O € d(—S,(By, Y), 1'3/2) (A10)

where 9,, 6 and n, are defined in the proof of the lemma.

If (A8) through (A10) hold then, due to the lemma, there is exactly one root
B™ e d(B,, 8) of equation (3.1). Now (ii) and (iii) imply that (A8) is true with probability
tending to one as n —» oo and the same conclusion about (A9) follows from (iv). Finally,
the probability that (A10) is true converges to one as » — oo by condition (i). Thus (A8)
through (A 10) hold true simultaneously with probability tending to one asn — oo and this
implies conclusion (a) of the theorem.

Consider $ appearing in (a). It is seen from (A7) that for some C’ < oo

lim PR — Bl < C'IS,(Bo, YI) = 1
and this relation combined with conditions (v) and (vi) yields =1 — ¢ for every € > 0.

lim P(\/n|B” — B < C7 < o0) (A11)
By conclusion (a) of the theorem and (Al1) we have

JnIB? — BP 5 0asn » oo (A12)
Taylor-expansion of S,(B, Y) around B, (note that S,(B™, Y) = 0) yields

S,(Bo, Y) = A4,(B)(B” — Bo) + (D, By, Y) — 4,(B))(B” — Bo) + R, (A13)

where
Jn IR, 55 0asn - . (A14)

Relation (A14) follows from condition (iv) and (A12).
Condition (iii) and (A11) yields

Jnl(D,(Bo, Y) — 4,(B)B” — By)| — 0asn - co. (A15)
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By condition (v)
Jn VP (B0)S, (Bos Y) = N(O, I).
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This relation, condition (vii), (A14) and (A15) imply that

\/ZVn_I/Z(BO)An(BO)(ﬁM) - BO) - N(Oa 1)9

which completes the proof of the theorem.

6. References

Binder, D.A. (1983): On the Variances of
Asymptotically Normal Estimators from
Complex Surveys. International Stat-
istical Review, 51, pp. 279-292.

Du Mouchel, W.H. and Duncan, G.J.
(1983): Using Sample Survey Weights in
Multiple Regression Analysis of Stratified
Samples. Journal of the American Stat-
istical Association, 78, pp. 535-543.

Fahrmeir, L. and Kaufmann, M. (1985):
Consistency and Asymptotic Normality
of the Maximum Likelihood Estimator in
Generalized Linear Models. Annals of
Statistics, 13, pp. 342-368.

Fay, R.B. (1986): Causal Models for
Patterns of Nonresponse. Journal of the
American Statistical Association, 81,
pp. 354-365.

Foutz, R.V. (1977): On the Unique Con-
sistent Solution to the Likelihood
Equations. Journal of the American Stat-
istical Association, 72, pp. 147-148.

Habermann, S.J. (1977): Maximum Like-
lihood Estimates in Exponential Res-
ponse Models. Annals of Statistics, 5,
pp. 815-841.

Little, R.J.A. (1982): Models for Nonres-
ponse in Sample Surveys. Journal of the
American Statistical Association, 77,
pp. 237-250.

Little R.J.A. and Rubin, D.B. (1987): Stat-
istical Analysis with Missing Data. Wiley,
New York.

McCullagh, P. and Nelder, J.A. (1983):

Generalized Linear Models. Chapman
and Hall, London.

Nathan, G. and Holt, D. (1980): The Effect
of Survey Design on Regression Analysis.
Journal of the Royal Statistical Society,
Series B, 42, pp. 377-386.

Nordberg, L. (1980): Asymptotic Normality
of Maximum Likelihood Estimators
Based on Independent, Unequally Dis-
tributed Observations in Exponential
Family Models. Scandinavian Journal of
Statistics, 7, pp. 27-32.

Nordberg, L. (1985): Analys av avgangar
fran mjolkproduktion. Memo, Statistics
Sweden. (In Swedish.)

Rubin, D.B. (1976): Inference and Missing
Data. Biometrika, 63, pp. 581-592.

Rubin, D.B. (1987): Multiple Imputation
for Nonresponse in Surveys. Wiley, New
York.

Scott, A.J. (1987): Generalized Linear
Models with Survey Data. Proceedings of
the Second International Tampere Con-
ference in Statistics.

Smith, T.M.F. (1981): Regression Analysis
for Complex Surveys. In Current Topics
in Survey Sampling. Ed. Krewski, D.,
Platek, R. and Rao, J.N.K. Academic
Press, New York.

Ten Cate, A. (1986): Regression Analysis
Using Survey Data with Endogenous
Design.  Survey Methodology, 12,
pp. 121-138.

Received June 1988
Revised July 1989



