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Generalized Variance Functions for a
Complex Sample Survey

Eugene G. Johnson and Benjamin F. King'

Abstracts: For a national survey of reading
ability among young adults using a multistage,
stratified probability sample, generalized
variance functions (GVFs) are estimated.
That is, an attempt is made to express the
estimated variance of a statistic as a function
of that statistic and other characteristics of
the variable of interest. With GVFs estimat-
ed from a development sample of variables,
predictions of sampling variance are made

1. Introduction

In this paper we report the results of an inves-
tigation into the feasibility of using general-
ized variance functions (GVFs) for estima-
tion of sampling variances for statistics com-
puted for a large-scale and complex survey.
As described in Wolter(1985), the GVF
method attempts to model the variance of a
survey estimator as a function of the estimate
and possibly other variables. If the modeling
is successful then it is unnecessary to com-
pute the estimated variance by the usual for-
mula thus accruing considerable cost savings.
An accurate GVF may also be of great value
in designing similar surveys in the future.
This approach to variance estimation has
been adopted by the Bureau of the Census
for the Current Population Survey, and also
by the National Center for Health Services
Research in certain applications. In addition

! Survey Methods, Research Statistics Group,
Educational Testing Service, Princeton, NJ 08541,
U.S.A.

for other variables in a confirmation sample
and comparisons made with conventional
jackknife estimates. Conclusions are drawn
about the feasibility of use of GVFs, with
emphasis on the margin of additional estima-
tion error that is introduced.

Key words; Estimated variance; design
effects; jackknife.

to the references cited in Wolter(1985), the
reader should see Cohen(1979), Cohen and
Kalsbeek(1981), and Burt and Cohen(1984).
Valliant(1987), in a paper just published at
this writing, provides interesting theoretical
justification in terms of a prediction model
for the use of GVFs.

In many of the previous applications the
GVF is used to model the relative variance of
an estimated subpopulation total. In the tra-
ditional approach it is assumed that the rela-
tive variance of an estimated total, X ,is a
decreasing function of the magnitude of the
estimate. A common specification is

relvar ()A() =a+ [3/)2'. (1.1)
This specification is in turn used to derive a
model for the relative variance of a ratio or
proportion. In this paper we focus primarily
on the direct estimation of variances of pro-
portions, e.g., for the percentage of subjects
who choose a particular answer in an achieve-
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ment test. We shall also devote some discus-
sion to the modeling of variances of sub-
population totals.

The statistics of interest are from the

Young Adult Literacy Survey, conducted in

the summer of 1985 by Response Analysis
Corporation for the Educational Testing Ser-
vice Center for National Assessment of Edu-
cational Progress. The target population was
all persons of age 21 through 25 residing in
households in the Continental U.S. The
sample design involved five stages of selec-
tion with stratification at several of the stages.
The units of selection by stage were: (1)
counties, groups of counties, or metropolitan
statistical areas (MSAs); (2) census tracts,
groups of tracts, or segments of tracts; (3)
blocks of contiguous housing units within
tracts; (4) housing units within blocks; and
(5) those eligible within housing units. The 25
largest MSAs were included in the sample
with certainty, and the remaining noncer-
tainty MSAs and counties ordered geographi-
cally within separate strata. A systematic
selection of 65 primary sampling units from
these strata was made with probability pro-
portional to size (pps). A total of 400 second-
stage units (SSUs) was drawn with pps from
these primary units and from the 25 selfre-
presenting MSAs. In this stage of selection
SSUs with high densities of Blacks or Hispan-
ics were oversampled at an approximate rate
of 2 to 1 to permit special focus in the study
on those groups. Two blocks were selected
(pps) from each of the 400 SSUs, and 48 hous-
ing units were chosen within each block. A
total of 38 400 housing units were screened
for eligible subjects, resulting in a final
sample of 3 618 respondents, each of whom
provided measures of cognitive and general
background characteristics. Estimates of
means, totals, and proportions obtained for
these items involve weights that reflect
adjustments for disproportionate sampling,
nonresponse, and poststratification to
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known marginal totals.

This type of design will produce variances
different from the variances produced by
simple random sampling (srs) with fixed
sample size. This is so for a number of reasons.
There are gains in precision over that of srs
from stratification by geography and size.
These gains, however, are counterbalanced
by the effects of nonoptimal dispropor-
tionate selection and clustering. The weights,
themselves, are subject to sampling variabil-
ity which makes the statistics of interest non-
linear. All of these considerations combine
to make the estimators of sampling variances
more complex and computationally more
expensive than the easy srs algorithms.

In the Young Adult Literacy Survey the
variance estimation procedure was the jack-
knife, see, e.g., Wolter (1985), p.185. The
certainty MSAs and the remaining primary
units yielded a total of 98 clusters which for
the purpose of variance estimation were suc-
cessively paired throughout the frame. Mem-
bers of the resulting 49 pairs are from the
same size strata and the same geographic
area. The jackknife technique involves the
computation of forty-nine pseudo-values of
each statistic of interest by successively
omitting one member of each pair.

The purpose of our research is to develop
an alternative estimator of sampling variabil-
ity that demands less computation, but is of
adequate precision. The general approach is
to fit linear models of functions of the sam-
pling variance to estimates from the survey,
using the jackknife variance estimate as the
basis for the dependent variable, and various
easily-computed statistics as the predictors.
For items not used in the development of the
model, variances are estimated by prediction
from the fitted equation. For large-scale sur-
veys, a relatively small number of items
would be used in GVF development thus
avoiding the computation costs of convention-
al variance estimation for the remaining
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variables. In repeated execution of surveys of
the same population and with the same types
of variables, it might even be possible to use
parameter estimates for the prediction model
from earlier applications.

In Section 2 of this paper we discuss two
proposed criteria for the measurement of the
goodness of prediction of the models that we
shall examine. The first is a measure of
absolute error and the second a measure of
performance in terms of relative error. Then
in Section 3 we describe our various attempts
at modeling the variances of estimated pro-
portions (ratios). In Section 4 the results of
the model fitting are evaluated in terms of a
“fundamental model” in which the sample
variance is expressed as a product of a system-
atic factor (i.e., the true variance) and a
random noise factor. In Section 5 we show
the gain in predictive ability from prior
knowledge of the design effect. There is a
brief discussion in Section 6 of the results
from model fitting for the variances of esti-
mated domain totals, and finally in Section 7
some conclusions are stated.

2. Criteria for Goodness of Fit

Our aim in developing a GVF is to predict the
variance of a statistic for use in estimation
and inference. For this study, and clearly for
many other studies, underestimation of
sampling variability is a more serious error
than overestimation. Thus we would rather
have estimated standard errors that are too
large than those that are too small. For illus-
tration in this paper, we shall assume that
the consequences of an underestimate are
three times as severe as those of an overesti-
mate of the same magnitude. We shall also
assume the opportunity loss to be linear. A
standard result from decision theory, e.g.,
Raiffa and Schlaifer (1961) shows that the
predicted value of the dependent variable
that minimizes expected linear opportunity
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loss of the error of estimation is the quantile
of the predictive distribution given by the
ratio

kil (k. + ko),

where k, and k, are the losses of under and
overestimation, respectively. Hence, assum-
ing normality, we use the following expres-
sion as the optimal prediction for the various
models.

Y* = predicted value given by the model
+ .67 standard error of prediction,
2.1

corresponding to the .75 quantile of the nor-
mal probability distribution. We shall evaluate
alternative models by comparing the means
of absolute residuals from the optimal predic-
ted values, Y*, weighting positive residuals
by three. After we have discussed some of
the alternative forms of the GVF in the follow-
ing section, we shall show that the results of
using this approach to model evaluation are
robust against the choice of k, and k,, the
losses of under and overestimation.

To understand more fully the implications
of the models it is useful to consider goodness
of prediction from a different angle. We have
stated that we are primarily concerned with
underestimation of the jackknife standard
error, i.e., we would prefer estimates that are
too big, rather than too small. For model
comparision we plan to give underestimates
three times the weight of overestimates and
to compute the weighted mean absolute
error (average loss). It will be seen, however,
that the best models in our application are
logarithmic and it seems reasonable to ask
for some measure of performance in terms of
the antilogs, i.e., the standard error that we
are ultimately interested in knowing. We will
therefore transform the predicted values,
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Y*, to predictions of the standard error and
compute a relative error of prediction:

relative error =
(jackknife s.e. — predicted s.e.)/jackknife s.e.,
2.2)

thus expressing the under or overestimate as
a proportion of the jackknife standard error.
We shall then be able to answer questions
such as “What fraction of the estimates from
the model are downward biased by more
than 20 percent?” We believe that reports of
model performance in that form are often
more interesting than the comparison of R-
squares, mean square €rrors, Or average
losses.

3. Variance Models for Cognitive Items

In the Young Adult Literacy Survey there
were 104 different items, each designed to
measure a person’s cognitive ability with
respect to one of four psychometric scales:
(1) reading proficiency, (2) prose compre-
hension, (3) document utilization, and (4)
practical computation. The principal statis-
tics for any one of these items are the propor-
tions of subjects choosing each of a set of
possible response categories. Statistics for
each item were produced for each of 13
domains of the target population. These
domains include the total population, each
sex, three racial groups, three levels of educa-
tion, and four geographic regions. Thus we
have measures on 104 X 13 or 1 352 variables
for which we have arbitrarily chosen the first
response category for this analysis. The items
are sufficiently diverse so that observed pro-
portions cover a wide range within each
domain. For model development we have
further drawn a systematic sample of 897 of
the item measures, saving the remainder for
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validation. The selection was balanced to
provide the same 69 items for each of the 13
domains. In the survey, items were adminis-
tered according to a balanced-incomplete-
block spiraling scheme so that not every per-
son was given each item. The average num-
ber of responses to an item for the total popu-
lation was 1 487, and obviously smaller for
narrower domains; for example, for Hispan-
ics the average number of cases was only 167.

3.1. The traditional model for proportions

The first GVF model for proportions that we
consider is derived from the model for the
estimated total, shown in (1.1) above. The
derivation is based on the assumption that
equation (1.1) holds for both numerator and
denominator of the sample ratio (propor-
tion) and that there is zero correlation
between the ratio and its denominator
(Wolter (1985, p.204)).

Let A be the estimated total in a subpopu-
lation possessing a certain attribute, X be the
estimated total size of the subpopulation,
and define p = A/X to be the estimated
sample proportion.

Then we write

relvar (p) = B (1-p)/pX, (3.1)
or in terms of the variance,
var (p) = Bp (1-p)/ X . (3.2)

Exhibit 1A shows the results of an ordinary
least squares fit of the model in (3.2) above,
with the intercept allowed to be nonzero.
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Exhibit 1A. Unweighted Least Squares Regression for Var (p): Model (3.2)

Predictor
variables

Constant

p—p)X

Coefficient

1.86

6449

Degrees of freedom
R—square
Residual mean square

Residuals vs. Predicted Values

STD error Student’s t
.18 10.08
161.20 40,02
895
.64
17.79

Residual
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0o 2003600 o000 o0 o0 o 3
oo30 o oo o )
—20.0 °
1 1 1 1
0.0 9.0 18.0 27.0 36.0

Predicted
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Exhibit 1 B. Normal Probability Plot of Residuals from Model (3.2)

Expected Normal Deviate
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A noteworthy aspect is the asymmetry about
zero in the plot of residuals against predicted
values. The nonlinearity of the normal prob-
ability plot, Exhibit 1B, demonstrates
further violation of the usual regression
assumptions. The large residual mean
squared error indicates poor predictability
for the dependent variable.

Exhibit 2 shows the results of a regression

of the variance of p on the simple random
sampling formulation,

var (p)=a+PBp(1-p)/n,

where n is the sample size. It can be seen that
the linear fit is better than that for (3.2)
above, leading us to doubt the effectiveness of
the traditional specification. The residuals,
however, still exhibit asymmetry.

(3.3)
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Exhibit 2. Unweighted Least Squares Regression for Var (p): Model (3.3)

Predictor
variables Coefficient STD error Student's t
Constant —.36 A7 -2.10
p(1—p)/n 2.09 04 53.35
Degrees of freedom 895
R—square .76
Residual mean square 11.87
Residuals vs. Predicted Values
Residual
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0222 2222 2002 o2
04344457555705320223 o o oo oo
0.0} eo0eoeoe0cee0e0ei75424 622 o
230084689985 602300 o 2 2 o2
30052003 o0 o 2 2
20 o o o o
—20.0
rl 1 ] 1 ]
—2.0 7.0 16.0 25.0 34.0
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3.2. Transformation to logarithms

One of the problems with the approach taken
thus far is that the model parameters have
been estimated by conventional least squares,
the optimality of which depends on under-
lying normality. Since sample variances have
skewed distributions, one should perhaps not
expect symmetry in residuals. There is also
discussion in the GVF literature of the neces-
sity to correct for inconstant residual vari-
ances, for example using iterative weighted

least squares or nonlinear techniques. The
alternative approach used here is to trans-
form to logarithms, fitting linear models by
least squares. This transformation makes the
errors more symmetric, more homosked-
astic, and reduces the impact of extreme
values. An additional advantage is that the
transformation to logarithms converts multi-
plicative relationships to linear relationships
so that the models for variance, relative vari-
ance, standard error, and design effect all
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Exhibit 3A. Unweighted Least Squares Regression for Logvar (p): Model (3.4)

Predictor
variables Coefficient STD error Student’s t
Constant 8.45 1 79.33
A A A
Log(p(1—p)/X) 91 .01 67.41
Degrees of freedom 895
R—square .84
Residual mean square 21
Residuals vs. Predicted Values
Residual
3.0 F
[oXo o]
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° 325243 32535743587 84350
oo o 2 00002020020 37000
-1.0r o ocoo 2 o004
o
o
-3.0F
1 1 1 1 1
-3.0 -1.0 1.0 3.0 5.0
Predicted

have similar forms. One should expect the
advantages of the logarithmic transformation
to carry over to other GVF applications.

As an example, we transform the variables
in the model in (3.2) to their natural loga-
rithms, and express their relationship by

logvar (p) = a + Blog (p (1-p)/ X). (3.4)

The results of ordinary least squares are
shown in Exhibits 3A and 3B. The scatter

plot and the normal probability plot show
that the residuals from this regression follow
the normal distribution more closely than in
earlier specifications. For this reason we shall
continue to work in the logarithmic metric.

In the following display we show the various
forms of logarithmic models for the variance
of p that we have investigated. In addition,
we report the value of R?, the residual mean
square, and the average loss using k, =3 and
k, =1, discussed in Section 2.
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Exhibit 3B. Normal Probability Plot of Residuals from Model (3.4)
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Exhibit 4. Logarithmic Models for the Variance of p

logvar (p) = a + Blog ((1 - p)/X)
R*= .84 RMS=.21 AVLOSS=.52
Model (3.4)

logvar (p) = a + Blog (p(1-p)/n)
R?= .89 RMS=.14 AVLOSS = .44

Model (3.5)
logvar (p) = a. + B log (p) + B, log (1-p)
+ B3 log (n)
R’= 90 RMS=.13 AVLOSS = .44

Model (3.6)

logvar (p) = a + B, log (p) + B, log (1-p)

+ B3 log (n) + B4 log (cv(X)),

R>= .90 RMS=.13 AVLOSS = .43
Model (3.7)

logvar (p) = o + B, log (p) + B, log (1-p)

+ B;5log (n) + B4G3 + BG4 + BsG5

+ B;G8 + BgG9 + PyG10

R*= 91 RMS=.12 AVLOSS= .42
Model (3.8)
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Discussion:

Recall that Model (3.3) gave a better fit than
Model (3.2). Since Models (3.5) and (3.4) are
logarithmic versions of (3.3) and (3.2),
respectively, we are not surprised to see that
(3.5) outperforms its predecessor (3.4).
Model (3.6) allows separate coefficients for
the factors in the simple random sampling
variance for the proportion, but its improve-
ment over (3.5) is only slight.

Model (3.7) introduces the logarithm of
the coefficient of variation of the estimated
population total into the equation in the hope
of taking account of unequal cluster sizes and
unequal weights. Although the estimated
regression coefficient of the new variable is
significant, the increment to R*> and the
reduction in AVLOSS is negligible.

Finally, Model (3.8) is motivated by an
interest in generalizing the results of the
GVFs to other surveys and statistics. An
important question is whether the parame-
ters of the models examined thus far are
constant across different classes of items and
different population subgroups. Although
scatter plots of residuals did not indicate
great variability from group to group, we
experimented with the introduction of class
(domain) effects and developed the best fit-
ting Model (3.8). The new variables G3, G4,
G5, G8, G9, and G10 are one-zero indicators
for the domains female, whites, blacks, high
school education, greater than high school,
and Northeast Region, respectively. In the
above display we see again that the increase
in R?is not great, and the decrease in average
loss is about two percent from that of Model
3.7).

3.3. The mean design effect model

The last model for proportions that we con-
sider is obtained by constraining 3 to be equal
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to one in Model (3.5), i.e.,

logvar (p) = a + log (p (1-p)/n), (3.9)

for which least squares yields the mean log
design effect as the estimator of a. Thus the
sample logvar is expressed as the mean log
design effect plus the log of the estimator
from simple random sampling. The average
logdeff for the set of 897 items is .55 and the
standard deviation is .39, implying an RMS
of about .15. The calculation of AVLOSS
yields .46. Therefore the performance of
Model (3.9) is not much worse than that of
Model (3.6), and its simplicity makes it
appealing. Somewhat discouraged by the
lack of improvement from the introduction
of identifiers for domains of study and classes
of items, we decided to stop the data dred-
ging and conclude that there is little hope of
developing a GVF model that can perform a
great deal better than (3.9).

3.4. Robustness of the mean loss criterion

To check on the robustness of the mean loss
criterion we compare Models (3.4) and (3.6)
for various values of k, with k, set at one. The
results, shown in Table 1, demonstrate that
the average loss for each model is approxima-
tely linear in Z, where Z is the k,/(k, + k,)
quantile of the unit normal distribution. We
also see that the superiority of Model (3.6) is
maintained throughout. It is our conjecture
that this model’s superiority for all k, cannot
be proved analytically, but that there are few
instances where Model (3.6) is not superior
to Model (3.4).

3.5. Relative error of estimation

We next consider the second performance
criterion discussed in Section 2 given by
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Table 1. Comparison of AVLOSS for Models (3.4) and (3.6)

ko k, Z-value AVLOSS (3.4) AVLOSS (3.6)
1 1 .00 .35 27
1 2 .44 .46 .37
1 3 .67 .52 44
1 4 .84 .57 .48
1 8 1.22 .69 .59
1 20 1.67 .85 73

Expression (2.2). For Model (3.9) we display
in Exhibit 5 the histogram for the relative
errors computed as shown in (2.2). It can be
seen that 218 out of the 897 errors (24.3 per-
cent) are positive, that is, the standard error
is underestimated. The relative error of
underestimation does not exceed 40 percent.
The histogram also shows that only 26 out of
897 (2.9 percent) are underestimates greater
than 20 percent in relative terms. The median
among the errors of underestimation is less

Exhibit 5. Distribution of Relative Error

(Model 3.9)
Freq
400
3004
200
1001
1 2 4
—160 -120

than 10 percent. The maximum relative error
of overestimation is 176.7 percent, i.e., the
predicted standard error was 2.77 times larg-
er than the jackknife estimate. It can be seen,
however, that such extreme overpredictions
are rare. In only 70 cases (7.8 percent) did the
predicted value of the standard error exceed
the jackknife estimate by more than 50 per-
cent. Finally, we observe that out of the total
of 897 relative errors, 555 or 61.9 percent
were less than 20 percent in absolute value.

363

—40 0 40
Relative Error (percent)
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Exhibit 6 shows the relative errors for Model
(3.6) above. The maximum relative error of
underestimation is now only 35 percent. In
only 20 cases (2.2 percent) did the relative

Exhibit 6. Distribution of Relative Error

Journal of Official Statistics

error of underestimation exceed 20 percent.
Out of the total of 897, 571 (63.7 percent) lie
between minus and plus 20 percent.

One might ask whether the logarithmic trans-

(Model 3.6)
Freq
300+ 273
200+
1004
22
20
1 2 4
0 ; r Y
—160 -120 -80 —40 0 40

formation that we have used starting with
Model (3.4) is all that necessary for good pre-
diction of the standard error of the estimate.
We have calculated the relative errors for the
traditional Model (3.2), based on the empir-
ical results shown in Exhibit (3.1). For the
prediction equation in this exercise, using a
version of Expression (2.1), we use

Relative Error (percent)

var* =

predicted value + .25 std. error of pred.,
where, since the residuals are not normal, the
coefficient .25 has been empirically determin-
ed to correspond to the 75th quantile. Table
2 shows a comparison of relative errors of
prediction for Model (3.2) and the logarith-
mic Models (3.6) and (3.9):
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Table 2. Distribution of Relative Errors by Model
Relative frequencies in range of error

Range of error Model (3.2) Model (3.6) Model (3.9)
—20% underpred. 07 02 03
20% — 0% underpred. .18 22 21
0% —20% overpred. 22 42 41
20% —50% overpred. .29 .29 .27
50% — overpred. .24 .06 .08
1.00 1.00 1.00

The most striking result in the table is the
serious overprediction of Model (3.2) in com-
parison to the logarithmic models. Nearly one-
fourth of the standard errors are overpredic-
ted by more than 50 percent. Note also that
the frequency of errors of underprediction by
more than 20 percent is greather than twice
that of the other two models. In contrast to
roughly two-thirds for the logarithmic
models, only 40 percent of the relative errors
for Model (3.2) are within 20 percent in abso-
lute value.

3.6. Validation

The prediction equations estimated for
Models (3.6) and (3.9) were applied to the
455 cases that had been held in reserve for
validation. For Model (3.9) the average loss
in the validation run was .50, as opposed to
.46 in the original fitting. Curiously, only
16.7 percent of the relative errors computed
according to Expression (2.2) were under-
estimates. The maximum relative under-
estimate was 34.6 percent. For Model (3.6),
the average loss for the validation sample was
.48, as opposed to .44 originally. The errors
of underestimation constituted 21.1 percent
of the total, with a maximum value of 39.2
percent. The validation run confirms our
earlier finding that there is no great advan-
tage in prediction accuracy of the more
complicated Model (3.6) over the simple

approach in Model (3.9) of adding the aver-
age logdeff to the logarithm of pg/n.

4. A “Fundamental Model” for the Variance
of the Estimator

We should not be too critical of GVF estima-
tion of standard errors without considering
the performance that can reasonably be
expected from even the most well-fitting
model. The estimate of the standard error is
itself subject to sampling error. Letting sj be
the jackknife variance estimator for variable
i, we write

2 _ 2
Sli- = 0;" &,

where €; is approximately distributed as a chi-

square random variable divided by d degrees
of freedom. It follows that

log (sj) = log (/) + log (&;) .
In our efforts to fit a model, we have as-
sumed that there is some “ideal” linear rela-
tionship of the form

log (67) = o+ Bx; + §;,

which implies the following model for the
jackknife variance estimator:
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log (s5j?) = a + Bx; + (8; + log (&) -

In this model, x; is a predictor that can be
extended to several predictors for the vari-
able of interest if necessary, and ; represents
the remaining unspecified but system-
atic sources of variation in the prediction of
log (07). The remaining term, log (g;), is the
noise in estimation of log (67).

It can be shown (e.g., Scheffe (1959, p.84))
that the variance of this noise is approxi-
mately 2/d, where d represents the degrees of
freedom. The degrees of freedom for a jack-
knife estimate from our study can be no larg-
er than 49, and will generally be smaller.
Thus 2/d ranges from a minimum of about .04
to a maximum of 2.00. For an intermediate
number of degrees of freedom, say 17, the
value is .12. This figure corresponds to the
value of the residual mean squared error for
our best fitting GVF equation, as shown in
Exhibit 4. Thus it may well be that we have
succeeded in explaining the systematic com-
ponent of variability in logvar and that all
that remains is noise’.

5. Using Prior Knowledge of the Design
Effect
As a final exercise with the cognitive items
we shall introduce the design effect into the
right-hand side of the model. To do so
exactly would lead to a perfect fit by tautol-
ogy. To be a bit more realistic, we assume
that the analyst has only a rough prior idea of
the magnitude of the effect. In his discussion
of theoretical motivations for Models (1.1)
and (3.1), Wolter(1985) suggests that the
specification is consistent with a constant deff
for groups of items. The logarithm of the
deff ranges from —1.23 to 1.81 in these data.

2 We are indebted to our colleague Paul Holland
for discussions that led to these observations on the
goodness of fit of our models.
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Assume that it is possible a priori to place a
proportion in one of the four categories of
logdeff: (1) less than — .9, (2) greater than or
equal to — .9 and less than zero, (3) greater
than or equal to zero and less than +.9, (4)
greater than or equal to +.9. With the
variables LD1 and LD?2 and LD3 as indica-
tors, the item falls into one of the first three
of the logdeff categories above. We can then
fit the following model:

logvar (p) = a + By log (p) + B, log (1-p)

+ B3log (n) + B4LD1

+ BsLD2 + BsLD3. (5.1)
R?is .97 and the residual mean square is .04.
The mean loss with the 3:1 penalty for under-
estimation that we have been using falls to
.26, only 62 percent of the previous mini-
mum. This superiority is further borne out in
the examination of relative errors of estima-
tion of the standard error. The range is—41.7
to 24.4 percent, with 777 out of 897 (86.6 per-
cent) of the relative errors less than 20 per-
cent in absolute value.

To be even more realistic we assume that
the best that the analyst can do a priori is to
place the proportion in the two categories:
negative vs. nonnegative logdeff. In other
words, deffis less than, greater than, or equal
to one. In the following model LDSIGN is a
zero-one indicator of the sign of the log
design effect:

logvar (p) = o+ By log (p) + B log (1-p)
+ B;log(n) + B,LDSIGN.
(5.2)

This fit is still better than those in models that
do not involve logdeff, with R*> = .93 and
RMS = .09. The mean loss of estimation
error is calculated to be .38. The range of
relative error of estimation of the standard
error is—74.8 to 36.2 percent with about two-
thirds falling within plus or minus 20 percent.
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6. Estimation of Domain Totals

In addition to the cognitive items, for which
we have been discussing GVFs for variances
of proportions, the Young Adult Literacy
Survey provides information on 214 back-
ground items, and covers the 13 different
subpopulations of interest. Thus there is a
large number of weighted estimates of
domain totals with their corresponding jack-
knife estimates of variance. A systematic
sample of 947 estimated totals (72 or 73
values for each of the 13 domains) was select-
ed for analysis, with many other values held
in reserve for subsequent exploration and
validation.

As in the case of variances of proportions,
the traditional Model (1.1) for predicting rel-
var (X) and the model for var ()2' ) derived
from it performed very poorly, and their resid-
uals were badly skewed and heteroskeda-
stic. Hence we transformed to logarithms
and, after considerable fishing, determined
the following two best specifications:

logvar (X) = a + B, log (X) + B,log? (X)
R*= .94 RMS= .35 AVLOSS = 81
Model (6.1)

logvar (X) = a+ B log (X’) +B,L3 + B:L4

+ B4L5 + BsL7 + BsL9 + B;,L10 + BgL11

+ BoL12 + B,,L13

R*= .98 RMS=.13 AVLOSS = .42
Model (6.2)

The more complex Model (6.2) was motivat-
ed by the hope that the introduction of
effects for the thirteen principal domains in
the population would greatly increase the
predictive power. As is well known, it is
impossible to design a survey that provides
equally efficient estimates for all populations
of interest. Thus we would expect design
effects to vary from domain to domain, and
accordingly, the parameters of the GVF to be
different from group to group. We examined
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a fully specified model with intercepts and
interactions for all groups. As expected, the
fit of the model was markedly better than
earlier specifications. After eliminating cer-
tain group effects that did not appear to be
significant, we arrived at the parsimonious
and effective Model (6.2), where the Ls are
interactions between log (X’ ) and various
domain indicators, and the corresponding fs
are the incremental partial regression coeffi-
cients for those interactions. The domains
used in the model are, in order, (3) females,
(4) whites, (5) blacks, (7) less than high
school education, (9) greater than high
school, (10) Northeast region, (11) South-
east, (12) Central, and (13) West. The fit of
Model (6.2) is only trivially different from
that of the specification with separate inter-
cepts and interactions for all thirteen domains.

The following table displays the relative
distribution for the two models:

Table 3. Distribution of Relative Errors

Relative frequencies in range of error

Range of error Model (6.1) Model (6.2)
-20% underpred. .07 .04
20% under-overpred. 32 .68
20%-—overpred. .61 .28

1.00 1.00

It can be seen that Model (6.2) has a consider-
ably tighter distribution of relative errors.
We made a validation run for Model (6.2)
applying the prediction equation to 947 un-
used cases. The average loss for these cases
was .47, and the maximum relative error of
underestimation was 57.9 percent. The num-
ber of relative errors between minus 20 per-
cent and plus 20 percent was 609, or 64.3 per-
cent of the total cases. The percentage of
relative errors exceeding 20 percent (i.e.
underestimation) was only 4.6.
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In summary, our attempts at modeling the
variance of the total are no more or less suc-
cessful than those for the variance of a pro-
portion. By some criteria the results may be
deemed adequate, but it is still possible to
have very large errors in using the GVF to
estimate jackknife values. It would be
interesting to see similar measures of perfor-
mance (e.g., distributions of relative errors)
for other major applications such as the Cur-
rent Population Survey of the U.S. Bureau of
the Census.

7. Conclusion

We have investigated a sequence of models
for predicting the variances of estimated pro-
portions and totals. Our investigations have
shown that prediction is improved by trans-
forming to the logarithmic scale. We also
found that in the Young Adult Literacy Sur-
vey the relatively simple model for propor-
tions based on the average log design effect
works nearly as well as more complex specifi-
cations and that its prediction error is about
at the level of the noise of the jackknife esti-
mator. As we have shown, the only way to
markedly improve upon the simple model is
by using prior information about the design
effects of individual estimators.

In the Young Adult Literacy Survey the
GVF was not used since our research took
place after publication of the final report.
The cost reduction from using the general-
ized variance function instead of resampling
methods of estimation depends on the size of
the data base, the number of variables for
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which variance estimates are required, and,
most important, the number of replicates.
We estimate that application of a GVF in the
present case would have saved at least 90 per-
cent of the cost of calculation of means and
variances.
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