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Graduation Models for the Age-Specific Marital
Fertility Rates: The Hungarian Example

Samarendranath Mitra', Emil Valkovics®, Diane Jones,' and Richard Clarke’

Abstract: In this paper we have proposed
two models that express the age-specific
marital fertility rate m(x) as a function
of age x. Specifically, linear functions of
In x and In (50 — x) have been suggested
as possible estimators of In m(x) and
In (—In m(x)). These models have been
fitted on Hungarian data covering a twenty
year period from 1960. Both of these models
have three parameters which have been esti-
mated by the method of least squares and by
solving a set of three simultaneous equations
generated by three data points. We have
compared these models and methods with

1. Introduction

Graduation of rates and probabilities specific
for age and other variables by mathematical
models has a relatively long tradition in
demography. The graduation of detailed
rates can be useful in several respects. First,
the pattern of variation of the rates can be
accurately described by a model that fits the
data well. As a result, the few parameters
that define such a model can replace the
entire data set with little loss of information.
That is to say, whenever necessary, any
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another model based on a Pearsonian Type |
distribution fitted earlier by the method of
moments. Using the square of the corre-
lation coefficient between the observed and
the model values as a measure of goodness
of fit, we have found that the model based
on In (—In m(x)) fits the data very well by
both methods.
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rates; linear model; logarithmic transfor-
mation; method of least squares; solutions
of simultaneous equations.

or all of those rates can be reproduced by
the model with sufficient accuracy. Second,
such models are often used to smooth the
observed data when the fluctuations can be
attributed to errors. Third, when data are
available by age groups or for only a few
ages at specified intervals, the model can be
used to generate estimates for the entire
range of variation. Fourth, the estimates of
parameters at several points in time can be
effectively used to generate estimates at
other points in time by appropriate methods
of interpolation and extrapolation.
Sometimes a model can be used as a part
or a component of another model. Thus, a
model of age-specific marital fertility rates
(ASMFR) can be looked upon as a part of
a model of age-specific fertility rates
(ASFR) in which marital status is net con-
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sidered. This is true because, in special cases,
the latter model can be regarded as having
two multiplicative components (Coale and
Trussel (1974)): the ASMFR model and a
model of the age-specific proportion ever
married. Such a multiplicative model can
describe in greater detail the pattern of
variation of ASFR than a single model and
that is one of the reasons for our attempting
to develop models of ASMFR. As such,
modeling of the age-specific proportion ever
married is an interesting topic for further
research. However, this type of modeling
will not be applicable to populations with
large extra-marital fertility rates.

It may also be noted that literature on
ASMFR models is somewhat scanty com-
pared with that on the models of ASFR. In
contrast, the literature on modeling ASFR
is vast and falls into two categories. In the
first category, the ASFR values are modeled
by a frequency function of a probability
distribution. Since the pattern of the general
ASFR can be expressed by a bell-shaped
curve with the mode assuming a value in the
age interval 20-29, attempts have been
made in the past to fit the distributions by
mathematical functions, such as Hadwiger,
gamma, lognormal, Pearsonian Type I,
Wald, Weibull, Gompertz and others. See,
for instance, Brass (1960), (1974), and
(1978); Brass, Coale, Demeny, Heisel,
Lorimer, Romaniuc, and Van de Walle
(1968), Duchene and Gillet de Stefano
(1974), Gilje (1969), Gilje and Yntema
(1970), Hoem and Berge (1975), Hoem,
Madsen, Nielsen, Ohlsen, Hansen, and
Rennermalm (1981), Hyrenius, Sundwall,
and Nygren (1974), Mitra (1967) and
(1970), Mitra and Romaniuc (1973), Rom-
aniuc (1973), Talwar (1970), Tekse (1967),
Valkovics (1983a), (1983b), and (1984);
Yntema (1952) and (1969). In the second
category, modeling efforts have concentrated
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on specific transformations, for example,
cumulative (Murphy and Nagnur (1972);
Wunsch (1966)), trigonometric, logarithmic,
and other functions of ASFR (Valkovics
(1983Db)).

In contrast, attempts to model marital
fertility rates have been made by Henry
(1961), Coale and Trussel (1974), and
Valkovics (1984). They argue that marital
fertility is similar to natural fertility in popu-
lations in which there is little or no volun-
tary birth control. Furthermore, ASMFR in
such populations decline monotonically
with age and therefore can be successfully
modeled by mathematical functions dif-
ferent from those most appropriate to
ASFR. Even in populations practising family
planning, the general pattern of variation of
ASMFR does not change and can be mod-
eled by similar functions. Recently, exper-
iments with mathematical models (Valkovics
(1984)) on relatively low-level marital fer-
tility rates of Hungary have produced
promising results. Three functions have
been attempted on the data, namely, (1) the
Beta function, (2) the Gompertz function,
and (3) a fourth degree polynomial. Of these
three, the first function fitted by the
standard method of moments has been
found to be the best in 80% of the cases.

These encouraging results have led to
further experiments with alternative models
for the graduation of ASMFR. In this
paper, we provide a description of the three
models mentioned above and their goodness
of fit on the Hungarian data. Hungarian
data were chosen because of their excellent
quality, general availability, and also
because the ASMFR values are tabulated
by single year of age. Unfortunately, com-
parable ASMFR data are not available in
most countries. However, as long as the
general pattern of the distribution of the
ASMFR remains monotonic and declining,
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it seems reasonable to assume that the
models will work as well on other data sets.
The following sections describe the models,
the data and methods used to estimate the
parameters, and finally, the findings when
the models are applied on Hungarian data.

2. The Models

2.1. Model I

We begin by noting that unlike the distri-
bution of ASFR which is generally uni-
modal and asymmetric, the distribution of
ASMFR is monotonically declining. Fur-
thermore, Pearson’s Type I frequency func-
tion, i.e., the Beta frequency function which
has been successfully fitted earlier to the
ASFR is flexible enough to be used on either
a monotonically increasing or a declining
distribution. Consequently, we have started
our experiment by attempting to model
the distribution of ASMFR by the Type I
function.

However, for the present investigation
using the Hungarian ASMFR, we have
chosen not to adopt the traditional method
of moments to fit a Type I distribution for
two reasons. First, the method of moments
requires the full distribution and cannot be
applied on a truncated distribution. In
Section 4 we show why it is necessary to
truncate the distribution of ASMFR by
excluding the rates for ages 15, 16, and 17,
since these ages do not follow the expected
trend manifested in the following ages.
Second, the graduation model provided by
the Type I distribution can be written as

(M
with origin at age x = 0. After a logarithmic
transformation (1) is expressed as

Inm(x) = Ay + A, Inx + A, In (B — x),
(2)

mx) = Cx"(B — x)*

where

4, = InC, 3)

with B as the upper limit of the reproductive
interval. For this study, B is assumed to be
49 years at last birthday or a continuous
variable beginning at the 50th year. In this
form, the parameters A,, 4,, and 4, can be
estimated by methods described in Section 4.
The reader will see that the logic justifying
the application of these methods is not
affected by the nature of the distribution,
truncated or otherwise.

2.2. Model II

In an earlier study of the modeling of the life
table survivorship function /(x), which is
also a monotonically declining function, a
good fit was obtained by a model (Mitra
(1984)) that expressed In (—In /(x)) as
a linear function of In x and In (& — x).
In this model, x and a represent the age and
the length of the life span, respectively. A
goodness-of-fit statistic of about 0.99 was
achieved in that study, as measured by the
squared multiple correlation coefficient
between the observed and the expected
values. Encouraged by this result, we felt
that it would also be appropriate to attempt
to fit the ASMFR by a similar model. Thus,
denoting these rates by m(x), we defined the
model
In(—Inm(x)) = By, + B, Inx

+ B,In(B — x), (4)

where the last term on the right-hand side
contains the upper limit of the reproductive
interval B, which, as before, is assumed to be
50 years.

2.3. About the two models

The similarity between models (2) and (4) is
apparent. A linear function of In_x and
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In (B — x) has been taken as the estimate of
Inm(x) in the former as against
In (—In m(x)) in the latter. A formal com-
parison between the two models can be
made by expressing (4) as

—Inm(x) = exp(By, + B, Inx

+BIn(B-x) (5

Thus, we see that, according to (2), the rela-
tionships among Inm(x), Inx, and
In (B — x) are linear whereas these relation-
ships according to (5) are curvilinear. The
magnitude of the departure from linearity in
any given example will, however, depend on
the values of the parameters.

Observe that both of these models remain
undefined for both x < 0 and x > . Also,
in any given distribution of ASMFR a dis-
continuity will surely be found at some age,
say 15, where the rate is the largest. How-
ever, the rates are assumed to be zero at all
ages under 15. Not only do these models fail
to match that pattern but when projected
for ages under 15 they show increasingly
larger values. However, these should not be
of concern since the main quality of a model
is its ability to reproduce the observed dis-
tribution in the modeled range of variation
and not by its performance elsewhere.

3. The Data

The Hungarian marital fertility data used in
this research come from the Hungarian
Demographic Yearbook (as reproduced in
Valkovics (1984)). The yearbook provides
data by single year of age (at last birthday)
over the age interval (15, 49) for the years
1960 to 1980. To save time and space we
have selected the data sets for 1960, 1980,
and the intervening five-year intervals; the
data is summarized in the Appendix, Table 1.
As noted earlier, the pattern of marital fer-
tility rates is generally monotonically declin-
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ing although a few exceptions have been
observed in Hungary for a number of years,
mostly in the 1960s. In those years, a high
rate of age 15 was followed by a steep
decrease at age 16, then a significant
increase in the rates was recorded at age 17.
One possible explanation is that, compared
to other ages, many of the marriages among
15-year-olds take place following premarital
conception, resulting in a higher than nor-
mal marital fertility rate at that age. In fact,
the highest rate recorded in those years was
found to be 0.84 in 1978; that is to say, 84%
of 15-year-old married women became
mothers in that year. Since most of the
women who become mothers at age 15
could not give birth again in the following
year, the rates at age 16 are expected to be
considerably lower than those at the preced-
ing age. However, they can become mothers
again when they are 17 and because few
marriages take place at these ages, the rate
at age 17 can be higher than that at age 16,
a phenomenon that has been observed in
Hungary several times in the early 1960s. In
general, the rates for these three ages show
considerable instability during the period
under investigation while the rates at the
remaining ages show reasonably smooth
patterns of variation (see Figures in
Section 5).

4. Methods

The mathematical functions employed by
the earlier researchers have captured the
pattern of ASMFR at ages 18 and above
quite well. Yet for the reasons mentioned
above, these models could not reproduce the
actual rates at the first few ages as accurately
as they did at other ages. Indeed, the rates at
ages 15, 16, and 17 may be considered out-
liers. Therefore, one may expect a better fit
in the age interval 18 and above if the out-

-
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liers are dropped when estimating the
parameters. As noted earlier, graduation
formulas that are frequency functions fitted
by the method of moments require the full
data set for generating the estimates of
the parameters. The moments computed
from a truncated distribution are thus
inappropriate. But when such formulas are
looked upon strictly as mathematical func-
tions, the parameters can quite often be esti-
mated by methods which are robust with
respect to their data requirements. From a
strictly theoretical point of view, an appro-
priate segment of a curve generated by a
mathematical function is all that is needed
for estimating the parameters.

For our models we have experimented
with two such methods in order to derive
our parametric estimates from data sets
covering the age interval (18, 49). The specifi-
cation of the upper limit of the age variable
reduces both of the proposed models to a
form such that the solution by the method
of least squares suggests itself almost
instantly. Accordingly, we applied this
method on the ASMFR data sets given by
single year of age in the age interval (18, 49).

Next, we also noted that since the
equations are linear, using exactly three
parameters, a set of only three data points
should be sufficient for generating the para-
metric estimates if the models fit the data
well. The simplicity of a procedure based
on the exact fit of a carefully selected set of
three data points makes it attractive. We
have used this additional method of curve
fitting with the ages 20, 30, and 40 as our
data points. These ages are equispaced and
cover the principal segment of the reproduc-
tive interval, which lends operational sim-
plicity. In addition, we have also chosen to
substitute the observed rates at those ages
with the simple averages of the respective
five-year intervals centered around them.

To summarize, we have experimented
with two linear models which use In x and
In(p — x) for Ll = Inm(x) and L2 =
In (—In (m(x)), respectively. The choice of
the notations L1 and L2 reflects the fact that
in L1 the logarithm is taken only once,
whereas in L2 it is taken twice. The param-
eters of those models have been estimated
by the method of least squares (LS) and
from the solutions of a set of simultaneous
equations (SE), respectively. The com-
binations of the models and the methods
give rise to four types which we refer to by
their abbreviations L1LS, L1SE, L2LS, and
L2SE. Thus, L1LS denotes the least square
solution of the parameters of the linear
model for In m(x). The abbreviations for
the remaining three types can be similarly
understood.

5. Results

For each of the four types, the sequence of
the computational scheme begins with the
estimation of the parameters (see Appendix,
Table 3). Next is the calculation of the
expected values of the single year ASMFR
m(x) by substituting into the model
equations the parametric estimates obtained
in the first step. The usefulness of the models
and the methods of their application can be
tested by devising a measure of goodness of
fit based on a comparison of the observed
and the expected values. Guided by Mitra
(1984), we decided to measure the goodness
of fit by the square of the correlation coeffi-
cient between the observed and the expected
values (by single year of age). These coeffi-
cients are shown in Table 1 for each type
and for each of the five years. It may be
mentioned that for the LS method, the
square of the multiple correlation coefficient
is the same as the squared correlation coeffi-
cient between the observed and the expected
values. -
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Table 1. Squared correlation coefficients
benween the observed and the expected values
of L1 = In m(x) and between the same of
L2 = In(—Inm(x)) by single years of age
by the two methods. (Age-interval: 18-49
vears), Hungary: 1960-80

Year  Squared correlation coefficients

for type

LILS LISE L2LS L2SE
1960 0.983 0989  0.995  0.996
1965 0983 0990 0997  0.995
1970 0973  0.979 0.995  0.997
1975 0964 0966 0995  0.991
1980 0970  0.967 0997  0.998

All the squared correlation coefficients
shown in Table 1 are large and the values
are uniformly higher for L2, though by
small amounts. Thus both the models are
quite good, with L2 having a slight edge
over L1. Interestingly enough, the difference
between LS and SE is not only very slight,
but in a few instances SE turned out to be
better than LS. Although the occasional
advantage of SE may be due to rounding
errors associated with small numbers, it
provides a clear demonstration that both
methods are comparable and work very well
in these examples.

It should be noted here that these measures
of goodness of fit compare the values of a
function of m(x) like L1 or L2 with those of
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its expected values E(L1) or E(L2) and as
such do not provide a direct comparison
between m(x) and E(m(x)). But the high
correlations between L1 and E(L1) and
between L2 and E(L2) lead us to expect
similarly high correlations between m(x)
and E(m(x)) where the E(m(x)) values are
obtained from E(L1) and E(L2) by reversing
the procedure used to compute L1 and L2
from m(x). This is clear from the squared
correlation coefficients between m(x) and
E(m(x)) shown in Table 2.

The last column of Table 2 shows the
squared correlation coefficients for the
Type I model fitted by the method of
moments (Valkovics (1984)) which like the
others are also very large. Comparing the
values in Table 2 with their counterparts in
Table 1, we find that L1LS has lower corre-
lation coefficients for the untransformed
data, but the opposite is true for the other
three. In fact, the coefficients for L1SE are
so high in Table 2 that L1SE, L2LS, and
L2SE can hardly be distinguished from one
another. The smallest value of the coefficient
for these three is found to be 0.990 while the
others are 0.995 and higher with several as
high as 0.999.

Next, we turn our attention to the fact
that the least squares method has the
inherent quality of equalizing the sums of
the observed and the expected values. This is

Table 2. Squared correlation coefficients between the observed and the expected values of
m(x) by the four types and the method of moments. ( Age-interval: 18-49 years), Hungary:

1960-80
Year Squared correlation coefficients for type

LILS LISE L2LS L2SE Moments
1960 0.980 0.990 0.997 0.996 0.989
1965 0.968 0.995 0.997 0.997 0.996
1970 0.959 0.997 0.997 0.997 0.975
1975 0.940 0.999 0.998 0.999 0.997

Calculated from the observed and the expected values shown in Valkovics (1984).
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Table 3.
18-49 years by types. Hungary: 1960-80

Total of the observed and expected marital fertility rates over the age interval

Year Observed Total marital fertility rates (18-49)

LILS LISE L2LS L2SE Moments
1960 2.867 2.978 2.881 2.868 2.909 2.809
1965 2.729 2.900 2.779 2.730 2.788 2.690
1970 2.923 3.185 2.978 2.922 2.984 2.892
1975 3.451 3.879 3.499 3.440 3.500 3.466
1980 2.776 3.192 2.796 2.779 2.805 2.777

a highly desirable feature and is found in
our least squares examples dealing with the
transformations L1 and L2 of the m(x) func-
tions. However, even though it is highly
desirable, there is no guarantee that the
graduated values of m(x) obtained by
inverting the expected values of L1 or
L2 will add up to the sum of the correspond-
ing observed values. Nevertheless, we have
reason to expect that these two sums should
be quite close since the quality of the model
in the transformed plane seems to have very
little scope for improvement. For the same
reason we can also expect that SE should
produce similarly matching values in spite
of its not having the control mechanism
of equalizing the observed and the expected
sums. In Table 3, we show these sums
of ASMFR values or the total marital fer-
tility rates (TMFR) obtained from these
procedures.

The discrepancy between the observed
and the expected model values of TMFR is
somewhat large for L1LS but quite small for
the other three. The difference ranges from
0.014 to 0.055 children for L1SE, from 0.029
t0 0.061 for L2SE and from —0.011 to 0.003
for L2LS. For these three, the discrepancies
are small and ignorable for all practical
purposes.

The last column of Table 3 shows the
TMFR values obtained by the method of
moments (Valkovics (1984)). Because this

model was based on the entire age-range
(15-49), the discrepancies between the
observed and the expected values are likely
to be higher for the 18-49 age interval and
indeed they are.

As before, L2 seems to be the better and,
of the two methods used to generate the
estimates, LS seems to have some advantage
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Fig. 1. Graduation of age-specific marital
fertility rates, Hungary, 1960
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Fig. 2. Graduation of age-specific marital
fertility rates, Hungary, 1970

over SE. The results are shown in greater
detail in the Appendix, Table 2, which
shows the ASMFR values averaged over
five-year age intervals. In that table we have
also shown the TMFR separately for the
age intervals 18-49 and 15-49. The latter
has been obtained by adding to the former
the rates for the ages 15, 16, and 17 estimated
from the model equations. As anticipated,
the discrepancies between the actual and the
graduated values are considerably larger for
this latter comparison. Other than that, the
goodness of fit of the models follows
the same pattern noted earlier. Figures 1-3
provide a visual comparison of the
observed and the model values by single
year of age for LISE and L2LS for the years
1960, 1970, and 1980.
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The TMFR values remained fairly stable
over these years except for 1975 (the Appen-
dix, Tables 1 and 2), which apparently
reflects the consequences of a short-lived
pronatalist policy instituted in 1973.
Accordingly, we would expect similar
stability in the parametric estimates if all
other sources of variation remain the same.
However, their values (see the Appendix,
Table 3) show considerable fluctuations for
L1 which do not seem to be attributable to
the other sources of variation. In contrast,
the L2 parameters are relatively stable. It is
possible that the variation in the L2 par-
ameters may have been caused more by the
differentials in the distribution of the rates
by age than by any other factor of major
consequence. These findings provide strong
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support for L2 for purposes of graduation
of ASMFR leaving the choice between LS
and SE to the researcher.

6. Summary and Concluding Remarks

In this paper, we have fitted graduated
models of age-specific marital fertility rates.
The monotonically declining nature of the
distribution of age-specific marital fertility
rates (ASMFR) led us to search for appro-
priate mathematical functions with similar
properties. We began by noting that the
Pearsonian Type I distribution was success-
fully used by earlier researchers to model
age-specific fertility rates (ASFR). Although
these distributions are unimodal in nature,
we were encouraged by the flexibility of the
Type I distribution to accommodate mono-
tonically declining functions. We opera-
tionalized the model by applying logarithmic
transformations to a linear form involving
the logarithms of ASMFR m(x), age x, and
the remainder of the fertile interval B — x.
Next, we recalled the results of another suc-
cessful modeling experiment involving the
life table survivorship probability /(x), x,
and o — x where o is the life span. There-
after, we decided to experiment with a
parallel model, also linear, in terms of
In (—In m(x)), In x, and In(B — x).

Two methods were used to estimate the
model parameters. The first was the tra-
ditional method of least squares. The second
used parameters obtained by solving three
simultaneous equations developed by
equating the observed and the model
ASMFR values at ages 20, 30, and 40.
These ages were chosen because they were
equispaced and cover a wide range of
the reproductive interval. Our experiment
with Hungarian data for the years 1960
through 1980 demonstrated excellent fit,
especially by the second model, as measured
by the correlation coefficients of 0.990 and

above between the observed and model
rates.

Further research with these and other
models should be conducted with other data
although we note that single-year data of
ASMFR are not readily available. Valuable
insights can be obtained about reproductive
behavior when such data are available. We
anticipate, for example, that the distribution
of ASMFR is influenced by the pattern of
marriage. Early marriages will tend to result
in lower ASMFR at older ages and vice
versa. Thus, the marriage pattern will be a
partial determinant of the slope of the dis-
tribution of ASMFR. It is quite possible
that some of the variations in the parameters
of our model may have resulted from
temporal changes in that pattern.
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Appendix Table 1. Hungarian age-specific marital fertility rates by single years of age’

Age Calendar years
1960 1965 1970 1975 1980

15 0.3514 0.5600 0.5883 0.8325 0.5982
16 0.3119 0.3219 0.3573 0.4912 0.4718
17 0.3292 0.3488 0.3828 0.4692 0.4321
18 0.3275 0.3229 0.3524 0.4237 0.3826
19 0.3188 0.3151 0.3444 0.3891 0.3336
20 0.2923 0.2920 0.3183 0.3487 0.3000
21 0.2672 0.2625 0.2672 0.3025 0.2654
22 0.2331 0.2211 0.2321 0.2758 0.2333
23 0.2034 0.1951 0.2046 0.2470 0.2034
24 0.1751 0.1662 0.1728 0.2217 0.1792
25 0.1538 0.1478 0.1631 0.2023 0.1547
26 0.1370 0.1271 0.1457 0.1757 0.1354
27 0.1138 0.1139 0.1244 0.1516 0.1119
28 0.0902 0.0996 0.1077 0.1323 0.0931
29 0.0911 0.0829 0.0906 0.1099 0.0795
30 0.0743 0.0730 0.0756 0.0960 0.0630
31 0.0644 0.0599 0.0663 0.0827 0.0509
32 0.0568 0.0488 0.0544 0.0662 0.0427
33 0.0490 0.0410 0.0441 0.0554 0.0346
34 0.0428 0.0358 0.0369 0.0416 0.0272
35 0.0377 0.0283 0.0290 0.0337 0.0224
36 0.0331 0.0229 0.0228 0.0264 0.0177
37 0.0225 0.0180 0.0189 0.0200 0.0128
38 0.0226 0.0157 0.0147 0.0157 0.0103
39 0.0176 0.0121 0.0121 0.0111 0.0074
40 0.0154 0.0095 0.0081 0.0089 0.0055
41 0.0089 0.0068 0.0055 0.0058 0.0039
42 0.0073 0.0044 0.0043 0.0041 0.0023
43 0.0055 0.0029 0.0028 0.0019 0.0015
44 0.0025 0.0019 0.0015 0.0013 0.0009
45 0.0015 0.0011 0.0008 0.0007 0.0004
46 0.0008 0.0004 0.0003 0.0002 0.0002
47 0.0004 0.0000 0.0001 0.0000 0.0001
48 0.0002 0.0001 0.0001 0.0001 0.0001
49 0.0001 0.0000 0.0000 0.0000 0.0000

' Source: Demographic Yearbook, 1960-1980, Central Statistical Office, Budapest,
Hungary
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Appendix Table 2. Observed and the expected age-specific marital fertility rates by types.
Hungary: 1960-80

Age-group Observed Age-specific marital fertility rates
LILS LISE L2LS L2SE Moments
1960
18-19 0.323 0.400 0.355 0.329 0.340 0.299
20-24 0.234 0.239 0.224 0.230 0.230 0.220
25-29 0.117 0.114 0.115 0.124 0.119 0.127
30-34 0.058 0.053 0.058 0.059 0.057 0.063
35-39 0.027 0.022 0.026 0.023 0.025 0.025
40-44 0.008 0.007 0.009 0.007 0.011 0.006
45-49 0.000 0.000 0.002 0.001 0.005 0.000
18-49 2.867 2.978 2.881 2.868 2.909 2.809
15-49 3.859 4.794 4413 4.116 4218 3.871
1965
18-19 0.319 0.428 0.341 0.331 0.332 0.317
20-24 0.227 0.239 0.223 0.225 0.227 0.217
25-29 0.114 0.104 0.115 0.115 0.118 0.116
30-34 0.052 0.044 0.054 0.051 0.053 0.054
35-39 0.019 0.017 0.021 0.018 0.020 0.020
40-44 0.005 0.005 0.006 0.005 0.006 0.004
45-49 0.000 0.001 0.001 0.001 0.001 0.000
18-49 2.729 2.900 2.779 2.730 2.788 2.690
15-49 3.960 4.957 4.172 3.999 4.061 3.948
1970
18-19 0.348 0.495 0.359 0.358 0.354 0.345
20-24 0.239 0.266 0.242 0.243 0.244 0.236
25-29 0.126 0.109 0.126 0.123 0.128 0.124
30-34 0.056 0.044 0.058 0.052 0.057 0.056
35-39 0.020 0.016 0.021 0.018 0.021 0.020
40-44 0.004 0.004 0.005 0.004 0.005 0.004
45-49 0.000 0.001 0.000 0.000 0.001 0.000
18-49 2.923 3.185 2.978 2.922 2.984 2.892
15-49 4.250 5.660 4.400 4.290 4.325 4.242
1975
18-19 0.406 0.632 0.400 0.418 0.400 0.424
20-24 0.279 0.326 0.285 0.288 0.285 0.283
25-29 0.154 0.126 0.155 0.147 0.156 0.147
30-34 0.068 0.049 0.070 0.061 0.070 0.066
35-39 0.021 0.017 0.024 0.020 0.024 0.023
40-44 0.004 0.004 0.005 0.004 0.005 0.005
45-49 0.000 0.001 0.000 0.000 0.000 0.000
18-49 3.451 3.879 3.499 3.440 3.500 3.466
15-49 5.244 7.163 4.978 5.010 4.979 5.220
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Appendix Table 2. Continued.
Age-group Observed Age-specific marital fertility rates

LI1LS L1SE L2LS L2SE Moments

1980

18-19 0.358 0.574 0.370 0.366 0.360 0.363
20-24 0.236 0.269 0.235 0.240 0.239 0.235
25-29 0.115 0.093 0.112 0.112 0.115 0.113
30-34 0.044 0.033 0.047 0.043 0.046 0.046
35-39 0.014 0.011 0.015 0.013 0.015 0.014
40-44 0.003 0.003 0.003 0.003 0.003 0.003
45-49 0.000 0.000 0.000 0.000 0.000 0.000
18-49 2.776 3.192 2.796 2.779 2.805 2.777
15-49 4278 6.493 4.329 4.199 4.195 4.267

Appendix Table 3.  Estimates of the parameters of the L1 and L2 models by the LS and the
SE methods as well as the observed values of the total age- speczﬁc marital fertility rates
(TMFR) over the age-interval 18-49. Hungary. 1960-80

Year TMFR Parameter Estimates by type
LILS LISE L2LS L2SE

1960 2.867 Constant —1.491 —2.324 —3.961 —5.748

Coefficient of

() In x —1.898 —1.600 1.579 1.904

(2) In (50 — x) 1.793 1.737 —0.169 0.064
1965 2.729 Constant —0.970 —7.785 —4.319 —4.503

Coefficient of

(D) In x —2.217 —0.764 1.691 1.708

2) In (50 — x) 1.935 2.596 —0.163 —0.125
1970 2.922 Constant —0.256 —10.529 —4.766 —4.256

Coefficient of

(1) In x —2.456 —0.306 1.813 1.694

(2) In (50 — x) 1.974 3.017 —0.158 —0.201
1975 3.451 Constant 0.497 —14.882 —5.567 —3.761

Coefficient of

() In x —2.683 0.486 2.023 1.645

2) In (50 — x) 2.021 3.616 —0.153 —0.339
1980 2.770 Constant 3.698 —10.886 —5.652 —5.316

Coefficient of

(1) In x —3.504 —0.490 2.041 1.952

(2) In (50 — x) 1.764 3.285 —0.102 —0.118

-



