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How Survey Methodologists Communicate

Carl-Erik Sirndalt

Abstract: A number of increasingly popular
survey sampling terms are built on the distinc-
tion between model-based and design-based,

for example, is “design-based inference” as .

opposed to “model-based inference”. These
two concepts appear to have clearly defined
meanings in the literature. The distinction is
also often applied, but not without ambiguity,

1. Introduction

This paper deals with some basic conceptual
issues, but does not so much concern the
foundations of survey sampling as the language

ologists.

In the summer of 1977, at the 7th Nordic
Conference on Mathematical Statistics, 1
lectured on “Design-based and model-based
inference in survey sampling”. (The notes
were subsequently published; Siarndal (1978).)
Given the time elapsed, the title now strikes
me as interesting. The distinction between
“design-based” versus “model-based” was, [
believe, a natural linguistic byproduct of the
sometimes intense discussions that specialists
in the foundations of survey sampling were
involved in during the 1970’s. A short and
descriptive vocabulary was needed to convey
a basic distinction, and so the terms emerged.
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to nouns such as approach, theory, estimator
and others. We examine some of the resulting
terms and suggest interpretations in cases
where the meaning is not automatically clear.

Key words: Survey sampling, design-based,
model-based, inference, confidence intervals,
(generalized) regression estimator.

The distinction caught on - apparently it
filled a need — and today “design-based” and
“model-based” are popular modifiers of a

number of nouns; they are increasingly seen in
currently in vogue among survey method-

important places such as titles of papers, lists
of key words, and titles of sessions at profes-
sional meetings.

“Inference” is far from the only noun that is
qualified, in the current sampling literature,
as being either “model-based” or “design-
based”. The distinction is often applied to
other words such as approach, theory, view-
point, standpoint, framework and analysis.
The exact meaning of the resulting terms is not
always clear, in my opinion. The most
common of all applications of the distinction is
perhaps in qualifying the word “estimator”.
AsTIargue in Section 8, “design-based estima-
tor” and “model-based estimator” are particu-
larly unfortunate and ambiguous terms. In
addition, writers use related terms such as
“model-dependent” (approach, estimator, etc.)
and “model-free” (approach, estimator, etc.
and even “design-free”. ‘

Those wishing to see a number of these
terms in actual use are referred to the recent
important paper by Hansen, Madow and
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Tepping (1983), and in particular to the long
discussion that follows that article. We should
keep in mind that there do not exist generally
agreed upon definitions for some of the terms.
Rather, they are used informally, for rapid
(but often imprecise) communication. When
terminology is not firmly rooted, hesitation
and risks of misunderstanding arise. For
example, in commenting on the terms “model-
based inference” and “model-dependent infer-
ence” used by Hansen, Madow and Tepping
(1983), Little (1983) states “1 dislike this
terminology, and shall use the terms model-
based design, model-based estimation, model-
based inference to describe the use of
models ...”. If no eyebrows are raised when
someone dislikes certain scientific terms and
promptly proposes his own “improved”
terms, it is, of course, because no generally
accepted terminology exists, and because the
scientific field is in a state of development. I
hope that the survey sampling literature is at
the point of converging on a terminology that
we can all accept. If not, discussions of basic
issues in survey sampling will continue to be
difficult to follow both by theoreticians and
practitioners.

The compréhensivc paper by Kalton (1983)
on utilization of models in surveys is another
example of an article with frequent use of
. terms that involve the distinction between
design-based and model-based. Other refer-
ences of interest in this connection are
Rennermalm (1980), Smith (1981), Holt,
Smith and Winter (1980), Little (1982), Sund-
berg (1983), Wright (1983), Sérndal and
Wright (1984). .

I criticize no one in this connection, except
myself, for a certain inconsistency. Firmly
rooted definitions have largely been lacking,
and I notice that my own usage of these terms
has not been entirely consistent, as seen by
comparing Sdrndal (1978), (1980), (1981),
(1982), (1984). This consideration underlies
the remarks in this paper.
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For sake of illustration, I have chosen to
discuss the design-based versus model-based
distinction as applied to three concepts,
namely, “inference” (Sections 2-5), “approach”
(Section 6) and “estimator” (Sections 7-8).
Except in the case of “inference”, the resulting
terms are not without ambiguity and the risks
for misunderstanding are considerable.

2. Design-based confidence intervals

As is customary, we mean by “inference” a
statement made about an unknown popula-
tion quantity, in terms not of full certainty but
of probability. In inference by means of a
confidence interval, the uncertainty is expressed
by a “confidence level” of, say, 95 %; in the
case of inference through a hypothesis test, by
a “significance level” of, say, 1 %. In the
discussion below, we concentrate on confi-
dence intervals for the finite population mean
y = =¥ y/N. (The population, denoted U,
consists of N units labelled k = 1,....N.) If ¥ is
an estimator of y, then most sampling statisti-
cians will find it natural to calculate a confi-
dence interval as

§+1.96VV,G)

The constant 1.96 guarantees an approx-
imately 95 % level of confidence, in sufficiently
larg? samples, and VP@) is an estimator of
V,(y), the variance of y “over repeated
samples” drawn with the sampling design
denoted p. It is also popular among survey
statisticians to express the precision of the
estimate § in terms of the coefficient of varia-
tion,

@) =VV,G) ¥

2.1)

For example, one may be satisfied that the

estimate is sufficiently precise if cv(y) < .10.
We need only think for a moment to realize

that the use of the interval (2.1) rests on at
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least two additional assumptions. One is thatf
is an approximately unbiased estimator of y.
Otherwise, if in large samples the bias of f
does not approach zero while the variance
does, then the interval (2.1) will have
poor coverage properties: The probability of
covering y will be essentiélly zero in large
samples. We therefore assume thaty is “design-
consistent”, so that the distribution, over
repeated samples, of ibecomes increasingly
concentrated around the true value y as the
sample size grows larger.

The second assumption we make in using
the interval (2.1) concerns the sampling
design: It must be a “probability sampling
design”, that is, one under which every unit in
the finite population has a known positive
probability, m, of being chosen. (It is intuitive-
ly clear that severely biased estimates could
arise otherwise, namely, if we try to estimate
the mean of all population units by a sampling
procedure that gives some of the units no
chance of being chosen.) The confidence
level attached to (2.1) will under these
assumptions be roughly 95 % provided the
population is not too irregular in shape and
the sample not too small.

For example, suppose the sampling design
is stratified random sampling. If an auxiliary
variable x is available, a traditional estimator
of y is the “separate ratio estimator”,

2.2)

(The strata are labelled h=1,..., H; t,, is the
known total of the auxiliary variable x in the
h:th stratum, and y,, X, the respective means
of y and x in the sample s, drawn by simple
random sampling from the A:th stratum). The
statistician may not recall offhand the formula
for the estimated variance, but a look in any of
the standard sampling texts will indicate that
an appropriate formula to use in the calcula-
tion of the interval (2.1) is

(2.3)

where W, = N,/N, n, is the number of
units drawn by simple random sample from
the Nj units in the h:th stratum, and S,
is the variance in s, of the residuals
€ =Yk~ CV-S,,/ fs,,) X-

For the statistician it is, of course,
trivial to interpret the interval (2.1) in the
appropriate probability terms, but the user of
statistics (who is probably more interested in
the point estimate fthan in the interval) is less
keenly aware of the meaning of this interval.
To illustrate, we can imagine the following
conversation between the Statistician and his
client (the User), an interested layman. The
Statistician has carried out a survey for the
User; we enter the scene at a point where the
Statistician has just presented the results of
the survey, including a confidence interval
calculation for y.

User: 1 am satisfied with the precision indicat-
ed by your interval. After all, our budget
permitted only a limited sample size. Inciden-
tally, I recall from my statistics background
that when you talk about 95 % confidence, it
somehow measures the chances that the inter-
val covers the unknown population mean.

Statistician: You are right. The probability is

- 95 % that our selection mechanism yields a

sample for which the interval covers y. More
precisely, suppose we drew not one but 10 000
samples from the finite population, replacing
each sample and using each time the sampling
design that we have agreed on. For each
sample, imagine that we calculate the corre-
sponding confidence interval by the formula
(2.1). Then about 9 500 of the 10 000 intervals
will contain y.

User: 1 know, of course, that you statisticians
always make statements with less than full
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certainty. I have no difficulty with this. After
all, our sample is only a small part of the finite
population. And it seems entirely natural to
me to associate this lack of full certainty with
the repeated sampling process you managed
to describe in a few words.

3. Design-based versus model-based infer-
ence

We need not hesitate about the meaning of the
terms design-based inference and model-
based inference. Equivalent definitions have
been given several times in the literature.
According to Sirndal (1978), in design-based
inference “the source of randomness is the
probability ascribed by the sampling design to
the various subsets of the finite population.”
By contrast, model-based inference is derived
" by “looking at the values y,...,yy associated
with the N units of the population as the real-
ized outcome of random variables Yy,...,Yy
having a N-dimensional joint distribution &,
where the superpopulation & is modeled to
reflect the available background knowledge”.
Two different probability distributions are
involved. It is convenient to call the former
“the p-distribution”, the latter “the E-distri-
bution”.

Smith (1978) makes essentially the same
distinction (without bringing in the terms
design-based and model-based): “For survey
analysis we can distinguish two principal con-
tenders. These are (i) inferences based on the
p-distribution generated by the randomisation
in the design and (ii) inferences based on the
E-distribution, a hypothetical distribution of
errors associated with a stochastic model
which is assumed to underlie the data.*

The distinction has found its way into the
Encyclopedia of Statistical Sciences, perhaps a
sign that the definition can now be accepted
with some degree of unanimity. Under the
entry “Inference, design-based vs. model-
based” (Koch and Gillings (1983)) we read:
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“Design-based and model-based inference are
alternative conceptual frameworks for address-
ing statistical questions from many types of
investigations. These include: Sample
surveys of randomly selected subjects ... For
sample surveys, the probabilistic interpreta-
tion of design-based inferences such as confi-
dence intervals is in reference to repeated
selection from the finite population via the
given design.” By contrast, model-based
inferences are obtained via “a superpopula-
tion with assumptions characterizing the
actual finite population as one realization; and
so their probabilistic interpretation is in
reference to repetitions of the nature of this
postulated sampling process.”

Other recent references that discuss the
distinction are Little (1983), Sundberg (1983),
and Hansen, Madow and Tepping (1983).

Instead of “design-based inference” some
authors prefer the synonymous terms
“randomization inference” and “probability
sampling inference”; see, for example,
Hansen, Madow and Tepping (1983). (These
authors reserve the term “sample design” to
describe what several recent writers call a

‘strategy, that is, the combined choice of a

sampling design (or plan) and an estimator.)

It also follows that a natural although
seldom-used synonym for “model-based infer-
ence” is “superpopulation inference”. In other
words, the distinction that we are examining
could also be expressed with clarity as “random-
ization inference” versus “superpopulation
inference.” ‘

Cases arise where one or the other
kind of inference is more appropriate or
in fact the only choice. Some populations are
too extensive or complex to be sampled with a
probability sampling scheme. Then model-
based inference is the only possibility. An
example would be a study of the prevalence of
a health condition in general, rather than at a
fixed point in time. It is not an exaggeration to
say that the settings in which both types of
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inference are applicable exhibit considerable
harmony between them. In what follows we
shall see examples of (relatively minor)
conflicts arising when both are applicable, as
well as instances where one of them is strongly
preferred or the only possibility.

4. The model-based interval

We have seen that the p-distribution underlies
the design-based interval (2.1). The E-distri-
bution is used to construct the model-based
interval as follows: with reference to the model,
we can claim that the unknown difference
between the estimated mean and the true
mean, § -y, is a random quantity enclosed
between the limits

+1.96 VV¢ (5-7)

with 95 % level of confidence. The resulting
interval for y is

Y+ 1.96 VY (5-7), (4.1)

where VE (31' ~y)is a“good” estimate (from the
point of the model) of the model variance,
Ve (}7 -y),of ?—7. This type of variance refers
to repeated generation of populations y,,...,yy
obeying the model, given that a fixed set s has
been drawn as a sample and that, consequent-
ly, the complement set, § = U-s, is the “non-
sample”.

(Prof)onehts of model-based inference some- |

times point out that it is of no interest to
consider, as one does in design-based inference,
the samples s that could have been obtained,
but were in fact not obtained. The proponent
of design-based can retort: Why should one,
as is done in model-based inference, consider
populations of size N other than the one and
only population that is actually present, since
all but the actual one are purely hypothetical?
Both kinds of inference are frequentist. They
refer to repetitions: repeated samples in one
case and repeated populations in the other.
Now, if we were to use Bayesian inference, we
may do away with repetitiors altogether. But

this is a different story; one that is not consid- -
ered in this paper.)

After a moment of further reflection, we
realize that (4.1) also requires that y y y is of
zero (or essentially zero) expected value
under the model; if not, the interval would
systematically fail to contain y.

In the example involving stratified sampling
and the separate ratio estimator (2.2),
suppose that the superpopulation model
specifies that the y, are independent random
variables and that the regression of y, on x;
passes through the origin with a separate slope
in each stratum, so that

Yie=Bnxi + &
with
E¢ () =0, Vi (&) = 0f = x, 07, 4.2)

for any unit k in stratum h. Here o} is a

“model variance” for stratum h. A calculation
(of which we leave out the details) shows that
) . H
A ] 1 2 .
2 = —_——— 0
Vi(y-y) hEI “/Izt(nh Nh) ayOh 4.3)
with a), = Xy ¥/ X,,. (Here Xy, X, and X, de-
note the respective means of x in the stratum,
U,, in the sample from the stratum, s;,. and in
the non-sampled part of the stratum, s, = U, —
Sh.)
The modelist will now probably proceed by

replacing the unknown o? by its unbiased
(under the model) estimate

where b, = y,/ X,,. In his calculation of the
model-based interval (4.1), he would thus use

N _ H
V.09)= I Wi - ad @9
h h

By contrast, the design-based interval was
calculated according to (2.1) with the variance
estimate (2.3).
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In this example, both procedures use the
same point estimate, but the inferences still
differ: Atacommon95 % level of confidence,
the width of the two intervals will not be the
same, since (2.3) differs from (4.4).
~ The difference can be numerically impor-
tant. Which is the correct 95 % interval? Both
are, of course, mathematically correct. The
difference is caused by differing “bases of
inference”. (We note that model-based
inference “depends” on the model in a very
crucial manner; Hansen, Madow and Tepping
(1983) therefore prefer the term “model-
dependent inference”.)

Let us return to the Statistician and the
User. We now enter the scene at a later point
where the statistician has just explained that,
in addition to the design-based interval using
(2.1) and (2.3), a model-based interval using
(4.1) and (4.4) was also calculated, “just to see
how they compare”. Perhaps it would have
been preferable not to mention this.

User: It seems to me that you are now
involving two different notions of probability.
It was all right with me to interpret the proba-
bility associated with the confidence interval
as “the coverage rate in repeated samples”.
Frankly, what I mainly want is one number,
the point estimate, jA? In my work, I need
the point estimate, and compared to this,
the interval is of secondary interest. Sure,
I want the estimate f to be correct as far as
possible, but how you methodologists arrive
at guaranteeing the near-correctness is not my
major concern. If both of your intervals for y
are equally valid, I will naturally opt for the
shorter one, if the need arises for an indication
of precision. What you are saying about the
two procedures is intriguing and confusing;
unfortunately, I don’t have time to sit down
and really think through various interpreta-
tions of elusive concepts such as “probability”
and “degree of confidence”. The repeated
sampling interpretation that you first gave
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seemed very palatable, although I can also
follow the main lines of your second argu-
ment.

Statistician: You happened to strike on a very
important word, namely, “valid”. The model-
based interval is valid only if the assumptions
of the model are met. If the assumptions seem
reasonable to you, we can settle for the model-
based interval; if not, the design-based inter-
val should be chosen, since it is valid regard-
less of any assumptions. Let me emphasize
again that the two intervals represent two
different conclusions about one and the same
parameter, the mean y of the “real” finite
population. I mention this because I am sure
that in your work you sometimes feel the need
to extend the conclusions beyond the finite
population to the conceptual superpopulation
expressed by a model. Then a model-based
inference is natural.

Let us leave our two friends here; the
Statistician has probably added further to the
consternation of the User through his final
comment implying that the User should
specify if he wants conclusions about the
actual finite population or about a superpopu-
lation.

5. The role of assumptions

The Encyclopedia of Statistical Sciences goes
on to point out that “design-based inferences
involve substantially weaker assumptions
than do model-based inferences”. This
interesting — and justified - statement
deserves a comment, since the statistician is
naturally inclined to work under the weakest
possible assumptions. We have seen that it is the
concept of variance that creates the principal
difference between the two kinds of inference.
Design-based inference refers to “variance
under the p-distribution”; model-based infer-
ence to “variance under the E-distribution”.
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The two distributions are very different in
nature: The p-distribution expresses the
randomization rule actually used in the selec-
tion of a sample. By contrast, the E-distribu-
tion does not specify a rule of action, nor is it
“used” to generate the finite population. It is
only assumed that nature created the finite
population according to the E-distribution.
That is, the E-distribution is hypothetical, a
model of the finite population. In their discus-
sion of model assumptions, Hansen, Madow
and Tepping (1983, p.790) say “... to ignore
the type of inference that can be made without
such assumptions takes unnecessary risks
and may result in misleading inferences”. The
inference that does not take “unnecessary
risks” is, obviously, the design-based one.
Design-based inference is, if not valid regard-
less of any assumptions, at least valid under
very weak assumptions. (We have pointed to
the fact that the interval (2.1) requires, in
order to be valid at the 95 % confidence level,
that the population is not too extreme, etc.)

When an inference dépcnds on assump-
tions, statisticians worry about the robustness
of the conclusions, that s, the sensitivity of the
conclusions to changes in the assumptions.
Obviously, in model-based inference, robust-
ness becomes a question of first-order impor-
tance. By contrast, in design-based inference,
robustness is so to speak built into the proce-
dure, and is therefore less of an issue.

We have seen that the design-based infer-
ence builds on only one kind of repetition,
namely, repeated draws of samples s, under
the given sampling design, from the fixed
population. Design-based inference is model-
free. (We have a parallel in another branch of
statistics: so-called non-parametric inference
can be said to be distribution-free.)

Model-based inference, too, needs only one
kind of repetition, namely, repeated realiza-
tions of population vectors (y,,...,yn) accord-
ing to the specifications of the model. There is
no need to consider repeated draws of

samples; the sample is fixed. As Smith (1981,
p. 269) puts it: “In inference with respect to
the E-distribution, the p-distribution does not
enter.” The model-based inference can be
described as design-free.

Whereas the model-free property is seen
by many as a strong selling point in favour of
design-based inference, no one looking for
“weaker assumptions” will be particularly
encouraged to hear that model-based infer-
ence is design-frec. The reason should be
obvious, in light of the discussion earlier in
this section: model-free means “assumption-
free”, whereas the design-free feature does
not rid us of any assumptions. On the other
hand, the design-free property can be seen as
an advantage when conclusions are sought
from samples selected by non-probability
sampling schemes. An example is quota
sampling. But in the absence of randomized
selection, a number of delicate issues arise.
Prudent sampling statisticians regard quota
sampling with a skeptical eye.

Given then that “design-based inferences
involve substantially weaker assumptions”,
the innocent reader may wonder why one
would ever even discuss the possibility of
model-based alternatives, with their “unneces-
sary risks™ and possibilities of “misleading
results”.

It is beyond our scope to go into the detailed
reasons why model-based inference is still
considered. Suffice it to say that model-based
inference has some strong points in its favour.
Part of the reason is mathematical tractability:
model-based inferences are often simple to
develop, whereas in design-based inferences,
the estimators are often biased in small
samples and only asymptotically unbiased,
etc. And, as already noted, the model-based
variety of inference is just about the only pos-
sibility for non-probability samples.

Another reason is that design-based infer-
ence cannot always be relied on without sup-
plementing the argument, at some point, with
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assumptions. A striking example occurs when
the sample is reduced due to a certain rate of
non-response. The non-response occurs
according to an unknown distribution, and
assumptions simply must be made about its
nature. The design-based inference in this case
becomes mixed with some model assump-
tions, a realistic attitude. A statistician who
refuses to admit anything but purely design-
based inference, if one can be found, can be
said to believe that “deliberate randomization
creates the only probability _distribution
appropriate for statistical inference”. These
are the words used by Royall (1983) to define
what he calls the “Randomization Principle”.
To stick unequivocally to this principle is
often impossible, as we have just remarked.
Hansen, Madow and Tepping (1983), and
many with them, favour design-based inference
as far as it can be reasonably applied. Over a
long history of survey sampling, this conduct
has led to successful results. In my opinion,
this attitude is quite different from that of a
dogmatic believer in the Randomization
Principle; I am not sure such a statistician
exists. Royall (1983), on the other hand,
denies design-based inference. The ideological
debate is, however, beyond the scope of this
paper; the interested reader is referred to
Hanscn, Madow and Tepping (1983), and to
the discussion following the article. (In their
purest forms, design-based inference and
model-based inference are, as we have just
seen, model-free and design-free, respective-
ly. As Smith (1981) points out, thére are also
“hybrid theories” that combine elements of
both kinds of inference. For example, Hartley
and Sielken (1975) discuss a set-up for infer-
ence that involves a two-step sampling proce-
dure: Step 1: Draw a “large sample” of size N
from an infinite super population; Step 2:
Draw a sample of size n<N from the large
sample of size N obtained in Step 1.)
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6. Design-based approach, model-based
approach: What is implied?

The terms design-based approach, model-
based approach are often used in oral and
written communication, but in a rather
informal way. There does not seem to be a
generally agreed-upon definition of the two
terms (and perhaps none is necessary, if we
accept informality). Nevertheless, let us
examine the two terms, assuming that the
design-based approach uses design-based
inference and, correspondingly, that the
model-based approach uses model-based
inference. This is highly appropriate because
after all, the way in which we make conclu-
sions about the population is the cornerstone
in any statistical approach. In the survey
sampling context, the statistician’s total
approach contains a number of decision
points. Reducing an approach to its bare
essentials, let us say that it consists of three
steps:

(a) the choice of a sampling design (or, as
some say, a sampling plan), and the
execution of this design to produce one
single sample, s;

the choice of an estimator (that is, is a
mathematical formula thought to pro-
duce numbers that are, on the average,
near the truth), and the actual calcula-
tion, by entering the sample data into the
formula, of one single estimate ?;

the making of an inference about one or
more " parameters of the finite popula-
tion. This includes the choice of a vari-
ance estimator formula, the calculation
of the variance estimate, and, finally, the
calculation of a confidence interval or a
Eoefﬁcient ‘of variation for the estimate

y.
Here, (a) and (b) together are often called a
(sampling) strategy.

(b

©
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Let us first examine how the design-based
approach handles the three steps (a), (b) and
(c). We have argued that this approach uses
design-based inference, which presupposes
three elements mentioned in Section 2: (1) on
the part of the sampling design that ;t;, > 0 for
all k (so that we have a probability sampling
design); (2) on the part of the estimator that it
is design consistent; (3) on the part of the
variance estimator that it refers to variability
over repeated samples s, in other words, that
variability is measured with reference to the
p-distribution.

As long as these three elements are present
in step (c), the design-based approach may
take every possible advantage in steps (a) and
(b) of relationships existing between the
variable(s) of interest and auxiliary variables.
This leaves considerable room for the statisti-
cian to use ingenuity and good judgment to
model relationships and put them to work
within the first two steps of the design-based
approach.

If we assume that there is no non-response,
can the design-based approach be model-
free? That is, can the approach be carried
out without relying at all on modeled relation-
ships? Technically speaking the answer: is
yes, for none of the steps (a), (b) and (c)
require a modeling effort. But practically
speaking the answer is no: in a situation
where some knowledge about relationships is
available, it would be wasteful not to exploit
such a possibility for improvement. A design-
based approach with no element of modeling
seems to result in only the most naive of
procedures: a simple random sampling design,
and estimation through the sample mean.

The following remark by Hansen, Madow
and Tepping (1983, p. 778) is clearly
concerned with steps (a) and (b) of the design-
based approach: “... models of the population
may suggest useful procedures for selecting
the sample or the estimators. This is

often done in probability sampling to great
advantage”. (For “probability sampling”, we
may substitute “design-based approach”.)
Kalton (1983) points out that “current
practice makes considerable use of theoretical
models to help in the design of samples, but
seldom to the extent that the validity of
the results depends on the models used”.
According to these points of view, models can
be most helpful in steps (a) and (b), but to
involve a model in step (c) may lead to invalid
conclusions. Thus models guide the sampling
strategy but their role ends there. If a model is
reasonably correct, a good strategy will result.

Concerning step (a), the use of probability-
proportional-to-size selection, say, at the
first stage of a two- or multistage design, can
be motivated by the assumption that the
unknown cluster totals are roughly propor-
tional to the size-measures; Horvitz-Thompson
type estimation will then lead to a small
variance. Other uses of model assumptions at
the design stage include assumptions to guide
the choice of cluster size in cluster sampling,
or assumptions made in attempts to approx-
imate the theoretically optimal Neyman allo-
cation of a stratified sample.

A characteristic of an estimator considered
suitable for the design-based approach is that
it take into account the sampling design by
attaching to each observation the appropriate
“sampling weight”. For the k:th unit, this
weight is 1/m,, the inverse of the inclusion
probability. If model assumptions were used
to determine the sampling design, the estima-
tor is hence “automatically” influenced by
that model. This is true for the basic Horvitz-
Thompson estimator,

_§= N_I p) yk/nk
kes

as well as for simple or multiple regression
estimators (see Section 8),
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~ q A N
2 e
y=N!Z yi/m; + ]Elb, (=2, %= Z Xl ) b

(6.1)
In the latter case the relationship between y
and xq,.-- Xj,...,X, enters explicitly into the

formula.

As Hansen, Madow and Tepping (1983)
putit, “... if we know enough about a relation-
ship in the population we should use that
knowledge. We can use it in ways such that the
validity of the inference does not depend on
the validity of any assumption”. The estimator
(6.1) appeals directly to the regression
relationship, and is still appropriate for
design-based inference. Special cases of (6.1)
include ratio, simple and multiple regression
estimators; the estimator (6.1) can thus be
said to be determined by a design-model pair,
see Section 8. Traditional sampling texts justi-
fy the classical ratio and regression estimators
on correlational grounds only, with implicit
rather than explicit modeling.

Let us now see how the model-based

approach handles steps (a), (b) and (c).
The inference will be model-based. As we
observed in Section 4, this requires: (1) on the
part of the estimator that it be consistent or
unbiased under the model; (2) on the part of
the variance estimator that it refers to variabi-
lity over repeated realizations (y,....yn)
under the model. An advocate of the model-
based approach may also fix certain minimal
requirements for the sample selection proce-
dure, as a means of protection against model
breakdown. Hansen, Madow and Tepping
(1983) point out that the model-based
approach (which they would probably rather
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describe as model-dependent) includes “a
sampling plan that may or may not require
randomization in sample selection”, while
“the estimators need not be randomization-
consistent”; however, the approach “may
have substantial advantages if the model is
appropriate it may then be possible
unequivocally to adopt a best sampling plan or
best estimator.”

The sample selection may thus be random-
ized in the model-based approach, but
non-randomized sampling schemes are not
exclyded. Non-randomized schemes include
judgment (quota) sampling, balanced sam-
pling and purposive sampling. Such plans can
be accommodated in the model-based
approach, since the probabilistic structure
derives from the model alone. However, they
do not fit into the design-based approach,
where the argument requires that known,
positive inclusion probabilities be attached to
the various units.

Can the model-based approach be entirely
free of randomization elements? Theoretical-
ly speaking, this is possible. However, if the
sample selection is not randomized, the
modelist will take other measures to protect
against model misspecification. One such
procedure is balanced sampling, that is, the
sample is chosen purposely to strongly resemble
the population on key characteristics. One
may require that the sample means of known
control variables agree with their counterparts
for the whole population.

We can summarize the two approaches as
follows:

Approach Sample selection Choice of Inference (confidence interval)
) estimator
Model-based Randomized or non- Optimal estimator, Based on assumed E-distribution,

randomized (e.g..

balanced) sampling.
Design-based Model may help;
randomization is
necessary.

given the model.

Often guided by
model to profit from
auxiliary informa-

thus dependent on its validity.

Based on p-distribution; model-
free.

tion.
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7. Design-based estimator, model-based

estimator: What is implied?

The terms design-based and model-based are
abundantly used in the literature to qualify the
word “estimator”. In my opinion, it is in this
connection that considerable confusion is like-
ly to occur. What exactly is a design-based
estimator, a model-based estimator? The
literature does not converge on one widely
accepted meaning of the two terms, just as was
the case with design-based approach and
model-based approach.

The most immediate interpretation is the
following: a design-based estimator is one that
is used, or can be used, in the design-based
approach. Correspondingly, a model-based
estimator is one that fits into the model-based
approach. As we have argued, this requires
certain basic properties of the estimator. The
design-based estimator must be design-consis-
tent or design-unbiased, and will therefore be
expressed in terms of sample-weighted obser-
vations. The model-based estimator must be
model-consistent or model-unbiased and will
probably be optimal under the given model; it
will most likely ignore the sampling weights
and will therefore be biased under repeated
sampling.

For example, Kalton (1983) certainly has in
mind the design-based approach when he
writes: “The large sample sizes typical of most
surveys is the other characteristic that general-
ly favors design-based estimators. Sample
sizes are usually chosen to be large enough to
provide estimators of sufficient precision for
the main survey objectives ...” (Here “preci-
sion” obviously means “variance over repeat-
ed samples”.) Kalton goes on to say: “Besides
making model checking a major undertaking,
the multipurpose and multivariate nature of
surveys -causes another difficulty for the
model-based approach: the model-based esti-
mator may be suitable for some statistics but
not for others.” It is implied that the model-
based approach uses a model-based estimator.

~ Reasonable though they may seem, these
interpretations of “design-based estimator”
and “model-based estimator” are not beyond
reproach.

A first difficulty is the obvious one that the
same estimator can, in a given situation, be
recommended by both approaches. Should
such an estimator then be called design-
based or model-based?

For example, consider the separate ratio
estimator (2.2) discussed in Section 1. This
classic estimator agrees with the design-based
approach under the designs of simple random
sampling and stratified simple random
sampling; it also agrees with the model-based
approach, under the model (4.2) which postu-
lates a regression through the origin separately
for each stratum. Thus the separate ratio
estimator fits into both approaches: it is a
design-based estimator for certain designs,
and at the same time a model-based estimator
for a certain model formulation.

There is another difficulty associated with
the suggested interpretation. Estimators
destined for the design-based approach can be
derived by a formal technique (see Section 8)
that builds directly on a model; the separate
ratio estimator (2.2) is an example. The result
is a design-based model-based estimator.
Gibberish, some would say. Not at all, if we
pay attention to each word. An estimator can
perfectly well be both design-based and
model-based, the former in the sense of fitting
into the design-based approach, the latter in
the sense of being constructed by means of a
model.

“Design-based model-based estimator”
sounds nonsensical because instinctively we
interpret the design-based feature as being in
opposition to, or excluding, the model-based
feature, and vice versa. In Section 5, we found
this exclusiveness to hold for the dichotomy
“design-based inference” and “model-based
inference”: the former is model-free, the
latter design-free. With respect to “estimator”,
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however, the exclusiveness does not apply:

the estimator in the design-based approach

will often have model features. (Itis less likely

that the estimator in the model-based approach

will have design features, such as sample-
" weighted observations.)

How do we eliminate the confusing term
“design-based model-based estimator”? One
possibility is to say “design-based estimator
generated by a model”; then design-based
estimator continues to mean one that is
compatible with the design-based approach.
Another possibility is to say “model-based
randomization theory estimator”, as do
Hansen, Madow and Tepping (1983); then
model-based signifies “generated by a model”.
One may also use the term “design-model
estimator”, as in Sarndal (1981). This empha-
sizes that the estimator is determined by a
design-model pair; Little (1983) stresses the
need to consider survey inference as the study
of design-model pairs.

8. Estimators formed from predicted values

Let us examine how estimators are construc-
‘ted in the design-based approach and in the
model-based approach. Little (1983) asks the
following question (where a “D-modeler” is
someone who restricts the use of models to the
design stage): “How does the D-modeler
estimate population quantities without
modeling? I would say by the Horvitz-Thomp-
son (HT) estimator and ratios thereof.
. Although regression and ratio estimates are
included in most survey statisticians’ armories,
it is difficult to motivate them without reference
to an underlying model ... The HT estimator,
on the other hand, embodies the spirit of the
design-based approach, which treats estima-
tion as a problem of weighting rather than of
prediction.” Let the population total

5
=
kz])’k
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be the unknown characteristic to be estimated.
The “weighting principle” is indeed epitomized
by the Horvitz-Thompson estimator

f= 3 ydmy 8.1
kes
and the ratio variety thereof,
f=N(Ey/m)/(E1/m). (8.2)
kes kes

In the vocabulary of some survey statisticians
the term “design-based estimator” seems to -
be limited to these simple weighting estimators.
However, to use modeling only in determin-
ing the design, and thereby the sampling
weights 1/m,, is an unnecessarily restricted and
inflexible use of relationships. As Hansen,
Madow and Tepping (1983, p. 778) point out,
in the design-based approach “models of the
population may suggest useful procedures for
selecting the sample or the estimators.” (The
empbhasis is mine.)

Let us examine a formal procedure for
building design-based estimators other than
the basic weighting procedures (8.1) and
(8.2). Predicted values play an important role
in the following simple argument.

Let xy,...,x, be auxiliary variables such that
(a) we have knowledge about x,,...,x,that
extends beyond the sampled units, for
example, in the form of known totals

= Z
t.= X
xj =1 jk

and (b) we can safely assume a strong regres-
sion relationship in the population, so that y
is explained well by x,,...,x,. If both (a) and
(b) are present, we can use the x-variables to
advantage. The values y, are observed for the
sampled units only. ‘
An estimator for the design-based approach
can be built as follows. Pretend for a moment
that the regression coefficients B,,...,B, are
known in the population. If the regression is
strong, ’
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Y = E Bixj Y= El by

will be a close approximation to y, for most and, for kes, the residuals
units k. The numerically small residuals

~

€ =Yik~— Yk
Ey=yi-y
The estimator becomes
can then be obtained for units k in the sample.
Rewrite the population total to be freg= 2 Hit Zedmy.
. keU kes
estimated as

N N N L .
= $y= S0+ $ B, This ns. the g.eneral f?rm of a (_multlple)
k=1 k=1 k=1 regression estimator in the design-based
approach; equivalently it may be expressed in

that is, as the sum of a known constant, " the form (6.1).
N . Let us compare the approach above with
T y= 3= By, the standard argument for building an estima-

k=1 j=1

tor for the model-based approach. The total to

) N be estimated is in this case rewritten as
and an unknown total of residuals, ZVE,. An

bvious estimator for the latter is X, E,/m, N
° . . . s KTk t= X Y= p Yk + E_yk
so a new improved estimator of ¢ is given by k=1 kes kes

IpiE = kgl yi+ Ey E,/n,. where kgyk is the known, observed sample
total of y, and Zy; is the unknown total for
units k in the non-sampled part of the popula-

The variance of I equals the variance of tion, § = U-s. We must estimate the latter
the sample sum of the weighted residuals, sum. It is natural to replace each unknown y,
3,E/n,. Since the residuals are small, this by the best possible “imputed value”, y,, that
variance is ordinarily much reduced compared ~ we can construct, given x ;. The estimator for
to the variance of the sample sum of the the model-based approach then becomes
weighted raw scores, Zy,/m.. In other
words, the variance of fpp is usually much ,  fvop= Ex Vet ES Vi
smaller than that of the HT estimator.

In practice, B,,...,B, are unknown and where
replaced by estimates b,,...,b, based on the

current sample. Let Y=
' j

ik

I Mo

1
(bryernsby)’ = ( = xixiloim)™ T xuidoim, and
kes kes

(Bl""’ﬁq)' = ( P Lk:&llc/(’l%)—l Z E.kYk/OI%
where of is the model variance of y; and x, = hes e
(X1ks---Xjkre--Xgx)" is the value, for the k:th is the vector of estimated regression coeffi-
unit, of the vector of auxiliary variables. Then cients. Note that the term k‘ez“;ﬁk can be calculat-
we can form the predicted values ed from our auxiliary information, since
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where the totals Le1s---5kyq are known, and é,
and 2x; are calculated from the sarnple for
J=1,...,q. For example, under the model (4.2)

both fggg and fyep give the separate ratio
estimator

(8.3)

provided units are sampled with equal
probability within each stratum, so that
n, = n,/N, for all units k£ in stratum h.

If not, fggg and fyop will differ. And, as

we noted in Section 4, the confidence intervals
that accompany the estimator (8.3) are not
identical in the design-based and model-
based approaches.

We do not imply that fxgg and fyop Will
always agree. In more complex situations, the
two formulas often exhibit differences, as in
estimation for domains; see Sarndal (1984).

9. Conclusion

We have argued that statistical terms
arising from the distinction design-based
versus model-based are not always clear. An
exception is “design-based inference” and
“model-based inference”; for these terms
generally accepted definitions exist. However,
when the distinction is applied to other
concepts, such as “approach” or “estimator”,
it is not automatically clear what is meant. The
paper can be seen as a step in the direction of
clarification of terminology, as well as a
warning against uncritical use of terms that
invoke the distinction.
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