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Implicit Longitudinal Sampling from
Administrative Files: A Useful Technique

Alan B. Sunter’

Abstract: Official statistical agencies fre-
quently use administrative files, in which the
records have unique identifying numbers, as
sampling frames for surveys and analyses
which have longitudinal as well as cross-
sectional dimensions. This paper demon-
strates: that Poisson sampling may be used
efficiently in cross-sectional sampling; that
Poisson sampling provides a simple way of
maximizing the number of sampled units
common to successive cross-sectional samples

1. Introduction

In countries with highly developed taxation
and social security systems, official statistical
agencies often have access to machine-read-
able administrative files that provide com-
plete coverage of some population of interest.
A major statistical application of such files is
their use as sampling frames for more detailed
enquiry through survey or through more
extensive examination of the documents
underlying the machine-readable records.
Typically, the units (persons, corporations,
etc.) in these files have unique identifiers,
usually numeric but possibly an alphanumeric
combination, such identifiers being essential
to their various administrative functions.
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in spite of changes in sample specification; and
that the unique identifying numbers them-
selves, transformed by an appropriate hashing
algorithm, may be used to generate the “ran-
dom” numbers required to implement Poisson
sampling.
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The sample design may be addressed simply
to the periodic compilation of cross-sectional
population statistics. In this case it may be
applied independently in each administrative
cycle and without any particular regard to its
efficiency for estimates of changes in the
values of population parameters from one
cycle to another. On the other hand, estimates
of such changes are often of at least equal
interest to those of current levels so that the
sample design must seek some compromise
between efficiency” and
“longitudinal efficiency.” Furthermore, in
addition to the requirement of longitudinal
“descriptive statistics” (a term we use here to
denote tabulations of population param-
eters), there is often an analytic requirement
for samples of longitudinal records. The term
“analytic” is used here to denote studies of in-
dividual behaviour or response usually in the
context of some mathematical model purpor-
ting to describe such behaviour or response.

“cross-sectional
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However, explicit longitudinal samples, by
which we mean procedures in which the
samples selected in cycle ¢ are tracked through
cycles t+1,¢+2,..., tend to be both opera-
tionally difficult to maintain and to become in-
creasingly inefficient for current cross-sec-
tional purposes. Furthermore, we do not
usually know this year what will be of analytic
interest in, say, ten years so that we do know
how to specify the longitudinal sample for
analytic purposes. In such cases we cannot
claim that any particular method of longi-
tudinal sampling has optimal efficiency and,
indeed, no such claim is made for the method
described in this article. We claim merely that
the method provides a simple compromise
between the requirement for efficiency with
respect to current estimates, on the one hand,
and efficiency with respect to estimates of
change over time, on the other.

The particular application referred to in this
article illustrates some of these points. The
administrative file contains records for about
15000000 persons submitting annual income
tax statements. More information is available
in the tax returns themselves than can or need
be captured in machine-readable form for the
primary administrative purposes of tax assess-
ment. Furthermore, even for those data cap-
tured on a universe basis, the statistics from a
relatively large sample (in this case, about
500000 records) are considered adequate to
the analytic and planning functions for which
statistics are generated. A consideration in
this case (and, usually, for other large
administrative files) is that the main file is very
active, while the consequences of errors in
data processing tend to be serious, so that it is
required that statistical applications be taken
off-line with respect to the main application as
early as possible in the processing cycle. The
original function of the annual samples had
been seen in terms of annual cross-sectional
analysis only and the samples drawn each year
were independent of those in previous years.
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There is considerable change in the popula-
tion from year to year, in terms both of births
and deaths and of the characteristics of its
members, so that maintaining appropriate
sample representation for the domains of
interest requires annual adjustment of the
stratification and allocation parameters.
Under these circumstances explicit longitudi-
nal sampling, if given any consideration at all,
had been dismissed as being too inefficient for
the main purposes of current cross-sectional
analysis. However, two emerging considera-
tions led to a change in design:

(i) Some users of the statistics, at low levels of
aggregation (e.g., small areas), are
concerned primarily with change (e.g., of
occupational distributions for small areas)
and were dissatisfied with the longitudinal

instability of the statistics being produced
by the independent samples.

(ii) From time to time proposals for changes
in tax regulations require a retrospective
analysis to be made on what the impact on
individual taxpayers of such changes
would have been had they been intro-
duced, say, five years ago. These analyses
require longitudinal records for individ-
uals in the class effected by the proposed
changes. With independent sampling,
however, longitudinal records for sets
large enough for meaningful analysis were
simply not available.

The technique described in this paper pro-
vides a simple way of using the unique iden-
tifier to embed an implicit longitudinal sample
in a series of cross-sectional samples. It is not
necessary to limit cross-sectional efficiency to
satisfy the longitudinal requirement. The
sample overlap from cycle to cycle is auto-
matically maximized subject to the sampling
probabilities imposed by the cross-sectional
designs despite changes in stratification,
changes in sampling rates, and movements of
individual units between strata. Finally, the
subsample common to any set of cycles is a
probability sample of the population of units
common to those cycles.
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Since both the cross-sectional and longi-
tudinal samples are stratified Poisson
samples, we begin with a demonstration that
Poisson sampling has efficiency, at least for
large samples, essentially equivalent to that of
simple random sampling. Strictly speaking,
this demonstration applies only to the com-
parison of equal probability sampling
methods but extends, of course, to stratified
sampling provided the within-stratum samples
remain large. It follows that Poisson sampling
may be used in place of the more usual strati-
fied simple random or systematic sampling to
satisfy the requirements of cross-sectional
efficiency. It then becomes very easy, as we
shall see, to serve the interests of longitudinal
efficiency by maximizing the overlap between
successive samples.

2. Relative Efficiency of Poisson Sampling

Although our main concern in this article is
with equal probability sampling (within
strata) we can present this discussion, an
abbreviation of a more extensive one in
Sunter (1977), in rather more general terms.

Selection probabilities ar; are assigned to
the units labelled i=1,2,...,N. The units are
then sampled independently with the assigned
probabilities. In operational terms the usual
procedure for this is as follows. As the record
for each unit is read, the system determines its
selection probability mr;, assigns a random
number 7; in the range (0,1) from its stored
random number table or pseudorandom
number generator, and then selects the unit if
r; < r;, rejects otherwise.

The realized sample size, n’, is a random
variable with expected value

n=E(nI)= i

M=

and variance

N
Vin')=2m(1-m). M
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The unbiased estimate
{/ = "Eyi/ i )
of the population total has variance
A~ N
V(Y)=3y(-m)/m;. 3

In the equal probability case w; = n/N this
becomes

V(Y)=(1—n/N)(N/n)§y,-2, “
which clearly does not compare favorably with
the corresponding expression for SRS with the
same (expected) sample size. It is natural then
to consider the ratio form suggested by
Brewer et al. (1972)

Ys=(/n)3(y/m), )
in which we “adjust” for the discrepancy
between expected and realized sample sizes.
Note that we have assumed here, and will do
so elsewhere, that P(n'=0) is negligible.
Keeping in mind that we are discussing large
national surveys we can proceed in the usual
way(see, for example, Sunter (1977)) to
demonstrate that (5) is, for practical purposes,
unbiased” and that it has variance given
approximately by

V(¥s) =2 (- (YIn)m)? (I=m) 5. (6)

% The bias is approximately
- N
BIAS(Yp)=(1/n) 2 (1-w;) ((Y/n) w~y;)

In the particular case of equal probability sampling
this expression reduces to zero but, even in the
general case, it is easily shown (see, for example,
Cochran (1977), Section 6.8) to be negligible rela-
tive to the standard error, provided the c.v. of n' is
less than, say, 0.1.
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The nature of the reduction in variance is
immediately clear from the comparison
between (3) and (6). In the particular case of
equal probability Poisson sampling, (5) re-
duces to the intuitively appealing estimate

%B = N_)_)
and its variance (6) to

V(¥s) = (1=n/N) N/n3(y- V)
= (1=n/N) (N(N-1)/n)S$%.  (7)

This result, rather surprising in that it is
actually less than the variance under SRS for
the same expected sample size (a conse-
quence, presumably, of the approximation in-
volved in its derivation), demonstrates the
relative efficiency of Poisson sampling in large
samples when the estimator (5) is used. It also
tells us that we can estimate the variance, in
equal probability sampling, as if the sample
were SRS of size n.

3. Implicit Longitudinal Sampling

In what we have called the usual procedure for
Poisson sampling, suppose that the random
number associated with a unit on its first
appearance in the administrative file (either at
the inception of the sampling system or, sub-
sequently, on its “birth” into the file) is then
permanently associated with that unit, rather
than a new number being assigned on each
sampling occasion. This simple change
immediately turns a system of independent
samples into one that maximizes the number
of sample units common to two or more
occasions. This maximization is conditioned
by changes in the sampling specification from
one occasion to another. If there is no change
in the sampling specifications with respect to
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stratification and sample allocation, the
sample will remain (except for the addition of
samples of births, the deletion of deaths, and
changes induced by the migration of units
from one stratum to another) unchanged. The
term implicit longitudinal sampling is derived
from this property of maximal overlap.

The proof that the overlap is maximal is
trivial. It rests on the observation that if the
sampling probabilities assigned by the cross-
sectional specification to population unit i on
occasionst, t+1,¢t+2, ... ar€e mw,; , W1, Wi2,i»
... then its joint probability of selection on all
occasions is simply min (7, ;, W15 o oo0)-
It follows that the longitudinal sample ob-
tained in this way has maximal size given the
selection probabilities assigned in each of the
cycles.

For estimates applying to the population of
units common to a number of occasions we
may use the form (2), with a value assigned to
m; by the expression given in the preceding
paragraph and with variances estimated by

W(¥) =3 (1emy 2/ ®)

For estimates of the form (5) and variance
estimates corresponding to (6), however, we
would need (in order to determine n) to have
tracked min (m,; .1, ...) not only for the
sample but for the whole population of units.
(Estimates of the form (5) and (6) are, of
course, available for current cross-sectional
statistics.)

We emphasize, however, that the practical
value of the scheme lies not so much in its
capacity for unbiased estimation of the param-
eters of the “longitudinal population” but in
the reduction of variances of estimates of
change from one occasion to another. This is
done without sacrificing current cross-sec-
tional efficiency, at the same time assuring the
availability of a set of longitudinal obser-
vations for analytic studies.
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4. Poisson Sampling by Hash Number

In order to reduce the vulnerability of the sta-
tistical subsystem to changes in the adminis-
trative system (whose objectives, it should be
remembered, will be primary), we now pro-
pose to modify the mode of implementation of
Poisson sampling by using a random number
generator, “seeded” by the unique unit identi-
fier, to produce an integer in the closed range
[000,999]. If unit i is assigned a selection
probability a; /1 000 (where q; is an integer),
either through stratification or as a function of
one or more of its variate values, we then
select if HASH(IDENT; )<aq; , reject other-
wise.

The functional notation HASH(IDENT) is
appropriate since the “random” integer it re-
presents is actually a deterministic function of
the identification number® that generates it.
We require that the random integers, or hash
numbers, display the properties of a uniform
distribution. Since the hash number is a
function of the identification number, it can
be reproduced whenever required.

The hash number routine itself must satisfy
certain requirements. Loosely speaking, these
are :

(i) that the population identification
numbers and their hash numbers are un-
correlated. This requirement is intended
to guarantee that selection probabilities
are not affected by any information
content of the identification number.

(ii) that the hash number derived from the
population identification numbers should
appear to be uniformly distributed, and
this property (of uniformity) should
continue to hold under restrictions on the
values of the identification numbers.

Our hash number algorithm is based on the
use of a random number generator of the
multiplicative congruential type

* Alphanumeric identifiers will require the pre-
liminary step of conversion to fully numeric unique
identifiers to be included as part of the hash
number function.
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X1 = kx, mod(m)

seeded by the identification number. The
parameters of the generator* are
k=Texp(6)= 117649 and
m=2exp(31)-1=2147483647. The hash num-
ber is constructed as follows :

X, = ident
Xy = kxy mod(m)
Xy = kx, mod(m)

hash = [1 000 ((x;x,) mod(m))/m].

Verbally, we take the product of the first
two numbers (mod m) in the sequence seeded
by the identification number. We then trans-
form this product to an integer in the required
range in the usual way.

Tests of the hash number routine were per-
formed as follows. Using randomly selected
(by a different random number generator)
starting points for sets of 500 9-digit numbers
obtained by incrementing the starts by 1’s, by
10’s...., by 100 000’s, we performed a standard
X’ test for uniformity among the first two digits
of the hash numbers corresponding to each
set. For example, if we began with the 9-digit
numbers 123456789 we calculated the hash
numbers corresponding to the sequences :

* This is not a paper about random number gener-
ators per se and no particular virtues are claimed
for this generator other than that it satifies our re-
quirements. Tests similar to those described in this
paper should be made before using any other
generator. For an extensive bibliography on
random number generators and methods of testing
them see Sowey (1972). A good discussion of the
number theory underlying the choice of para-
meters in multiplicative congruential generators
and of methods of testing will be found in
Downham and Roberts (1967).
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Incrementing by 1’s :

123456790, 123456791,..., 123457289
Incrementing by 10’s :

123456799, 123456809,..., 123461789

Incrementing by 100 000’s :
123556789, 123656789,..., 173356789
We then tested these sets of hash numbers for
uniformity. Typical results are given in Table
1 below.

In addition to testing for uniformity we also
tested for serial correlation using a procedure
suggested by Good (1953). Using y; to denote
the hash number generated by the i-th
member of the sequence we take each pair (y;,
¥i+1) as coordinates in a square of appropriate
dimension. Dividing each dimension into 10
equal intervals and denoting frequencies in
the cell (j,k) by fx, their expected values under
the hypothesis of no serial correlation by Ny,
and the corresponding marginal values by f;.
and N; respectively, Good showed that the
statistic
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SZ

10 10
j’il (Ufi)(fx—Ni)* <(UN;, )]gl (fi-N, )%,

is asymptotically x* on 90 degrees of freedom.
Typical results for this test are also shown in
Table 1. Finally, we calculated the corre-
lation, within each set of 500, between the
identification numbers and the hash numbers
that they generated. In no case did this corre-
lation exceed 0.003 in magnitude, a result
from which we may conclude that the identifi-
cation numbers and their corresponding hash
numbers are uncorrelated.

In the ten trials were six cases (out of 60) in
which the test statistic was below the 2.5%
level for x* on 99 degrees of freedom and three
in which it was above the 97.5% level. None of
these failures of uniformity occurred, how-
ever, for increments of 1 or 10 in the identifier
and, for our purposes, we are satisfied with
the performance of the hash number algo-
rithm. The results for two of the ten trials are
shown in Table 1.

Table 1.  Uniformity and Serial Correlation in Hash Numbers for Arithmetic Sequences

Start Increment Uniformity Senal‘
Correlation

651860928 1 108.4 89.8

10 89.2 111.5

100 72.0% 63.9

1 000 69.6* 78.9

10 000 103.6 87.1

100 000 106.4 102.7

490312768 1 98.8 73.6

10 112.4 73.8

100 134.8* 67.8

1 000 84.4 75.5

10 000 98.4 99.4

100 000 94.4 109.4

* Significant at the 5 % level for a two-tailed test.
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Our reason for interest in the lower end of
the distribution of the test statistic is our
concern that some numbers in the sequence of
identifiers may be missing in some systematic
way. This could occur, for example, if identi-
fiers were made available in the administra-
tive process in blocks for systematic assigne-
ment to individuals as they arrive in the
system. Under these circumstances there
would be a tendency for higher numbers in the
blocks to be missing and a hash number algo-
rithm that worked “too well” on a sequence of
identifiers would probably fail to give a
uniform distribution on the actual identifiers.
A failure of this type would be suggested by
values for the test statistic that are too low.

In the test for serial correlation we are con-
cerned only with the high end of the test statis-
tic distribution. In the ten sets giving 60 test
statistics there was only one case in which the
statistic exceeded the 95% value of x? on 90
degrees of freedom. Hence we are satisfied
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that serial correlation in a sequence of identi-
fiers disappears in the corresponding sequence
of hash numbers.

A random number generator found to
perform well by Downham and Roberts uses
parameters k=8192 and m=67099547. This
generator produced results comparable to, if
not a little better than, those of Table 1. On
the uniformity test, there were only three
failures in 60 trials at the low end of the test
statistic distribution and one at the high end.
There were no failures on the test for serial
correlation.

As an indication of the performance of our
hash number algorithm for identifiers of
different lengths, we performed the same tests
as those used to produce Table 1 on identifiers
of lengths five digits to 12 digits. The results
for sequences of 500 identifiers with in-
crements of one are shown in Table 2. The
corresponding results using the Downham
and Roberts generator were similar.

Table 2.  Uniformity and Serial Correlation in Hash Numbers for Arithmetic Sequences of
Identifiers of Different Lengths
Length . . Serial
(digits) Start Uniformity Correlation
5 65186 93.2 104.1
6 868861 102.8 124.3 **
7 7297624 82.8 69.0
8 79885296 87.6 95.9
9 073698040 108.0 85.2
10 4903127552 99.6 77.9
11 45451890688 84.8 87.1
12 107249557504 95.2 91.9

** Significant at the 5% level for a one-tailed test.

Despite the assurance given by the above
results for “invented” sequences, a final test
should be made on the actual identification
numbers in any particular application. In our
own application the identification numbers
have 9 digits, in which the last digit is a “check
digit,” the first is assigned geographically,

while the remaining digits are a mixture of
meaningfully and sequentially assigned.
Taking the ordered file in blocks of 500 identi-
fication numbers we applied the same tests as
those described above. The results were
completely consistent with those for the
invented sequences.
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5. Conclusion

The Poisson sampling techniques described in
this article provide a simple compromise be-
tween the requirement for cross-sectional effi-
ciency, with the implications of that require-
ment for changes in sampling specification
from time to time, and the requirement for
longitudinal stability in sample estimates.

A statistical agency, using an administrative
file “owned” by another agency, may wish to
reduce its vulnerability to changes in the file
maintenance systems by using a hash number
procedure that uses the permanent identifier
associated with the file units to generate the
“random” number used in Poisson sample
selection. The hash number algorithm de-
scribed in this article, using either of the two
multiplicative congruential pseudorandom
number generators discussed, appears to be
satisfactory for identifiers of five to 12 digits.
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