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Incomparability of information is the key problem in international comparisons. The usual
way to improve comparability is to harmonise data collection efforts. However,
harmonisation fails if the data have already been sampled, or if appropriate harmonisation
cannot be achieved for whatever reason. This normally leaves no other option than to either
make strong unwarranted assumptions about the data, or abandon any comparative work. This
article proposes an approach that, under certain circumstances, might provide useful
comparative analyses from existing incomparable data.

The method, termed Response Conversion (RC), addresses the problem of divergent
formulations of survey questions. RC attempts to transform responses obtained on different
items (questions) onto a common scale. Where this can be done, comparisons can be made
using the common scale. The method consists of two steps. The first step is the construction of
a conversion key by means of a statistical model, in our case the polytomous Rasch model.
This can only be done if enough overlapping information is available between the different
items, but when it is there, RC makes no assumptions about the distribution of the common
scores across populations. A linkage map of studies by items provides an important tool to
assess whether such overlapping information is available in the data at hand. The second step
uses the conversion key to convert the information onto the common scale. This step is
straightforward, and can be repeatedly done on a routine basis as new information arrives.

The properties of the Rasch model are well-known, but the model’s application in this
context introduces some methodological issues. These include the assessment of the model fit
in sparse data situations (including the assessment of unidimensionality and the absence of
differential item functioning), the robustness of the results regarding the choice of the prior
distribution, and the uncertainty introduced if only one item is measured. We believe that all
issues can be adequately addressed, and that RC is one of the very few principled approaches
for analysing incomparable data.

The method was developed within the EC Health Monitoring Program, and is illustrated for
estimating walking disability in different countries.

1. Introduction

Incomparability of information is the key problem in international comparisons (Van de

Vijver and Leung 1997; Van Deth 1998). The usual way to improve comparability is to

harmonise data collection. Internationally operating organisations like the World Health
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Organisation (WHO), the Organisation for Economic Co-operation and Development

(OECD), the United Nations (UN) and the European Commission (EC) devote much time

and effort in obtaining comparable data. However, harmonisation is limited as a method

for achieving comparability. First, it works only for new data. Also, harmonisation

typically slows down the uptake of scientific advances in measurement because logistic

complexities like coordination and translation require time and resources. Finally, it is

difficult because harmonisation tries to change established ways of working in

environments with vested interests. If harmonisation cannot be done, then the options

are restricted. One could either make strong unwarranted assumptions about the data, or

not do any comparative work at all. This article proposes an approach that, under certain

circumstances, might provide comparative analyses from existing incomparable data.

The Health Monitoring Programme (HMP) is an initiative of the European Commission

(EC) to provide relevant and timely information about the health situation in each member

state (European Commission 1998). To avoid unnecessary duplication, the monitoring

system will have to be fed by existing data collected through health surveys performed by

individual member states (MS). Though the content of these surveys is often quite similar,

substantial variations in the actual measurement exist, e.g., in sampling procedures, in the

coverage per topic, in the wording of questions and formulation of response categories.

Thus, incomparability of information is a major problem in this context. Each MS has its

own tradition in collecting and processing health related data, and changing established

ways of working is not easy.

The type of comparability problem considered here occurs in the differences in

formulation of survey questions and response categories. Suppose we want to get insight

into the level of disability of the populations of different MS’s. Many MS’s conduct health

surveys, but the precise way in which disability is measured could be quite different. For

example, for walking disability, the UK health survey contains a question How far can you

walk without stopping/experiencing severe discomfort, on your own, with aid if normally

used? with response categories “can’t walk,” “a few steps only,” “more than a few steps

but less than 200 yards” and “200 yards or more.” The Dutch health interview contains the

question Can you walk 400 metres without resting (with walking stick if necessary)? with

response categories “yes, no difficulty,” “yes, minor difficulty,” “yes, major difficulty” and

“no.” Both items obviously intend to measure the ability to walk, but it is far from clear

how an answer on the UK item can be compared with one on the Dutch item.

The method, termed Response Conversion (RC), attempts to transform responses

obtained on different items (questions) onto a common scale. Where this can be done,

comparisons can be made using the common scale. The goal of this article is to

demonstrate how RC can be applied in the context of harmonisation of data. The next

section describes the method and its assumptions. In Section 3, the method is applied to

harmonise walking disability in different MS’s. A discussion of the relative merits and

limitations of the method and the future implications concludes the article.

2. Method

2.1. General

RC is based on the idea that values measured by different instruments can be converted to

a common unit. One could, for example, measure the distance between two points in many
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ways: with a ruler, by the time taken to reflect sound (e.g., sonar), by a shift in the

electromagnetic spectrum (as in astronomy), by a difference between viewing angles, and

so on. The resulting values (cm, seconds, colours, and degrees) can be expressed in terms

of a common distance unit if one knows how the observed data relate to the common unit.

The same idea can be applied to survey measurement. If we are presented with different

questions measuring the same phenomenon, it is natural to ask if there is some way to

place the responses on a common scale. This is what RC intends to bring about.

Application of RC consists of two steps. The first step is the construction of a conversion

key, which models the relation between the common scale and the observed data. Key

construction is a relatively complex activity, but needs to be done only once. The second

step consists of using the conversion key to convert the observed data into the common

scale. This step is relatively simple, and can be repeatedly done on a routine basis as new

information arrives. Once expressed in the common scale, information can be compared,

for example, across countries that use different questionnaires.

2.2. Model

The conversion key is constructed by fitting a statistical model on appropriately linked

data. This section illustrates the main issues in model fitting using a small data example

involving just three survey questions and two studies.

Table 1 is an excerpt of data analysed previously by Hoparan Van Buuren, and De

Kleijn-De Vrankrijker (2000) and Van Buuren and Hopman-Rock (2001). The rows

contain survey questions that measure an aspect of walking disability (SI01, HAQ8,

GAR9), and the columns represent two studies in which they were sampled (ERGOPLUS,

EURIDISS). The ERGOPLUS study (Odding et al. 1995; Hopman-Rock et al. 1996)

contains responses on the item SI01 from the ambulation scale of the Sickness Impact

Profile. The EURIDISS study (European Research on Incapacitating Diseases and Social

Support) contains responses on the item GAR9 with four response categories from the

GARS questionnaire (Suurmeijer et al. 1994). Both SI01 and GAR9 measure the ability to

walk, but with only these two items there is no way of comparing the amount of walking

disability between ERGOPLUS and EURIDISS. Table 1 shows that both studies also

administered the HAQ8 item, another walking disability item. The HAQ8 links SI01 to

GAR9, and therefore HAQ8 is called a bridge item. Simple visual inspection of the

category frequencies of HAQ8 tells us that the EURIDISS sample is more disabled than

the ERGOPLUS sample. The more important observation, however, is that the link by

HAQ8 allows us to relate the answers in SI01 and GAR9.

In order to construct the conversion key, the data are modelled by the polytomous Rasch

model according to Masters (1982), also known as the Partial Credit Model. This model

assumes the existence of a continuous latent trait u that underlies all items. The term

“latent” means that the true value of ui for person i is not known, and can only be observed

through the manifest item responses on the items. In the example discussed above, the trait

u makes up a common scale for walking disability. In order to define the model, let item Yj

have kj þ 1 response categories. The polytomous Rasch model defines the probability

pðYj ¼ cjuÞ of responding in Category c ¼ 0; : : : ; kj as a function of the score on the

latent trait u by the following function:
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Table 1. SI01 and GAR9 items linked by bridge item HAQ8

Item Description Response categories Study

ERGOPLUS n ¼ 306 EURIDISS n ¼ 292

SI01 I walk shorter distances or often stop
for a rest.

0 ¼ No
1 ¼ Yes

276
28

HAQ8 Able to walk outdoors on flat ground? 0 ¼ Without any difficulty 242 178
1 ¼ With some difficulty 43 68
2 ¼ With much difficulty 15 42
3 ¼ Unable to do so 0 2

GAR9 Can you, fully independently, walk outdoors 0 ¼ Yes, no difficulty 145
(if necessary, with a cane)? 1 ¼ Yes, with some difficulty 110

2 ¼ Yes, with much difficulty 29
3 ¼ No, only with help from others 8 Jo
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pðYj ¼ cjuÞ ¼
exp

Pc
k¼0 ðu2 djkÞPkj

r¼0 exp
Pr

k¼0 ðu2 djkÞ
c ¼ 0; 1; : : : ; kj ð1Þ

where
P0

k¼0ðu2 djkÞ ; 0 and
Pr

k¼0ðu2 djkÞ ;
Pr

k¼1ðu2 djkÞ: When plotted against u,

the values of pðYj ¼ cjuÞ define the Category Probability Curves (CPC). Psychometric

models other than the Rasch model are possible, but the Rasch model is special because of

its specific objectivity (Rasch 1977). This implies that the model parameters can be

separated from the sample. If the model fits, the ability level of the calibration sample does

not affect the relative positions of the items, which is a desirable property. Furthermore,

the Rasch model has few parameters, so it is relatively stable if the data are sparse. The

parameter djk is known as the threshold value. It can be interpreted as the point on the

latent trait scale at which two consecutive CPC’s intersect. Thus, for an item with kj þ 1

response categories, the kj category intersection points define the relation between the

latent trait and the observed item score. Knowledge of the thresholds is enough to

reconstruct the curves.

Estimation of the model requires appropriate data. The parameters of the Rasch model

(1) can only be estimated if the items are linked to each other. For example, if HAQ8 in

Table 1 were not present, there would be no way of comparing the EURIDISS and

ERGOPLUS samples, and construction of the conversion key would not be possible. More

specifically, the Rasch model in (1) implies that bridge items j 1) measure the same

characteristic as the target items; and 2) have identical relations between the latent trait

and the observed data in the respective samples, i.e., for studies A and B:

dA
jk ¼ dB

jk ¼ djk for all k ¼ 1; : : : ; kj ð2Þ

The second possibility for linking two items is a bridge study that contains information on

both target items. In that case, Model (1) implies for target items a and b, and bridge study

C that

dA
ak ¼ dC

ak ¼ dak for all k ¼ 1; : : : ; ka and ð3aÞ

dB
bk ¼ dC

bk ¼ dbk for all k ¼ 1; : : : ; kb ð3bÞ

Equations (2) and (3) are both implications of the Rasch model. They state that the linking

information should be free of Differential Item Functioning (DIF), i.e., items are assumed

to work in the same way across studies (Holland and Wainer 1993). Designs that adhere to

these specifications are classified as nonequivalent linked grouped designs (Kolen and

Brennan 1995). Verhelst and Kleintjes (1993) provide an application of a linked design

within an educational context. Béguin (2000) reports related theoretical work on the

appropriateness of the Rasch model for test equating. Note that no assumptions are

required with respect to the level of disability in each study. Operationally, Equations (2)

and (3) imply that the linking information can be coded into the same data column(s)

across different studies.

RUMM 2010 (Andrich et al. 2001) was used to estimate the model. The estimation

method is based on the pairwise conditional approach, and has been described in detail by

van Buuren et al.: Improving Comparability of Existing Data by Response Conversion 57



Andrich and Luo (2003). This approach generally works well with incomplete and sparse

data (Andrich 1988). The method conditions on the latent ability, so the model estimates

are not sensitive to the distribution of trait in the sample. Table 2 provides the threshold

estimates obtained from the data in Table 1. The data fitted the Rasch model (x2 ¼ 8:49;

df ¼ 10; P ¼ 0:58).

Figure 1 contains the CPC’s of items SI01, HAQ8 and GAR9 as estimated by RUMM

2010. For low u (e.g., no disability), the probability of answering in the most severe

disability response categories is low. For example, a person without any walking

restrictions is unlikely to respond in Category 1 (“Yes”) of SI01, or in Category 3 of

GAR9. On the other hand, persons with severe restrictions (i.e., with high values of u) have

high probabilities responding in those categories, and exhibit relatively low propensities to

respond in the less disabled categories. In Figure 1, the horizontal axis orders walking

disability from no disability (left) to high disability levels (right). The horizontal axes in

the plots are identical. So, if we know the disability position ui of a person, then we can

read off the response probabilities for every item. For example, someone with ui ¼ 21 has

a probability of 0.62 of responding in, respectively, Category 0 of SI01, and a probability

of 0.38 in Category 1. The same person has probabilities of 0.27, 0.50, 0.23, and 0.00 to

respond in Categories 0, 1, 2, and 3 of HAQ8. The response probabilities for GAR9 are

0.11, 0.72, 0.16 and 0.01, respectively.

2.3. Key construction

Imagine that we have two new studies on different samples, where the first administers

item SI01 (but not HAQ8) and the second administers GAR9 (but not HAQ8). Is it

possible to compare the level of disability in the two new studies, even in the absence of

bridge items? The answer is yes, provided that an appropriate conversion key is available.

This section discusses ways to construct such a key.

Suppose we have observed data xij on a sample of persons i ¼ 1; : : : ; n for a given item

j. The problem is to estimate the location ui of person i on the common scale u from the

data. This problem is known as “ability estimation” or “scoring,” and several strategies can

been pursued, such as maximum likelihood (ML), maximum a posteriori (MAP) and

expected a posteriori (EAP) estimation. Embretson and Reise (2000) provide an overview

of these methods. In the sequel, we use the EAP method (Bock and Mislevy 1982). The

EAP estimator is a Bayesian method that is easy to calculate, gives finite trait level

estimates for extreme response patterns, has minimum mean squared error if the prior is

true, and is robust to misspecification errors (Wainer and Thissen 1987). As we will show,

Table 2. Threshold estimates for the data in Table 1

Item Category transition

0/1 1/2 2/3

SI01 20.802
HAQ8 21.413 20.140 4.012
GAR9 22.687 0.663 1.970
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the approach provides a value on the common scale for each category of the item, but

requires specification of a prior distribution. Response conversion replaces the category

identification number by these values, and calculations can subsequently be made on the

common scale.

The EAP estimator derives from Bayesian analysis. Let Yj denote an item with kj þ 1

possible responses. According to Bayes theorem, the posterior distribution of u for a given

answer Yj ¼ c can be written as

pðujYj ¼ cÞ ¼
pðYj ¼ cjuÞpðuÞP
u pðYj ¼ cjuÞpðuÞ

for c ¼ 0; 1 : : : ; kj ð4Þ

Fig. 1. Category Probability Curves: Probability of responding in each category for a given level of disability.
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It is easy to calculate pðujYj ¼ cÞ on a grid of u-values. A convenient choice for the grid is

u ¼ { 2 5; 2 4:75; : : : ; 4:75; 5}: The probability pðYj ¼ cjuÞ is given by Model (1).

The expression p(u) is a Bayesian prior and summarises all information that we have

before the current data. Choosing an appropriate prior takes some care, and we will have

back to it later. For the moment, let us assume a uniform distribution pðuÞ , Uð25; 5Þ:

Figure 2 illustrates the relevant calculations for item HAQ8. Figures 2a and 2b plot

pðYj ¼ cjuÞ and p(u), respectively. Figure 2c presents the results of calculating (4), i.e., the

posterior distribution per category pðujYj ¼ cÞ: This distribution describes what is known

about u after an answer is observed. Note that each pðujYj ¼ cÞ is scaled to unit area and

can be interpreted as a density. Note also that pðujYj ¼ cÞ is proportional to pðYj ¼ cjuÞ;

a consequence of the uniform prior. Figure 4d represents a mixture of the densities

pðujYj ¼ cÞ; in this case with mixture weights 242, 43, 15, and 0, i.e., the observed counts

on HAQ8 in the ERGOPLUS study. Thus, the posterior reflects how the ERGOPLUS

sample is distributed on the common scale based on the HAQ8 data.

More formally, we may calculate the sample posterior density in Figure 4d as

pðujYjÞ ¼

Pkj

c¼0 wcpðujYj ¼ cÞP
cwc

ð5Þ

where wc is the frequency of Category c in the sample of interest. It is not difficult to show

that the sample EAP estimator is equal to

E½ujYj� ¼

P
cwcE½ujYj ¼ c�P

cwc

ð6Þ

where E[.] is the expectation operator. Thus, we can calculate the sample EAP estimator as

the weighted average of the mean of the category posteriors (4). This property gives us the

possibility for the basic operation in RC: recode the category number identification by

the mean category posterior, and aggregate these values over sample of interest to obtain

the mean on the common scale for that sample. Consider the mean category posteriors of

Fig. 2. HAQ8 item “Able to walk outdoors on flat ground?”: Category Probability Curves (a), uniform prior

distribution U(25,5) (b), Category Posterior Curves (c) and Sample Posterior Distribution (d).
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HAQ8 in Figure 2c, which are equal to 23.123, 20.803, 1.917, and 3.823. The following

two SPSS commands convert the HAQ8 data into the common scale, and calculate the

sample EAP estimate on the common scale for both samples:

RECODE haq8 ð0 ¼ 23:123Þ ð1 ¼ 20:803Þ ð2 ¼ 1:917Þ ð3 ¼ 3:823Þ

ðELSE ¼ SYSMISÞ:

MEANS haq8 BY study:

The set of recode values makes up the conversion key. Table 3 contains the conversion key

for the three items, as well as the result of the estimated mean disability level. Note that the

estimated effects in terms of the common scale are in the expected direction. The

frequency distributions of the HAQ8 item in Table 1 clearly indicate that the EURIDISS

sample possesses more disabilities than the ERGOPLUS sample. Both EURIDISS

estimates (21.80 and 21.93) are larger than the ERGOPLUS estimates (22.18 and

22.54).

The progress now made is that it is possible to compare the ERGOPLUS and EURIDISS

samples without knowing any bridge items. For example, if we have measured only SI01

in ERGOPLUS and GAR9 in EURIDISS, then we can still calculate the difference

between the samples in terms of the common scale as ð22:18Þ2 ð21:93Þ ¼ 20:25: Note

that it is also possible to calculate various other combinations, of which the comparison

HAQ8 - HAQ8 yields the largest difference, i.e., ð22:54Þ2 ð21:80Þ ¼ 20:74: These

differences in effect estimates are not untypical, and are caused by a number of factors.

First, note that the calibration sample is the same as the comparison sample, so part of the

differences may be explained by overfitting. The model is essentially fitted on HAQ8, so it

is not surprising that it optimises that difference. Another factor is regression to the mean

of the common scale estimate, which especially occurs if the number of items is small

(Wainer and Thissen 1987). Finally, some items measure the trait more precisely than

others. For example, the dichotomous SI01 item provides less information than either

HAQ8 or GAR9, which have more categories and cover more of the scale. All these are

well-known statistical phenomena, and there are ways to circumvent them, e.g., by

calculating appropriate confidence intervals, by applying “unshrinking” techniques and by

obtaining denser data. These are topics for further work and beyond the scope of this

article. The main progress made here is that the technique expresses such differences on a

common scale, which is a prerequisite for doing any further quantitative work.

Table 3. Recode values (conversion key) under a uniform (25,5) prior, and the mean disability levels

for the ERGOPLUS and EURIDISS samples in Table 1 expressed on the common scale per item

Item Conversion key Mean disability on the
common scale

Response category (c) ERGOPLUS EURIDISS
0 1 2 3

SI01 22.598 1.903 22.18
HAQ8 23.123 20.803 1.917 3.823 22.54 21.80
GAR9 23.449 21.192 1.356 3.355 21.93
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2.4. Choice of the prior distribution

Statisticians can be divided into two camps: those who do not like prior distributions and

never use them, and those who use them. The first group is much larger than the second, so

it is natural to ask whether we need a prior distribution at all, and if so, what are the

consequences of different choices?

The first question is easy to answer. The conventional Maximum Likelihood (ML)

estimator is the optimal non-Bayesian choice. It yields unbiased ability estimates of the

common scale, and is mathematically equivalent to the Bayesian estimator (5) with a

uniform prior across the entire scale (Embretson and Reise 2000). The problem with the

ML estimator is that its variance for extreme responses is infinite, so the common scale

value for people with “all low” or “all high” scores cannot be determined. One solution is

to eliminate the extreme persons from the estimation, which is O.K. if there are not many

extremes. The present application, however, requires estimation of scale values from as

little as one item. Eliminating the extremes will then lead to large losses of data. In the

limiting case with a dichotomous item, there will be no data left because all persons end up

being extreme. So conventional ML does not work here, and ways to make ML work do

not work either. Alternatives to the ML estimator have been proposed, e.g., the estimator

presented by Warm (1989). Such alternatives essentially weight down the extremes of the

scale. The Bayesian estimator does the same thing, but it is simpler, provides the full

posterior density, and makes the weighting process explicit.

The second question is how robust the inference on the common scale is under

alternative priors. In general, the prior contracts scale estimation towards the highest prior

densities. Alternatively one may use the prior to define gaps and end points of the scale by

specifying zero mass. In order to get insight into the properties, we specified priors with

very different shapes and properties, and studied the resulting estimates.

Figure 3 shows the mean estimates for the data in Table 1 under a variety of prior

specifications. It will be immediately clear that estimates using different priors cannot

be compared with each other. Thus, all comparisons between samples should use a

common prior for them to be valid. Using a uniform prior U(210,10) instead of U(25,5)

brings the method closer to the ML estimate. Note that the resulting mean estimates

wander off to the left, thus indicating what happens if we use ML estimation, where the

Fig. 3. Mean disability for the following sample-item combinations: SIP01 administered in ERGOPLUS, HAQ8

administered in ERGOPLUS, HAQ8 administered in EURIDISS, and GARS9 administered in EURIDISS under

two uniform priors, four normal priors and one shifted lognormal prior.
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prior is U(21, 1). The normal priors around zero, N(0,1), N(0,2), and N(0,3), all pull the

estimates towards the origin. An advantage of using normal priors is that the resulting

posteriors are also normal. Note that SIP01 is pulled more than HAQ8 or GAR9,

eventually resulting in the odd finding that SIP01 moves beyond all other items under

N(0,1). Clearly, centring on zero is not a good idea. The two final priors, N(22,1) and the

shifted lognormal prior LogN(1, 0.5, 25) with logmean 1, variance 0.5 and a shift 25,

exhibit less differential pooling. The lognormal prior is the only asymmetric one. We

prefer it in this data because it is a left-skewed distribution that resembles the disability

distribution in the general population. In the absence of any data, we would expect more

people in the low disability levels. In addition, the lognormal yields estimates that are

consistent in the sense that both items administered within the same study indicate

approximately similar levels of disability. In the sequel, we will therefore base our

analyses on the lognormal prior.

3. Walking Disability

Disability is one of the topics of the Health Monitoring Programme of the EC. This section

uses the principles set forth above to harmonisation of measurements of walking disability,

as defined according to the ICIDH-D Code 40 (WHO 1980) (During the study, the ICIDH

was superseded by the ICF classification.)

Table 4 provides an overview of walking disability items that are currently being used in

10 European countries. All items measure the ability to walk, but do so in different ways.

Variations occur in the formulations of both the question and the response categories. The

most important differences relate to the concepts behind the item. For example, some

items ask how difficult it is to walk a fixed distance (often 400 metres), others concentrate

on how far you can walk, or how long or how fast you can walk without difficulty. Items

can sometimes be traced back to a common “ancestor.” For example, fixed distance items

come from the OECD long-term disability questionnaire (“Can you walk 400 metres

without resting?”) Items that use “how far” in the question are variations on the WHO-

Europe long-term disability questionnaire (“What is the furthest you can walk on your own

without stopping and without severe discomfort?”)

A total of 54 bridge items and 14 additional studies were identified that could potentially

link items. The report by Van Buuren et al. (2001) contains a detailed description of all

items. Figure 4 is the corresponding linkage diagram. The “Y”-symbol in a cell indicates that

the specific study-item combination occurs. Cells with the “Y”-symbol are also coloured to

make them easier to find. As far as possible, the items are sorted such that each item is

located near the other item close in content. The existence of a link is a technical requirement

for scaling different items on a common scale. Rather few items are directly linked. For

example, FAR7 and MANAGE are linked by the bridge item AIDS1. Another example is

the link between SI01 and GAR9 by HAQ8. However, many items are not directly linked,

and so cannot be calibrated relative to each other without additional information. One

solution is to get more data, with the risk of ending up with even more different versions of

items for measuring walking disability. Our solution is to assume equivalent thresholds

according to (2) where we feel that this can be done. For example, items FAR1 to FAR11 are

all variations on the same basic formulation. Variations include additions like “on your
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own,” “on a level ground” or “with a walking stick if needed” in the question, and the

definition of one or two extra response categories. Another example comprises the “400

metres” items W400B, W400C and W400D that use questions that are somewhat different

but have similar response categories. Assuming equivalence is part of the modelling process

Table 4. Items for measuring walking disability in different European health surveys

State Item Description Response categories

UK far2 How far can you walk without
stopping/experiencing severe
discomfort, on your own,
with aid if normally used?

0 200yds or more
1 More than a few steps

but less than 200yds
2 A few steps only
3 Can’t walk

CH far11 How far can you walk
without stopping/experiencing
severe discomfort on your own?

0 200 m or more
1 More than a few steps

but less than 200m
2 A few steps only
3 Cannot walk unaided

N far4 How far can you walk without
stopping/experiencing severe
discomfort on your own?

0 200 m or more
1 More than a few steps

but less than 200m
2 A few steps only

B far1 How far can you walk without
stopping/experiencing
severe discomfort?

0 200 m or more
1 More than a few steps

but less than 200m
2 A few steps only in

metres

F far3 How far can you walk without
stopping/experiencing severe
discomfort? (walk with/without
aids/uses wheelchair etc.)

In meters

NL w400c Can you walk 400 metres without
resting (with walking stick if
necessary)?

0 Yes no difficulty
1 Yes minor difficulty
2 Yes major difficulty
3 No

DK w400b Can you walk 400 metres
without resting?

0 Yes no difficulty
1 Yes minor difficulty
2 Yes major difficulty
3 No

FIN w400d Can you walk without any aids
a distance of 400 metres
without difficulty?

0 Yes no difficulty
1 Yes minor difficulty
2 Yes major difficulty
3 No

S brisk Can you take a short walk, say five
minutes, at a fairly brisk pace?

0 Yes
1 No

A dwelling Walking up and down in the
dwelling?

0 Yes possible w/o help,
1 Yes possible with help,
2 Not possible
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and should not be done lightly. In general, we need to carefully identify items where

comparability can be assumed across studies. This might even mean that we must break up

links for items that are identical in their English translation, but for which comparability is

suspect. An example of such an item is “How is your health in general?”, for which widely

different, and thus far unexplained, answers are obtained in different European countries.

The appropriate treatment in RC is that such an item is considered as different items. As we

will show below, it is possible to check on equivalence to some extent. Figure 4 codes the

equivalence assumptions made in the current linkage structure using a different colour and

with the symbol “I.” Note that the Swedish item BRISK is not linked to any other item, and

therefore cannot be calibrated.

We collected existing data from statistical offices and investigators of potential bridge

studies. Data were provided in the form of individual microdata, or as multidimensional

contingency tables, and included age and sex. These data were organised into a database

according to the structure of the linkage matrix. The statistical analysis of the linked data

consisted of several model fitting phases with RUMM 2010, including an assessment of

model fit and a check of equivalence assumptions. This involved removing items that

could not be linked because we could not get the appropriate data that had fit residuals over

three, and that showed DIF across studies. The worst-fitting item was HAQ8. Removing

HAQ8 would result in two data sets that are essentially unconnected. Because HAQ8 is so

vital to the structure and behaved well in the example in Section 2, we decided to leave it

in. Other items that did not fit well were HOUSE and QMILELEV. For items that were

assumed to be equivalent, we calculated a tension coefficient to assess the validity of the

assumption. For the set of items assumed to be equivalent, we fitted two copies of the same

item in one analysis, one copy as a separate item and one copy as part of the common item.

So if there are s items assumed to be equivalent, the data matrix consists of s þ 1 columns,

one for each item and one for the common item. The tension coefficient is calculated as

Tj ¼
1

kj

Xkj

k¼1

dC
jk 2 djk

� �2

ð7Þ

where dC
jk are the threshold estimates of the common item and where djk are the estimates

of the item j when treated as a separate item. The tension coefficient expresses badness of

fit to the equivalence assumption. For our data, Tj varied between 0.0 and 3.6, with the

majority being lower than 1.0. The distribution of Tj is unknown. Seventeen out of 25

items had low tension (,0.5). High-tension items appeared in blocks K (item SIP12) and

M (SIP11 and AIDS1). Breaking up these blocks is somewhat dangerous because, as

Figure 4 shows, both are central components in the linkage structure. We reran the analysis

where blocks K and M were broken up into separate items, but as this led to nonsensical

threshold estimates, we thought it would be better to leave the blocks unbroken. These

modelling issues illustrate that we pushed to the limit what could be achieved with these

data. In general, the structure of the data imposes a great responsibility on the quality and

fit of the linkage items. The analysis resulted in a conversion key of 36 out of the 54 items

for measuring walking disability.

Mean disability levels per category on the common scale were calculated from the

conversion key under the lognormal prior. Walking disability estimates on a national level

were then estimated in two steps. First, each observed score was replaced by the
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corresponding mean disability estimate. Second, we computed the mean of the sample

posterior by Equation (6), i.e., as the average over groups of interest such as age and sex.

We did not have appropriate survey weights available, but if we had had them, it would

have been easy to incorporate them in the calculations.

Fig. 4. Linkage diagram of 54 items for measuring walking disability.
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Figure 5 displays the results for women between 40 and 90 years after the responses

were converted to the common scale by response conversion. As not all items were

sampled at all ages, not all age groups are present in all plots. As expected, disability

generally increases with age. In general, the relation between age and walking disability in

Belgium, Denmark, Italy, The Netherlands, and the UK follows a similar pattern. The

Austrian line is peculiar in the sense that it is high and shows little age trend. An

explanation for this is that the conversion key does not account for the Austrian item very

well. Swiss walking disability is extremely low across all ages, which is also already

apparent from the raw data (not shown) that show suspiciously few scores in the categories

indicating more disabilities. The Danish and Dutch estimates appear somewhat larger than

average. As both studies are based on a “400 metres” item, this could raise suspicion about

any systematic bias in the conversion key with respect to such an item. Observe however

that the low position of the SENECA study (Van ’t Hof et al. 1991), which posed a “400

metres” question to a mix of European countries, does not support this. The results for men

were similar, but because of smaller samples in the upper ages show slightly more

variability.

4. Discussion

Incomparability of data is a key problem in international comparisons. Response

conversion is a new method for “making incomparable data comparable.” RC consists of

two steps: construction of a conversion key, and application of the key to data. The method

systematically exploits any overlap between existing data sources. The statistical

methodology is built on well-established psychometric theory, and has been applied

before on linked health data (cf. Van Buuren et al. 2003). The most important asset of the

methodology is that it can work with existing, incomparable data. This aids in setting up a

health monitoring system without the need to drastically change established ways of

working in the participating countries.

The role of the linkage structure is critical in establishing conversion keys. RC only works

for those items that are linked. Unlinked items cannot be placed on a common scale. Items

can be linked by data (i.e., by bridge studies and bridge items), by assuming equivalence, or

by a combination of both. It will be clear that linkage by data is preferable to the use of

equivalence assumptions, as the latter are, by definition, not backed up by data. But even

then there can be differences in the quality of the link. Some items appeal to an internal

frame of reference. This means that the choice among alternatives relies on internal and

personal criteria. An example is the HAQ8-item, which contains “with difficulty”

categories. For such items, it is difficult to determine whether answers are comparable

across different persons, cultures or countries. Comparing the responses regarding

such items is only possible under explicit equivalence assumptions. Bridge items with

an external frame of reference (e.g., can walk 50 metres) and not showing DIF are

therefore preferable.

There are various ways to check for DIF (Holland and Wainer, 1993). The general idea

is that equivalence holds if the response probability within different groups (or studies) is

similar across different values of the latent trait u. This method requires an estimate of u to

form groups of equal disability in different studies. The traditional methods for assessing
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DIF require that at least one second item, known to be free of DIF, has been administered

in the studies. In this article, we used an alternative method, based on tension coefficients,

for the situation where there are no such bridge items. More work is needed to investigate

the properties of this method.

Another factor critical to the success of the method is the requirement that items

measure the same latent trait, a property known as unidimensionality. Unidimensionality

can be defined in various ways, and there are several approaches to actually check

unidimensionality in a given set of data (Hattie 1985). For the domain of walking

disability, it is often fairly easy to infer whether an item measures walking disability, but

this may not be the case with data in general. Though the model-fitting strategy we

employed is likely to lead to a more unidimensional set of items, a more complete

methodology to verify unidimensionality for this type of linked data would be useful.

Fig. 5. Mean walking disability in several European countries, expressed on the common scale, for women,

split according to age. Data were collected in national health surveys 1995–1998. The countries in the SENECA

studies are Belgium, Denmark, France, Greece, Hungary, Italy, The Netherlands, Norway, Portugal, Spain,

Switzerland and Poland. The SENECA study collected data during 1988–1989. The figure gives the average over

the SENECA countries.
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The application of the Rasch model as done here differs from applications in

psychological testing and education. The objective in psychological testing and education

is to measure the ability of the individual. The number of items typically varies between 5

and 50, and the standard error of the ability estimate is hopefully small. In the present

application, the objective is to assess differences between countries. In order to get stable

estimates at the group level, we trade in precision at the individual level for a larger sample

size. In other words, it is possible to estimate disability on the group level by as little as one

item provided that the sample size is substantial, and the relation between the

measurement and the common scale is known. The first condition is usually not a problem

in health surveys. This article provides a method to meet the second condition by means of

a Rasch model.

RC builds on the Rasch model, which is firmly rooted in psychometrics but differs from

the traditional approaches because the number of items is extremely low. Having just one

or two items for a person introduces new complexities in modelling and estimation. For

example, treatment of the extremes becomes critical. Also, common scale values will

depend on the measurement properties of the individual items, and are subject to

regression to the mean. We have tried to deal with those complexities in the best possible

way, but clearly there is room for improvement.

Though substantial effort went into creating the linked data set, the walking disability

data were quite sparse and contained relatively few links. This is just a reflection of what

you get when you are restricted to combining existing data. As demonstrated, the

sparseness of the data prohibited some improvements needed in the model. The modelling

task would have been easier if data had been better. RC suggests new ways to collect data.

It is of central importance that studies that collect data contain both country-specific and

country-independent common indicators. The planning of such studies makes the

construction of the linkage matrix more controllable, as its entries will not depend any

more on what items happen to be available from previous studies. Such dedicated bridge

studies need not be very large or costly, and will lead to more compact and workable

linkage matrices. An example is the EUPASS project (Rütten et al. 2003), where new

physical activity indicators were collected next to the current country-specific indicator for

the same persons. Another one is the KIDSCREEN project (Ravens-Sieberer et al. 2001),

where data were collected on both (common) new and (country-specific) old instruments.

Data from such studies are in principle more suitable to our approach than the walking

disability data. We are currently developing conversion keys for these data.

A discussion of some important practical questions follows:

If new items become available, should the entire conversion key change? It is possible

to fix the values of the old items and estimate the conversion key for items that are new to

the conversion. Thus, the key can grow while preserving the old elements. However, at a

given point it might be desirable to develop a new version of the key. Preferably, the whole

process of key construction should be fed and endorsed by appropriate scientific and field

authorities.

Can the method be used for sum scores of two or more items? Yes, the psychometric

theory underlying response conversion is actually very well suited to estimate ability on

two or more items. In practice, it requires some modifications to the procedure to scale

items on the common scale. The same threshold estimates could be used as a basis.
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Is it possible to quantify the variability of values on the common scale, for example by

a 95% confidence interval? There is more than one way of doing this. The simplest

approach is to draw imputed values for u from the category posterior densities. It might be

necessary to do so within a multiple imputation framework (Rubin 1987). Rubin’s theory

leads to interval estimates with appropriate coverage, but simulation work would actually

be needed to confirm this for a particular application. One further issue is whether or not

to include the variability of the threshold-estimates themselves, as would be required in a

full Bayesian analysis. Incorporating the extra threshold uncertainty will flatten out the

posterior distributions. In some sense, this is fair because it keeps track of all uncertainty

within the system. On the other hand, if the key is updated with more elaborate future

data, the measurement properties of the item change in a predictable way, i.e., the item

will lead to uniformly sharper inferences. In our view, the size of the calibration sample

and the measurement properties should be independent of each other. We thus lean

towards the position that all inferences on the converted data should be made conditional

on the key used.

Can RC be useful if comparable data are already available? There is increasing evidence

that “getting comparable data” is not as easy as it sounds, even when the questions are the

same (Harkness et al. 2002). Cross-cultural validity now goes beyond translation and

cultural equivalence, and requires scale equivalence through more formal methods like the

one discussed in this article.

Finally, let us be clear that we do not advocate our technology as a panacea for solving

all harmonisation problems. It is of course always better to get comparable data in the first

place. Getting comparable data is easiest for new topics in new samples. It is already more

difficult to attain comparability on old topics in new samples, as harmonisation might

compromise historic comparability. But with conventional methods it is impossible to get

comparable data from past samples. It would be wasteful to discard historical data with the

argument that they are not comparable. Likewise, it will be inefficient if new community-

wide surveys duplicated data collection efforts of the individual member states. Our

method is particularly useful to deal with these kinds of inefficiencies.
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