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In this article we develop and apply new methods for handling not missing at random
(NMAR) nonresponse. We assume a model for the outcome variable under complete
response and a model for the response probability, which is allowed to depend on the
outcome and auxiliary variables. The two models define the model holding for the outcomes
observed for the responding units, which can be tested. Our methods utilize information on
the population totals of some or all of the auxiliary variables in the two models, but we do
not require that the auxiliary variables are observed for the nonresponding units. We
develop an algorithm for estimating the parameters governing the two models and show
how to estimate the distributions of the missing covariates and the outcomes. The latter
distributions are used for imputing the missing values of the nonresponding units and for
estimating population means and the variances of the estimators. We consider several test
statistics for testing the combined model fitted to the observed data, which enables
validating the models used. The new developments are illustrated using a real data set
collected as part of the Household Expenditure Survey carried out by the Israel Central
Bureau of Statistics in 2005.

Key words: Bootstrap; calibration; Horvitz-Thompson type estimator; nonrespondents’
distribution; respondents’ distribution.

1. Introduction

Most of the methods dealing with nonresponse assume either explicitly or implicitly that

the missing values are “missing at random” (MAR), and that the auxiliary (explanatory)

variables are observed for both the respondents and the nonrespondents. These

assumptions, however, are not always met in practice. In this article we consider the often

practical situation where the probability to respond depends on the outcome value, and

possibly also on explanatory variables. For example, the probability of observing income

may depend on the income level and socio-demographic variables. For this kind of

response mechanism, the missing outcome values are not missing at random (NMAR),

since for the nonrespondents the probability of nonresponse depends on the missing

outcomes. We consider mostly the case of “unit nonresponse,” where the auxiliary
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(covariate) information for the nonrespondents is likewise unobserved, except for the

population totals of some or all of these variables. The covariates’ totals are often available

from administrative or census records.

We propose a new approach for handling NMAR nonresponse, which does not

require knowledge of the covariates for the nonrespondents. We assume a model for the

outcome variable under complete response (the “sample model”) and a model for

the response probability, which is allowed to depend on the outcome and auxiliary

variables. Combining the two models yields the “respondents’ model,” which defines the

likelihood for the observed outcomes. In order to utilize the additional information

provided by the population totals of the covariates, we add calibration constraints, which

match pseudo probability weighted estimates of the totals of the covariates with their

known population values. The weights used for these estimates are the products of

the sampling weight (inverse of the sample inclusion probability) and the inverse of

the response probability under the model. The unknown model parameters are then

estimated by an iterative algorithm, which maximizes the likelihood with respect to

the parameters governing the sample model and solves the calibration constraints with

respect to the parameters of the response probabilities. We prove the convergence of

the algorithm and discuss the properties of the resulting estimators.

Having estimated the model parameters, we predict the population mean of the

outcome values by use of Horvitz-Thompson (H-T) (Horvitz and Thompson 1952) type

estimators, utilizing the estimated response probabilities. Alternatively, when the

covariates are observed for all the sampled units, we can estimate the conditional

distribution of the outcome values for the nonresponding units given their respective

covariates, and then use this distribution for imputing the missing outcomes.

Combining the observed and imputed values produces another predictor of the outcome

population mean. In the case of missing covariate information for the nonresponding

units, the missing values of the covariates are imputed as well using an approximation

to their distribution. The variances of the proposed estimators are estimated by

parametric and resampling methods. Finally, we test the combined model fitted for the

responding units by using standard tests that compare the cumulative hypothesized

distribution with the corresponding empirical distribution, and by testing moments of

the hypothesized model.

The various procedures considered in this article are illustrated using data collected

as part of the Household Expenditure Survey (HES) carried out by the Israel Central

Bureau of Statistics in 2005. The initial response rate in this survey was 43%, but

after many recalls, the final response rate increased to 90%. This survey provides

therefore a rare opportunity of comparing the imputed values after the first interview

with the actual values obtained from the recalls.

2. Existing Approaches to Deal With NMAR Nonresponse

In this section we review briefly some of the approaches proposed in the literature to deal

with NMAR nonresponse. Let yi denote the value of an outcome variable Y associated

with unit i belonging to a sample S ¼ {1; : : : ; n}, drawn from a finite population

U ¼ {1; : : : ;N} by probability sampling with known inclusion probabilities
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pi ¼ Pr ði [ sÞ. Let xi ¼ ðx1i; : : : ; xpiÞ denote the values of p auxiliary variables

(covariates) associated with unit i. In what follows we assume that the population

outcomes are independent realizations from distributions with probability density

functions ( pdf ), f Pð yijxi; uÞ, governed by an unknown vector parameter u. Let

R ¼ {1; : : : ; r} define the sample of respondents with observed outcomes and covariates,

and Rc ¼ {r þ 1; : : : ; n} define the subsample of nonrespondents, for which the

outcomes and possibly the covariates are missing. The response process is assumed to

be independent between units.

In the present study we assume that the sampling process is noninformative such that

under complete response, f Sð yijxiÞ ¼ f ð yijxi; i [ SÞ ¼ f PðyijxiÞ;i. Most of the approaches

considered in the literature to deal with nonresponse assume (sometimes implicitly)

that the missing data are “missing at random” (MAR) (Rubin 1976; Little 1982). This type

of nonresponse requires that the probability of responding does not depend on the

unobserved data after conditioning on the observed data. Under this condition, if the

parameters governing the distribution under full response are distinct from the parameters

governing the response process, the nonresponse can be ignored for likelihood and

Bayesian inference. Notice that in this case,

f Rð yijxiÞ ¼ f ð yijxi; i [ RÞ ¼ f Sð yijxiÞ ð1Þ

where f Rð yijxiÞ defines the marginal pdf for responding unit i and f Sð yijxiÞ is

the corresponding sample pdf defined above. There are many approaches for handling

MAR nonresponse – see the books by Schafer (1997) and Little and Rubin (2002), and

the recent article by Qin et al. (2008), for comprehensive accounts.

In this article we consider situations where the probability to respond may depend on the

outcome value even after conditioning on the covariates. For example, the probability to

observe income may depend on the income level as well as on socio-demographic

variables. For this kind of response mechanism, the missing outcomes are not missing at

random (NMAR).

Suppose first that all the covariates are known for every sampled unit. Define by Ri

the response indicator such that Ri ¼ 1ð0Þ if sampled unit i responds (does not respond)

to the outcome variable. A possible way to deal with the nonresponse in this situation is

by postulating a parametric model for the joint distribution of Yi and Ri, given xi. Little

and Rubin (2002) distinguish between two ways of formulating the likelihood in this case.

A. Selection Models specify

f ð yi;Rijxi; u; gÞ ¼ Pr ðRijyi; xi; gÞf Sð yijxi; uÞ ð2Þ

where f Sð yijxi; uÞ defines the sample pdf (model), Pr ðRijyi; xi; gÞ models the response

probability and u and g denote the (distinct) parameters of the two models. Assuming that

the outcomes are independent given the covariates, the full likelihood takes in this case

the form,

L ¼
Yr
i¼1

Pr ðRi ¼ 1jyi; xi; gÞf Sð yijxi; uÞ
Yn
i¼rþ1

Pr ðRi ¼ 0jxi; u; gÞ ð3Þ
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where Pr ðRi ¼ 0jxi; u; gÞ ¼ 12
Ð
Pr ðRi ¼ 1jyi; xi; gÞf Sð yijxi; uÞdyi. The response prob-

ability is often modeled as

Pr ðRi ¼ 1jyi; xi;gÞ ¼ g g0 þ g t
1xi þ g2yi

� �
ð4Þ

for some function g taking values in the range (0,1) (see below).

Suppressing for convenience the parameters from the notation, the missing sample

values can be imputed in this case by the expectations ERc ðYijxiÞ ¼ EðYijxi;Ri ¼ 0Þ,

which can be calculated using Bayes theorem as

ERc ðYijxiÞ ¼

ð1
21

yif ð yijxi;Ri ¼ 0Þdyi ¼

ð1
21

yi
PðRi ¼ 0jyi; xiÞf Sð yijxiÞÐ1

21
PðRi ¼ 0jyi; xiÞf Sð yijxiÞdyi

dyi ð5Þ

In practice, the probabilities and densities in (5) are replaced by their estimates as

obtained by estimating the unknown parameters. Alternatively, the imputed values can be

obtained by drawing at random from the pdf f R c ð yijxiÞ ¼ f ð yijxi;Ri ¼ 0Þ, thus accounting

for the variability of the outcomes around their expectations. An example of the use of

selection models is considered by Greenlees et al. (1982). They assume that the sample

model is normal and the probability of responding is logistic.

Selection models allow estimating all the unknown model parameters, but as noted by

Little (1994), the use of the likelihood in (3) is based inevitably on strong distributional

assumptions. Beaumont (2000) proposes robustifying the model considered by Greenlees

et al. (1982) by dropping the normality assumption for the regression residuals. The

author estimates the parameters g by maximizing the likelihood L ¼
Qr

i¼1 PðRi ¼

1jyi; xi; gÞ
Qn

i¼rþ1 PðRi ¼ 0jxi; u; gÞ with respect to g, assuming that u is “known,” and the

parameters u by solving weighted least square equations, assuming that g is “known.” The

procedure is carried out iteratively, with the “known” values on a given iteration defined

by the estimates obtained on the previous iteration, and with the weights defined by the

inverse response probabilities as computed on the previous iteration. A drawback of this

method is that the probability PðRi ¼ 0jxi; u; gÞ cannot actually be calculated, since the

sample pdf of Yijxi is not specified. The author deals with this problem by expanding

PðRi ¼ 1jyi; xi; gÞ around the mean ESðYijxiÞ, but this amounts to assuming a MAR

nonresponse.

B. Pattern-mixture models specify

f yi;Rijxi;c
ðRiÞ
m ;cr

� �
¼ f yijxi;Ri;c

ðRiÞ
m

� �
Pr ðRijxi;crÞ ð6Þ

where f yijxi;Ri;c
ðRiÞ
m

� �
defines the pdf of Y under the different patterns of the missing data,

ðRi ¼ 0; Ri ¼ 1Þ, Pr ðRijXi;crÞ models the response probability given the covariates and

cðRiÞ
m and cr are fixed (unknown) parameters. The likelihood takes in this case the form

L ¼
Yr
i¼1

f ð yijxi;Ri ¼ 1;c ð1Þ
m Þ Pr ðRi ¼ 1jxi;crÞ

Yn
i¼rþ1

Pr ðRi ¼ 0jxi;crÞ ð7Þ

A major drawback of pattern-mixture models is that the model f yijxi;Ri ¼ 0;c ð0Þ
m

� �
holding for the nonrespondents cannot be extracted from the models f yijxi;Ri ¼ 1;c ð1Þ

m

� �
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and Pr ðRijxi;crÞ fitted under this approach, and hence it is not clear how to impute

the missing outcomes unless under strong assumptions, which could be hard to test.

Little (1993; 1994) discusses plausible relationships between the parameters governing the

models holding for the respondents and the nonrespondents and provides examples of

the application of selection and pattern-mixture models. Rubin (1987) discusses selection

and pattern-mixture models from a Bayesian perspective.

Tang et al. (2003) propose a “pseudo-likelihood” method that uses the pdf gSðxijyiÞ for

the respondents. Application of this method requires specification of the sample pdf,

f Sð yijxiÞ, and the marginal pdf, gSðxiÞ, with the later pdf possibly replaced by the empirical

sample distribution. The method does not require a parametric model for the response

probability but it is assumed that it depends only on the outcome. The likelihood takes now

the form,

L ¼
Yr
i¼1

gSðxijyi; u;hÞ ¼
Yr
i¼1

f Sð yijxi; uÞgSðxi;hÞÐ
f Sð yijx; uÞgSðx;hÞdx

ð8Þ

Note that although the product is only over the responding units, estimation of the pdf

gSðxiÞ requires that the covariates are known for all the sample units. The authors point out

that the method is robust to misspecification of the response process but the use of this

approach does not allow deriving the pdf f R c ð yijxiÞ required for imputing the missing

outcomes.

So far we considered methods that assume that the covariates are observed for all the

sampled units. Qin et al. (2002) propose a method for the case where the covariates are

only known for the respondents. The method assumes a parametric model for Pr ðRi ¼

1jxi; yiÞ and known population means, Xpop, of the covariates. The authors use the

empirical likelihood of ð yi; xi;RiÞ,

L ¼
Yr
i¼1

Pr ðRi ¼ 1jyi; xi; gÞpið12 lÞn2r ð9Þ

where l ¼ Pr ðRi ¼ 1Þ and pi ¼ dFSð yi; xiÞ is the “jump” of the joint cumulative

distribution FSð yi; xiÞ at ð yi; xiÞ, i ¼ 1; : : : ; r. The empirical likelihood is maximized

under the constraints,

Xr
i¼1

pi½ Pr ðRi ¼ 1jyi; xi; gÞ2 l� ¼ 0;
Xr
i¼1

piðxi 2 XpopÞ ¼ 0; pi $ 0;
Xr
i¼1

pi ¼ 1 ð10Þ

The use of this method addresses the problem of missing covariate information by using

the unconditional response probability l ¼ Pr ðRi ¼ 1Þ in the likelihood, and it accounts

for the known population means of the covariates. However, our experience so far shows

that good performance of the procedure depends on having sufficiently accurate initial

values for the response model parameters.

Chang and Kott (2008) propose a method for estimating the response probabilities

which uses known totals of calibration variables. They assume a parametric model for the

response probabilities that may depend on the outcome value, and estimate the unknown

parameters of this model by regressing the totals of the calibration variables against their
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H-T estimators. The weights used for the H-T estimators are the product of the sampling

weights and the inverse of the response probabilities under the model. See Section 3.4

below for more details. The use of this approach allows estimating population totals of

interest, but it does not lend itself to imputation of the missing outcomes, since no model is

assumed for the outcome values.

3. The Respondents’ Distribution and Parameter Estimation

3.1. The Respondents’ Distribution and Its Relation to the Sample Distribution

In what follows we denote by xi the covariates contained in the population model and

by vi the covariates contained in the response model. Let zi ¼ ðxi < viÞ.

The marginal pdf of the outcome for a responding unit is obtained, similarly to

Pfeffermann et al. (1998), as

f Rð yijziÞ ¼ f ð yijzi; i [ S;Ri ¼ 1Þ ¼
Pr ðRi ¼ 1jyi; vi; i [ SÞ

Pr ðRi ¼ 1jzi; i [ SÞ
f Sð yijxiÞ ð11Þ

where Pr ðRi ¼ 1jzi; i [ SÞ ¼
Ð
Pr ðRi ¼ 1jyi; vi; i [ SÞf Sð yijxiÞdyi and f Sð yijxiÞ is the

sample pdf under complete response. As noted before, in this article we assume that the

sample pdf and the population pdf are the same.

Remark 1 As with selection models (Section 2), the use of the respondents’ model

requires modeling the sample pdf, f Sð yijxiÞ and the response probability,

Pr ðRi ¼ 1jyi; vi; i [ SÞ. Notice, however, that the resulting respondents’ model can be

tested, since it relates to the data observed for the responding units (see Section 6).

By (11), if the sample outcomes and the response are independent between the units,

the respondents’ likelihood has the form,

LResp ¼
Yr
i¼1

f ð yijzi; i [ S;Ri ¼ 1; i [ S; u; gÞ

¼
Yr
i¼1

Pr ðRi ¼ 1jyi; vi; i [ S; gÞf Sð yijxi; uÞ

Pr ðRi ¼ 1jzi; i [ S; u; gÞ
ð12Þ

The notable property of (12) is that it does not require knowledge of the covariates for

the nonresponding units, or modeling the distribution of the sampled covariates. As shown

later, estimation of the unknown parameters (g,u) permits imputing the missing outcomes

and covariates and predicting finite population means.

3.2. The Respondents’ Likelihood for Generalized Linear Sample Models (GLM)

The GLM is defined as

f Sð yijxi;b;fÞ ¼ exp aðfÞ yi
Xp
k¼0

bkxki 2 g
Xp
k¼0

bkxki

 !
þ dð yiÞ

" #
þ hðf; yiÞ

( )
ð13Þ

where xko ¼ 1, u 0 ¼ ðb 0;fÞ defines the set of unknown parameters and gð:Þ, að:Þ; dð:Þ and

hð:Þ are known real functions with gð�Þ strictly increasing and differentiable. In what

Journal of Official Statistics186



follows we assume hðf; yiÞ ¼ hðfÞ. The log of the likelihood (12) in the case of the

GLM (13) is

lResp ¼ aðfÞ
Xr
i¼1

yi
Xp
k¼0

bkxki2g
Xp
k¼0

bkxki

 !
þdð yiÞ

" #
þ rhðfÞ

þ
Xr
i¼1

log ½Pr ðRi ¼ 1jyi;vi; i[ S;gÞ�2
Xr
i¼1

log ½Pr ðRi ¼ 1jzi; i[ S;b;f;gÞ�

ð14Þ

Denote pð yi; vi; gÞ ¼ Pr ðRi ¼ 1jyi; vi; i [ S; gÞ. Taking the derivatives of the log-

likelihood (14) with respect to b and f and equating them to zero, we obtain after some

tedious algebra the following equations:

lk ¼
Xr
i¼1

½yi 2 ERðYijzi;b;f; gÞ�xki ¼ 0; k ¼ 0; : : : ; p ð15aÞ

lpþ1 ¼
Xr
i¼1

½dð yiÞ2 ERðdðYiÞjzi;b;f; gÞ� ¼ 0 ð15bÞ

whereERðYijzi;b;f;gÞ ¼

ð
yif Rð yijzi;b;f;gÞdyi ¼

ð
yi

pð yi;vi;gÞf Sð yijxi;b;fÞÐ
pð yi;vi;gÞf Sð yijxi;b;fÞdyi

dyi

Let g ¼ ðg0; : : : ; gqþ1Þ. Taking derivatives of the log-likelihood (14) with respect to g

and assuming that the order of integration and differentiation can be interchanged, we

obtain after equating the derivates to zeroXr
i¼1

ER

›pð yi; vi;gÞ

›gk

1

pð yi; vi;gÞ

����zi
� �

¼
Xr
i¼1

›pð yi; vi; gÞ

›gk

1

pð yi; vi; gÞ

� �
;

k ¼ 0; : : : ; ðqþ 1Þ

ð16Þ

For example, if the response probability is logistic such that

pð yi; vi; gÞ ¼ 1þ exp 2 g0 þ
Xq

k¼1
vkigk þ yigqþ1

� �h in o21

¼ {1þ exp ½2ð1; v 0i; yiÞg�}
21; the equations are:

Xr
i¼1

ERðpð yi; vi; gÞjziÞ ¼
Xr
i¼1

pð yi; vi; gÞ ;

Xr
i¼1

v1iERðpð yi; vi; gÞjziÞ ¼
Xr
i¼1

v1ipð yi; vi; gÞ

ð17Þ

..

.

Xr
i¼1

vqiERðpð yi; vi; gÞjziÞ ¼
Xr
i¼1

vqipð yi; vi; gÞ ;

Xr
i¼1

ERð yipð yi; vi;gÞjziÞ ¼
Xr
i¼1

yipð yi; vi; gÞ
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The solution of Equations (15a), (15b) and (16) (or 17 in the logistic case) yields the

maximum likelihood estimators (MLEs) for ðb 0;f; g 0Þ.

3.3. Calibration Constraints

Our experience so far shows that maximization of the likelihood (12) ((14) in

the GLM case) may be unstable. In what follows we assume knowledge of the

population totals of all the covariates included in the response model and at least one

of the covariates included in the sample model. We later relax this requirement.

We also assume that the sampling weights, {wi ¼ ð1=piÞ ¼ 1= Pr ði [ SÞ}, are known

for every responding unit in the sample. The additional information contained in the

population totals is not part of the likelihood (14). We utilize this information by

imposing the following constraints. Let the sample pdf be the GLM defined by (13)

and denote by Z pop ¼ Z
pop
1 ; : : : ; Zpop

t*

� �
¼ V

pop
1 ; : : : ;Vpop

q ;Xpop
1 ; : : : ;Xpop

p*

� �
the

known population totals, where p* # p ¼ dim ðxiÞ, t* # t ¼ dim ðziÞ. The calibration

constraints are

Xr
i¼1

wi

vki

pð yi; vi;gÞ
¼ V

pop
k ; k ¼ 1; : : : ; q;

Xr
i¼1

wi

1

pð yi; vi; gÞ
¼ N ð18aÞ

When the response model has an intercept, we use the additional constraint

Xr
i¼1

wi

~b 0 ~xi

pð yi; vi;gÞ
¼ ~b 0 ~Xpop ð18bÞ

where ~xi ¼ ðx1i; : : : ; xp* ;iÞ, ~X
pop ¼ X

pop
1 ; : : : ;Xpop

p*

� �
and ~b is the vector of coefficients

of ~xi in the sample model. Notice that if ESðYijxi;b;fÞ ¼
Pp

k¼0 bkxki (the sample

expectation is linear) and p ¼ p*, the constraint (18b) implies,

Xr
i¼1

wi

ESðYijxiÞ

pð yi; vi;gÞ
¼
XN
j¼1

ESðYjjxjÞ ¼
XN
j¼1

EpðYjjxjÞ

since we assume that the population and sample models are the same.

Remark 2 The left-hand sides of (18a) and (18b) are the familiar H-T estimators of

the corresponding totals under the following two-phase sampling process: in the first

phase a sample S of size n is sampled with inclusion probabilities pi ¼ 1=wi; in the

second phase the sampled units respond with probabilities pð yi; vi; gÞ (Särndal and

Swensson 1987).

3.4. Estimation Algorithm, Properties of Estimators

In order to utilize the additional information provided by knowledge of the population

totals, we replace Equation (16) by Equations (18a) and (18b), and use the following

iterative algorithm.

Let ðb ð0Þ;f ð0ÞÞ denote initial values for ðb;fÞ governing the sample pdf f sð yijxi;b;fÞ.
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Step j: For given ðb̂ ð jÞ; f̂ ð jÞÞ from iteration j, set ðb;fÞ ¼ ðb̂ ð jÞ; f̂ ð jÞÞ and solve

Equations (18a) and (18b) as a function of the unknown parameters g governing the

response probabilities pð yi; vi; gÞ. This step yields new estimators ĝ ð jþ1Þ.

Step ( j þ 1): Solve (15a) and (15b) with respect to ðb;fÞ, with g equal to g ð jþ1Þ. This

step yields new estimators ðb̂ ð jþ1Þ; f̂ ð jþ1ÞÞ. Continue the iterations until convergence.

Our experience shows that the use of this algorithm simplifies the computation of the

estimators and is much more stable than the solution of the likelihood equations (15a),

(15b) and (16). It also utilizes the additional information provided by the known totals of

the covariates. The solution of Equations (15a) and (15b) for fixed g is outlined in

Appendix A.

Let lðu; gÞ ¼ › log ðLRespÞ=›u, with LResp defined by (12). Denote by hðu; gÞ the

differences between the left- and right-hand side of the system of Equations (18a) – (18b),

which can be written then as h(u,g) ¼ 0, and let ĵ 0 ¼ ðû 0; ĝ 0Þ define the estimator obtained

by application of the algorithm.

Theorem 1 Suppose that:

I) The population (sample) model belongs to the family of generalized linear models.

II) 0 , pð yi; vi; gÞ , 1, with bounded first derivatives with respect to g.

III) The functions lðu; gÞ and hðu; gÞ are continuous and twice differentiable with respect to

ðu; gÞ in a compact neighborhood of the solution j 0
0 ¼ ðu 0

0; g
0
0Þ of Equations 15(a) – 15(b)

and 18(a) – 18(b).

IV) The matrices ›lðu; gÞ=›u ›hðu; gÞ=›g are nonsingular in a neighborhood of the

true vector parameter ~j ¼ ð ~u 0; ~g 0Þ 0.

V) ~j is the unique solution of the equation E½Uð ~jÞ� ¼ 0, where

j 0 ¼ ðu 0;g 0Þ ¼ ðu0; : : :; upþ1;g0; : : : ; gqþ1Þ, U ¼ ðl0;h0Þ0 ¼ ðl0; : : : ; lpþ1; h0; : : : ;hqþ1Þ
0

and the expectation is taken over all possible samples of respondents and all possible

sample outcomes under the sample distribution.

Then, as N !1; n!1 such that ðN=nÞ , 1, the estimator ĵ 0 ¼ ðû 0; ĝ 0Þ converges

in probability to the solution j 0
0 ¼ ðu 0

0; g
0
0Þ. The theorem is proved in Appendix B.

Next we establish the consistency and asymptotic normality of the estimator

ĵ ¼ ðû 0; ĝ 0Þ0. For this, note first that Equations (15a) – (15b) and (18a) – (18b) can

be written as 1=n
Pn

i¼1wðRi; yi; zi; u; gÞ ¼ 0, where as before, u 0 ¼ ðb 0;fÞ and Ri is the

response indicator. (For Ri ¼ 0, wðRi; yi; zi; u; gÞ ¼ 0). In the theorem below all the

expectations are taken over all possible samples of respondents and all possible outcomes

under the sample distribution.

Theorem 2 Suppose that:

(i) The true vector parameter ~j ¼ ð ~u 0; ~g 0Þ0 is an interior point of the parameter space,

(ii) wðRi; yi; zi; jÞ is continuously differentiable in a neighborhood d of ~j,

(iii) E½wðRi; yi; zi; ~jÞ� ¼ 0 and ~j is the unique solution of the equations E½UðjÞ� ¼ 0

where j0 ¼ ðu 0; g 0Þ ¼ ðu0; : : : ; upþ1; g0; : : : ; gqþ1Þ and U ¼ ðl0; h 0Þ0 ¼ ðl0; : : : ; lpþ1;

h0; : : : ; hqþ1Þ
0. (iv) E½wðRi; yi; zi; ~jÞwðRi; yi; zi; ~jÞ

0� , 1, (v) E½
j[d
sup k›wð yi; zi; jÞ=›jk�

, 1. Then the estimator ĵ ¼ ðû0; ĝ 0Þ0 is consistent for ~j and
ffiffiffi
n

p
ðĵ2 ~jÞ

D
�!N½0;Vð ~jÞ�. The

theorem is proved in Appendix C.
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3.5. Alternative Algorithm for Estimating the Response Probabilities

Another possibility of utilizing known covariate totals for estimating the parameters g

governing the model for the response probabilities is by applying an approach

proposed by Chang and Kott (2008). By this approach, the totals of calibration

variables C1; : : : ;CK , which may contain some or all of the covariates in the

response model, are regressed against their H-T estimators. Thus, in the case that the

probability of responding depends on the outcome variable and q þ 1 covariates

(including an intercept), the method requires that K $ qþ 2. The major difference

between the calibration equations (18) and this method is that it allows utilizing more

population totals than the totals of the variables included in Z. In particular,

population totals of variables not included in the model for the response probabilities

may be used. This results in more equations than estimated parameters and hence,

potentially, in more stable estimators.

Let ci denote the values of the calibration variables for unit i. Chang and Kott (2008)

estimate the unknown parameters g by setting the nonlinear regression equations

Cpop ¼
Xr
i¼1

wi

ci

pð yi; vi;gÞ
þ 1* whereCpop ¼

XN

j¼1
cj and 1* is a vector of errors:

The parameters g are estimated by applying the iterative algorithm

ĝ ð jþ1Þ ¼ ĝ ð jÞ þ {Ĥðĝ ð jÞÞTV 21ðĝ ð jÞÞĤðĝ ð jÞÞ}21Ĥðĝ ð jÞÞTV 21ðĝ ð jÞÞ

� Cpop 2
Xr
i¼1

wi

ci

pð yi; vi; ĝ ð jÞÞ

 !
ð19Þ

where Ĥðĝ ð jÞÞ ¼

›
Xr

i¼1
wi

ci

pð yi; vi;gÞ

	 

›g

��������
g ¼ ĝ ð jÞ and V̂21ðĝ ð jÞÞ is the inverse of an

estimator for the quasi-randomization variance of
Xr
i¼1

wi

ci

pð yi;vi;gÞ
; computed at g¼ ĝ ð jÞ

Remark 3 Chang and Kott (2008) do not assume a model for the outcome variable so

that their approach is restricted to estimation of the model for the response probabilities,

which can be used for estimating finite population totals, but not for imputation. However,

the following theorem holds (the proof can be obtained from the authors).

Theorem 3 Let g* be the estimator obtained by application of (19), and u* be the

solution of the equations lðu; g* Þ ¼ 0 (Equations 15(a) – 15(b) with g ¼ g*).

Suppose that 0 , pð yi; vi; gÞ , 1 with bounded first derivatives with respect to g.

Then under some added regularity conditions as n!1 ðu* ; g* Þ
p
!ð ~u; ~gÞ, andffiffiffi

n
p

ðu* 0; g* 0Þ
D
! N½ð ~u0; ~g 0Þ;S* � for some fixed matrix S* .
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Remark 4 An obvious advantage of the use of (19) instead of (18a) and 18(b) for

the estimation of ðu; gÞ is that it does not require knowledge of the population totals of

all the covariates featuring in the model for the response probabilities and at least one

of the covariates featuring in the model for the outcome variable. On the other hand,

our experience so far shows that the use of 18(a) and 18(b) yields better parameter

estimates and better imputations when the totals required for the use of these equations

are known.

4. Imputation and Estimation of Population Means

Denote for nonresponding unit i,

f̂R c ð yijziÞ ¼
Pr ðRi ¼ 0jyi; vi; i [ S; ĝÞf Sð yijxi; ûÞ

Pr ðRi ¼ 0jzi; i [ S; û; ĝÞ

¼
½12 p̂ð yi; viÞ�f Sð yijxi; ûÞ

12 Pr ðRi ¼ 1jzi; i [ S; û; ĝÞ
ð20Þ

p̂ð yi; viÞ ¼ pð yi; vi; ĝÞ; ÊR c ðYijziÞ ¼ ERc ðYijzi; û; ĝÞ ð21Þ

the estimate of the pdf of the outcome and the estimates of the response probability and

the expectation of the outcome respectively. The expectation ERC ðYijziÞ is with respect

to the pdf f R c ð yijziÞ. The estimates in (20) and (21) provide several possibilities for the

imputation of the missing values and the estimation of the population mean of the

outcome.

When the covariates for the nonrespondents are unknown, the population mean of the

outcome can be estimated using the (pseudo) H-T estimator

^
Y ð1Þ ¼

1

N

Xr

i¼1
wiyi=p̂ð yi; viÞ ð22Þ

When the covariates are known for all the sampled units, another plausible estimator is

^
Y ð2Þ ¼

1

N

Xn

i¼1
wiy

*
i ; y

*
i ¼ yi if i [ R; y*i ¼ y

imp
i if i [ Rc ð23Þ

The imputed values can be computed either as

y
imp
i ¼ ÊRC ðYijziÞ ð24Þ

or by generating one or more observations from the pdf f̂R c ð yijziÞ and taking the average of

these observations as the imputed value, using multiple imputation techniques (Rubin

1987; Schafer and Schenker 2000).

Remark 5 It is important to emphasize that no new model is assumed for the outcomes of

the nonresponding units. This model is defined mathematically by the relationship (20).

The sample model, f Sð yijxi; uÞ, and the model for the response probabilities, pð yi; vi;gÞ,

define the model holding for the outcomes of the responding units and this model can be

validated by application of goodness of fit test statistics since it refers to the observed data

(see Section 6).
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The predictor
^
Y ð2Þ in (23) requires that the covariates are known for every unit in the

sample. When the covariates are only known for the respondents, we can first impute

the missing covariates for the nonrespondents from the probability function

PZj0ðziÞ ¼ Pr ðZi ¼ zijRi ¼ 0; i [ SÞ, and then predict the outcome value as described

above. Following Sverchkov and Pfeffermann (2004), the latter probability function can

be expressed as

PZj0ðziÞ ¼
PrðRi ¼ 0jZi ¼ zi; i [ SÞ

PrðRi ¼ 0ji [ SÞ
Pr ðZi ¼ ziji [ SÞ

¼
PrðRi ¼ 0jZi ¼ zi; i [ SÞ Pr ðZi ¼ zijRi ¼ 1; i [ SÞ Pr ðRi ¼ 1ji [ SÞ

PrðRi ¼ 0ji [ SÞ Pr ðRi ¼ 1jZi ¼ zi; i [ SÞ

ð25Þ

Estimating P̂rðZi ¼ zijRi ¼ 1; i [ SÞ ¼ ð1=rÞ and P̂rðRi ¼ 1ji [ SÞ ¼ r=Pr
j¼1½1=p̂ðzjÞ

h i
where p̂ðziÞ ¼ Pr ðRi ¼ 1jzi; i [ S; û; ĝÞ, the probability PZj0ðziÞ can be

estimated as

P̂Zj0ðziÞ ¼
½12 p̂ðziÞ�

p̂ðziÞ
Xr

j¼1
ð1=p̂ðzjÞÞ2 r

h i ; zi [ R ð26Þ

Remark 6 The estimator (26) assumes that the covariates in the subsample of the

nonrespondents take the same values as in the subsample of the respondents (but with

different frequencies). It is actually easy to show that for any vector covariate z* such that

0 , Pr ðR ¼ 1jZ ¼ z* Þ , 1, Pr ðZ ¼ z* jR ¼ 1Þ – 0 , Pr ðZ ¼ z* jR ¼ 0Þ – 0. Note

also that
Pr

j¼1P̂Zj0ðzjÞ ¼ 1. When dim ðziÞ is small, the estimate P̂rðZi ¼ zijRi ¼ 1;

i [ SÞ ¼ ð1=rÞ can be enhanced by use of more advanced density estimation methods.

In what follows we denote the estimator with imputed covariates and outcomes by
^
Y ð3Þ.

5. Estimation of Variances of Estimators of Population Means

In Section 4 we considered several estimators of the population mean of the outcome

variable. In order to estimate the variance of these estimators, we can apply a parametric

bootstrap procedure, distinguishing between estimation of the conditional variance given

the observed covariates for the respondents (and thus conditioning also on the number of

respondents), and the unconditional variance over all possible samples of respondents

(and thus also over all possible numbers of respondents). The bootstrap procedure for

estimating the conditional variance consists of the following steps:

1. Generate a large number B of samples of outcomes of size r from the estimated

respondents’ distributions f Rð yijzi; û; ĝÞ with given (original) covariates zi.

2. For each new sample, reestimate ðu; gÞ and then compute the estimators
^
Y ð1Þ–

^
Y ð3Þ

using the new parameter estimators. Estimate,

Vârð
^
Y ðkÞÞ ¼

1

B

XB

b¼1

^
Y
ðbÞ

ðkÞ 2 Y
A

ðkÞ

� �2

; Y
A

ðkÞ ¼
1

B

XB

b¼1

^
Y
ðbÞ

ðkÞ; k ¼ 1; 2; 3 ð27Þ

where
^
Y
ðbÞ

ðkÞ denotes the estimator computed from bootstrap sample b ¼ 1; : : : ;B.
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For estimating the unconditional variances we first impute the missing covariates for

the nonrespondents, if they are missing. Next we generate the outcomes for the whole

sample using the estimated sample distribution, f Sð yijxi; ûÞ and then select respondents

with probabilities pð y; vi; ĝÞ. In this case the number of respondents and their covariates

change from one bootstrap sample to the other. The rest of the computations are the same

as for the conditional variances. The whole process is repeated B times.

Another way of estimating the variance of the H-T estimator
^
Y ð1Þ is by estimating the

conditional variance

Varcð
^
Y ð1ÞÞ¼Var

~
Y ð1Þj ~Tv;x¼ N;Vpop

1 ; : : : ;Vpop
q ;

^~b 0 ~Xpop
� � 0

	 

ð28Þ

where
~
Y ð1Þ ¼

1

N

Xr
i¼1

wiyi

pð yi;vi;gÞ
; and

~Tv;x¼
Xr
i¼1

wi

1

pð yi;vi;gÞ
;
Xr
i¼1

wi

v1i

pð yi;vi;gÞ
; : : : ;

Xr
i¼1

wi

vqi

pð yi;vi;gÞ
;
Xr
i¼1

wi

^~b 0 ~xi

pð yi;vi;gÞ

" # 0

This variance accounts for the calibration constraints used for estimating the model

parameters (Equations 18(a) and 18(b)) and hence the response probabilities. (Deville

and Tille (2005) consider a similar variance estimator in a different context.) Denote

s11 ¼ Varð
~
Y ð1ÞÞ, S22 ¼ Varð ~Tv;xÞ and s 0

12 ¼ Covð
~
Y ð1Þ; ~Tv;xÞ. Assuming

~
Y ð1Þ ø d t ~Tv;x þ

1; Eð1j ~Tv;xÞ ¼ 0 for some vector d, (e.g., assuming asymptotic normality of ð
~
Y ð1Þ; ~Tv;xÞ),

Varcð
^
Y ð1ÞÞ ¼ s11 2 s 0

12S
21
22 s12 ð29Þ

The variance components in (29), and hence the conditional variance of
^
Y ð1Þ, can be

computed and estimated with respect to the randomization distribution over all possible

samples of respondents and all possible original samples, or over all possible samples of

respondents and all possible outcomes under the sample model, with the unknown model

parameters replaced by their original sample estimates. The estimator (29) does not

require resampling procedures.

Remark 7 The variance of the estimators
^
Y ð2Þ and

^
Y ð3Þ, which use observed and imputed

values could possibly be estimated also using multiple imputation theory (Rubin 1987;

Schafer and Schenker 2000). However, empirical results obtained so far indicate that a

textbook application of this method in the present context does not produce well-behaved

estimators. We are investigating this problem.

6. Testing the Goodness of Fit of the Model

As noted before, the pdf (11), which is fitted for the responding units, can be tested since it

refers to the observed data. In principle, one faces the classical problem of having a

random sample from a hypothesized pdf which has to be validated. In what follows we

consider several goodness of fit test statistics that seem appropriate for our problem.
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6.1. Classical Tests

Suppose first that the true model parameters ðu; gÞ are known. Denote by Uið yÞ ¼Ð y
21

f Rðtjzi; u; gÞdt the hypothesized cumulative respondent distribution function (cdf ) of

yijzi, i ¼ 1; : : : ; r. For an absolutely continuous cdf, the random variables Uið�Þ are

independent Uniform [0,1] variables since the responses yi are independent given the

covariates. Denote by u1; : : : ; ur the values of U1; : : : ;Ur at the sample values

y1; : : : ; yr respectively, and let Femp define the empirical distribution of u1; : : : ; ur.

Following Landsman (2008), we apply three classical goodness of fit tests to the ordered

values uð1Þ; : : : ; uðrÞ. The tests are:

Kolmogorov2 Smirnov: KS ¼
i

max jFEmpðuði ÞÞ2 uði Þj ð30Þ

Cramer2 vonMisses: CM ¼
1

12r
þ
Xr
i¼1

uði Þ 2
2i2 1

2r

	 
2
ð31Þ

Anderson2Darling:

AD¼2r2
1

r

Xr
i¼1

½ð2i2 1Þ ln ðuði ÞÞ þ ð2rþ 12 2i Þ ln ð12 uði ÞÞ�
ð32Þ

So far, we have assumed known parameter values. When the test statistics are computed

with estimated parameters, the asymptotic distribution of the three statistics depends in a

complex way on the hypothesized model, the true model parameters and the method of

estimation. Correct critical values can be obtained in this case by use of parametric

bootstrap. The procedure consists of generating a large number of samples from the

estimated hypothesized model, reestimating the unknown parameters from each bootstrap

sample and then computing the corresponding test statistics. The bootstrap distribution

of these statistics provides approximate critical values for the null distribution, with

correct order of error. See Babu and Rao (2004) for regularity conditions establishing the

use of this procedure.

6.2. Other Tests

In addition to the classical tests considered above, we propose tests that compare the

theoretical moments of the fitted distributions with their H-T estimators. In what follows

we illustrate the use of these statistics for the case where the population pdf is normal, but

the tests can be modified to other population distributions.

Under normality of the population pdf, Yi ¼ x 0ibþ 1i; 1i , Nð0;s2
1Þ and we can test,

for example, Hð3Þ
0 : m ð3Þ ¼ Eð13Þ ¼ 0, or Hð4Þ

0 : m ð4Þ ¼ Eð14Þ ¼ 3s4
1, using the following

test statistics:

Hð3Þ
0 ! Cð3Þ ¼

1ffiffiffiffiffiffiffiffi
V̂ ð3Þ

p 1

N

Xr
i¼1

wi

ð yi 2 x 0ib̂Þ
3

ŝ3
1pð yi; vi; ĝÞ

ð33Þ
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Hð4Þ
0 ! Cð4Þ ¼

1ffiffiffiffiffiffiffiffi
V̂ ð4Þ

p 1

N

Xr
i¼1

wi

yi 2 xtib̂
� �4
ŝ4
1pð yi; vi; ĝÞ

2 3

 !
ð34Þ

where V̂ ð3Þ ¼ Vârc
1

N

Xr
i¼1

wi

ð yi 2 x0ib̂Þ
3

pðYi; vi; ĝÞ

 !
and V̂ ð4Þ ¼ Vârc

1

N

Xr
i¼1

wi

ð yi 2 x 0ib̂Þ
4

pð yi; vi; ĝÞ

 !

are the conditional variances given the calibration constraints 18(a)–18(b), similarly to

Section 5. Critical values for the test statistics C(3) and C(4) can be obtained by parametric

bootstrap, similarly to the procedure described in Section 6.1. Alternatively, for large r

one can use a normal approximation by relating to an appropriate central limit theorem.

7. Application of Methods to Household Expenditure Survey

7.1. Study Population and Outcome Variable

In this section we illustrate and study the performance of the proposed approach by using

data collected as part of the Household Expenditure Survey (HES) carried out by the

Israel Central Bureau of Statistics in 2005. The survey collects information on socio-

demographic characteristics and the income of each member of the sampled households

(HHs), as well as information on the HH expenditure. The HHs were sampled with equal

probabilities by a two-stage sampling design. The initial response rate in this survey was as

low as 43%, but after many recalls it increased to 90% of the sampled HHs. In what

follows we restrict ourselves to HHs where the head of the HH is an employee, aged

25–64 and born in Israel. We only consider HHs where at least one of its members worked

during the three months preceding the interview. After removing four HHs as outliers, the

total sample size is n ¼ 1; 717, with r ¼ 629 responding HHs and n2 r ¼ 1; 088

nonresponding HHs, so that for our sample the response rate is 37%. The head of the HH is

the member of the family who has the highest income. The target outcome variable is the

household income per standard person.

For the present study we define the responding HHs to be the HHs that responded on the

first interview. The nonresponding HHs are the HHs which did not respond on the first

interview but responded on one of the later interviews, such that the data for both the

responding and the nonresponding HHs are actually known. This allows comparing the

imputed values with the corresponding true values, assuming that the reported incomes are

not affected by being collected at a later interview and that the late respondents can be

viewed as a random sample from the nonresponding units. (Recall that the eventual

response rate is 90%). As mentioned above, the HHs were sampled with equal

probabilities and we assume therefore that the population model and the sample model

under full response are the same.

7.2. Sample Model and Response Probabilities

We assume (and validate in Section 7.5) that the sample distribution of the outcome

(under full response) given the covariates is lognormal, and that the response

probabilities given the outcome and the covariates can be modeled by the logistic
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function, that is,

yi ¼ x 0ibþ 1i; 1i , Nð0;s 2
1 Þ; i [ S ð35Þ

PðRi ¼ 1jyi; viÞ ¼ ½1þ e2ðg0yiþg 0
1
viÞ�21 ð36Þ

where yi is the log(income) per standard person in household i and xi and vi are the

corresponding vector covariates. The covariates include characteristics of the head of

the HH: gender, age, occupation (“Occ.”) and number of years at school (“Sch.”), as

well as HH characteristics: number of earners (“earners”), HH size (“HH size”) and

district of residence (“Dist.”). Most of the covariates included in the sample model

(35), and in particular the outcome variable log(income) are nonsignificant when

included in the response model (36). However, when removing the nonsignificant

covariates from the model, log(income) is significant and the model contains fewer

covariates. We compared the imputations and the variances of the estimators of the

population mean income as obtained under the two response models and obtained

similar results. In what follows we only consider the reduced model.

Tables 1 and 2 show the estimated coefficients of Models (35) and (36) and their

estimated standard errors as obtained when fitting the two models separately to all the

sample data (respondents and “nonrepondents”), and when fitting the respondents’ model

(11) to only the responding units, using the algorithm described in Section 3.4. (See

Appendix C for computation of the standard errors when fitting the respondents’ model.)

For the application of the algorithm we took the true population totals of the covariates

included in the logistic response model to be the corresponding sample totals.

The figures in the two tables strongly suggest that the coefficients can be estimated

sufficiently accurately based only on the model holding for the responding units (the

practical scenario). Notice that the standard errors when fitting the models to the entire

sample are considerably smaller, which is obvious since the sample size in this case is

Table 1. Sample model coefficients and standard errors when fitting the model to all the sampled HHs

(Respondents and Nonrespondents), and when fitting the model to only the responding HHs

Const. Gender Age Dist. 21 Dist. 41 Dist. 42 Dist. 43 Dist. 44

All HHs 7.29 20.12 0.02 20.18 0.16 0.13 0.19 0.18
Std error 0.071 0.023 0.001 0.060 0.044 0.033 0.045 0.034

Respond. 7.18 20.13 0.02 20.10 0.14 0.10 0.19 0.16
Std error 0.120 0.040 0.002 0.132 0.058 0.053 0.070 0.059

Earners HHsize Occ. 0 Occ. 1 Occ. 4 Sch. 10 Sch. 12 Sch. 16

All HHs 0.25 20.14 0.44 0.23 0.15 20.36 20.14 0.16
Std error 0.017 0.006 0.038 0.038 0.033 0.046 0.030 0.029

Respond. 0.27 20.14 0.45 0.26 0.15 20.36 20.14 0.19
Std error 0.029 0.012 0.064 0.067 0.050 0.074 0.048 0.050

The numbers attached to the variable “Dist.” define different districts of residence. The numbers attached to the

variable “Occ.” define different classes of occupations. The numbers attached to the variable “Sch.” define the

number of years at school.
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almost three times as large and the two models are fitted separately. When fitting the

sample model (Equation 35) to the entire sample, we obtain R2 ¼ 0:612 with residual

variance ŝ2
1 ¼ 0:155. The estimate of s2

1 when fitting the model to only the responding

units is ŝ2
1 ¼ 0:154. The values of the regression coefficients are sensible. For example,

the coefficients of the education variables increase as the level of education increases. The

number of earners in the household has a strong positive effect on the income, while the

size of the household has a strong negative effect. The coefficient of Gender (being a

female) is negative.

Figure 1 compares the histogram of the estimated sample model residuals when fitting

the model to all the sample data, with a normal pdf with mean zero and same variance,

ŝ2
1 ¼ 0:155. The distribution of the estimated residuals is seen to be close to the normal

distribution, although with somewhat shorter tails, which can be explained by the fact that

the estimated residuals are not independent. The normality assumption is validated in

Section 7.5 based on fitting the model to only the responding units.

7.3. Imputation of Missing Outcomes

Next we show the performance of the proposed approach in imputing the missing incomes.

The imputations were carried out under two scenarios. In Scenario 1 we use the known

covariates for the nonrespondents and impute the incomes by drawing at random from the

estimated pdf f̂R c ð yijziÞ ¼ f yijzi; i [ S;Ri ¼ 0; b̂; ŝ 2
1 ; ĝ

� �
(Eq. 20). We imputed five

values for each unit and averaged the five imputations. In Scenario 2 the covariates for the

nonresponding units are also imputed using Equation (26), and then the incomes are

imputed similarly to Scenario 1. Figure 2 compares the true empirical cumulative

distribution of the incomes of the nonresponding units with the means of the empirical

distributions of the imputed values over the five imputation sets. Also shown is the

cumulative distribution of the imputed incomes when ignoring the nonresponse process,

Table 2. Coefficients of logistic model for response probabilities and standard errors when fitting the model to

all the sampled HHs (Respondents and Nonrespondents), and when fitting the model to only the responding HHs

Const. Log( y) Gender Dist. 43 Dist. 44 Dist. 53 HH size

All HHs 1.00 20.21 20.21 0.86 20.58 20.77 0.10
Std error 0.828 0.088 0.109 0.227 0.190 0.275 0.033
Respond. 1.35 20.26 20.20 0.90 20.59 20.79 0.12
Std error 1.317 0.141 0.141 0.353 0.225 0.318 0.047
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Fig. 1. Histogram of estimated regression residuals and normal density with mean zero and same variance

(ŝ 2
1 ¼ 0:155)
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that is, when imputing the missing covariates by drawing at random from their empirical

distribution for the responding HHs and imputing the missing incomes given the

covariates by drawing at random from the estimated sample distribution. This distribution

is again a mean over five imputation sets.

Figure 2 shows that application of the proposed approach yields imputations with

distribution that is close to the true distribution. On the other hand, ignoring the

nonresponse yields biased imputations, particularly when the covariates for

the nonresponding units are likewise unknown.

It is important to emphasize that even if the distribution of the income given

the covariates was the same for the responding and nonresponding HHs, ignoring the

nonresponse in the case of unknown covariates for the nonresponding units would still

produce biased estimates for the income distribution. This is because the nonresponse

process cannot be ignored for some of the covariates. For example, Table 3 shows the

percentage of HHs by size for the responding and nonresponding units. The HH size is an

important covariate in Models (35) and (36) (Tables 1 and 2).

7.4. Estimation of Mean Sample Income and Variance of Estimators

In Section 4 we considered three estimators of the population mean of the outcome

variable and in Section 5 we considered alternative ways of estimating their variance.

Tables 4 and 5 summarize the results obtained when estimating the true sample mean of

the incomes. Table 4 presents the estimated standard errors (S.E.) when conditioning on

the observed covariates for the respondents (and hence also on the number of respondents).

Table 5 presents the unconditional S.E. estimators. For both cases we used bootstrap

samples as described in Section 5. Also shown in the two tables is the mean and S.E. over

all bootstrap samples of the H-T estimator that uses the “true” probabilities of responding,

pð yi; vi; ĝÞ, that is, when the probabilities of responding are not reestimated from the
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Fig. 2. True empirical cumulative distribution and means of empirical cumulative distributions of the imputed

incomes over five imputation sets when the covariates for the nonresponding units are known (left panel) and

when they are unknown (right panel)

Table 3. Distribution of HH size in subsamples of responding and nonresponding HHs

HH size 1 2 3 4 5 6 þ

Respond. 6.18 13.63 19.33 26.94 20.60 13.31
Nonrespond. 12.39 19.00 17.34 24.40 17.34 9.54
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bootstrap samples. This estimator, denoted by
^
Y ð1;P2KÞ, does not take into account the

known totals of the covariates via the calibration constraints.

Tables 4 and 5 show that all the estimators of the mean population income overestimate

the true mean, but with the largest bias in the two tables being 1.6%. In comparison,

the mean of the incomes computed from only the responding units is 6,822.42, an

underestimation of 5.4%. As anticipated, the standard errors of the estimators are smaller

when conditioning on the observed covariates (Table 4) than in the case where the

standard errors are taken over all possible samples of respondents (Table 5). Also, the

standard errors are somewhat smaller when the covariates for the nonresponding units are

known (the estimator
^
Y ð2Þ) than in the case that they have to be imputed (the estimator

^
Y ð3Þ). Finally, the estimator

^
Y ð1;P2KÞ, which does not use the calibration constraints, has a

much larger variance than the estimator
^
Y ð1Þ illustrating the advantage of modifying the

weights by use of calibration constraints.

For estimating the unconditional standard error of the H-T estimator
^
Y ð1Þ we also

computed for each of the 500 bootstrap samples the estimator (29), using the distribution

over all possible samples of respondents and all possible outcomes. The mean of the S.E.

estimates turned out to be 184.78, which is very close to the empirical standard error of

179.83 over all the bootstrap samples. The standard error estimator based on the original

sample is 185.24.

7.5. Testing the Model Assumptions

In this section we study the performance of the test statistics (30) – (34) by generating new

original samples from three different distributions of the sample model residuals and

Table 4. Estimation of sample mean of income (True Y ¼ 7215:06). Conditional S.E. 500 bootstrap samples

Estimate

Estimator
Original sample
of respondents

Mean over bootstrap
samples Standard error

^
Y ð1;P2KÞ – 7,303.65 174.16
^
Y ð1Þ 7,332.30 7,299.17 147.38
^
Y ð2Þ 7,311.06 7,297.09 140.81
^
Y ð3Þ 7,272.26 7,265.53 146.58

Table 5. Estimation of sample mean of income (True Y ¼ 7215:06). Unconditional S.E. 500 bootstrap samples

Estimate

Estimator
Original sample
of respondents

Mean over
bootstrap samples Standard error

^
Y ð1;P2KÞ – 7,246.26 347.39
^
Y ð1Þ 7,332.30 7,248.88 179.83
^
Y ð2Þ 7,311.06 7,308.37 148.00
^
Y ð3Þ 7,272.26 7,304.99 152.43
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fitting in each case the respondents’ model, which assumes that the residuals have a

N 0;s 2
1

� �
distribution:

I. The true residual distribution is N 0; ŝ 2
1

� �
(Model 1); in this case the fitted model

is correct. Here and below ŝ 2
1 ¼ 0:155, as estimated for the actual sample.

II. The true residual distribution is a mixture of N 0:5ŝ 2
1 ; ŝ

2
1

� �
and N 20:5ŝ 2

1 ; 0:5ŝ
2
1

� �
with equal probabilities (Model 2); in this case the fitted model is incorrect.

III. The true residual distribution is a mixture of N 0:7ŝ 2
1 ; 0:51ŝ

2
1

� �
and

N 20:7ŝ 2
1 ; 0:51ŝ

2
1

� �
with equal probabilities (Model 3); in this case the fitted model

is incorrect.

In all the three cases we sampled the respondents using the logistic model, which was

assumed also under the misspecified distributions. Figure 3 shows the densities of the

residuals under the three sample models.

In order to study the performance of the test statistics we performed the following

experiment for each of the three models defined above:

1. Generate 250 samples of outcomes from the respondents’ distribution under the

model with fixed (original) covariates zi and parameters ðû; ĝÞ estimated from the

original true sample of the respondents (Tables 1 and 2).

2. For each new sample:

2i. Estimate ðu; gÞ assuming that the true sample distribution of the residuals is

normal,

2ii. Compute the test statistics (30) – (34),

2iii. Generate 250 new samples from the respondents’ distribution assuming that the

sample distribution of the residuals is normal, using the estimated parameters from (2i).

Then,

3. For each new sample generated in 2iii,

3i. Reestimate ðu; gÞ assuming that the true sample distribution is normal and

compute the test statistics (30) – (34).

3ii. Compute the distribution of each test statistic based on the 250 values in 3i.

Notice that Models I – III are only used for generating the new original samples. The test

statistics in 2ii use these samples while the distribution of the test statistics in 3ii is

computed (empirically) based on the newly generated samples in 2iii.

Table 6 compares the empirical distribution of the five test statistics under Model 1 as

obtained in Step 2ii, with the nominal values computed in Step 3ii. Denoting the ordered

Model 1
Model 2
Model 3

420–2–4

Fig. 3. Sample models used for studying the performance of the test statistics
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Table 6. Empirical and theoretical distribution of test statistics under Model 1

Nominal levels

Test 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.00

KS 0.040 0.046 0.088 0.079 0.109 0.097 0.112 0.096 0.146 0.097 0.039 0.053
AD 0.048 0.046 0.068 0.095 0.093 0.113 0.109 0.144 0.074 0.109 0.043 0.058
CM 0.056 0.031 0.084 0.110 0.072 0.080 0.125 0.133 0.097 0.101 0.059 0.051
C(3) 0.043 0.035 0.088 0.120 0.109 0.120 0.088 0.107 0.079 0.102 0.055 0.053
C(4) 0.042 0.043 0.060 0.126 0.098 0.135 0.143 0.108 0.093 0.092 0.027 0.053
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values of any one of the test statistics obtained in Step 3ii by uð1Þ , : : : , uð250Þ, the

critical value for nominal level aj was defined as uð250ajÞ when 250aj is an integer, and

u½250aj�þ1 otherwise, where ½�� defines the integer number. The value of any given statistic

in a cell corresponding to nominal level aj is the percentage of samples that the statistic

computed in Step 2ii was between the critical values for nominal levels aj21 and aj

computed in Step 3ii (a0 ¼ 0).

In general, the empirical distribution of all the statistics is sufficiently close to the

nominal values, thus validating the parametric bootstrap procedure described in Section 6

for calculating the critical values under an assumed model. The goodness of fit of the

empirical distributions to the nominal values was tested by the Pearson Chi-square statistic

with 11 degrees of freedom, yielding p-values of 0.67 for KS, 0.45 for AD, 0.47 for CM,

0.89 for C(3) and 0.13 for C(4).

Table 7 shows the proportion of samples that each test statistic rejects the misspecified

distribution for the responding units, which assumes that the sample distribution of the

model residuals is normal when in fact the true sample distribution is as defined under

Model 2 or Model 3. For the test statistics defined by (30) – (32) we used one-sided tests.

For the test statistics defined by (33) – (34) we used two-sided tests. The proportions in

Table 7 estimate the powers of the various tests in rejecting the misspecified model.

When the true sample distribution is skewed as under Model 2, the three classical test

statistics and the statistic C(3) that is designed for testing the skewness of the distribution

have very good power properties, with powers higher than 0.9 for significance levels equal

to or higher than 0.025. As could be anticipated, the test C(4), which is designed to test the

fourth moment, has very low power in this case. When the true sample distribution is

symmetric but flatter than the normal distribution, as under Model 3, the powers of all the

test statistics except C(4) reduce. Nonetheless, all the test statistics except C(3), and in

particular AD and CM still have acceptable powers in this case for significance levels

equal to or higher than 0.05.

The power of test statistics depends on the distance between the true model and the

misspecified model and as shown by Figure 3, the distances in our case are not really large.

Although more work is needed for developing new test procedures, the results in Tables 6

and 7 suggest that the goodness of fit of models fitted for the responding units can be tested

adequately.

Table 7. Proportion of samples that each test statistic rejects the misspecified model for different nominal

significance levels

Model 2 Model 3

Significance level Significance level

Test 0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10

KS 0.832 0.892 0.936 0.960 0.245 0.549 0.637 0.775
AD 0.936 0.964 0.984 0.988 0.588 0.725 0.784 0.853
CM 0.924 0.948 0.980 0.988 0.490 0.696 0.765 0.843
C(3) 0.876 0.932 0.956 0.984 0.000 0.000 0.020 0.088
C(4) 0.112 0.188 0.264 0.356 0.480 0.647 0.716 0.823
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Finally, we applied the test procedure described above (Steps 2ii and onwards) in order

to validate the normal/logistic model fitted to the original household expenditure data

(Equations (35)–(36)). For this, we generated 500 samples from the respondents’

distribution with the parameter estimates in Tables 1 and 2 obtained when fitting the model

to only the responding units. Table 8 exhibits the p-values obtained for the five test

statistics.

With the usual type II error in mind and noticing the powers exhibited in Table 7 under

the misspecified models, the p-values in Table 8 support the normal/logistic model fitted to

the data, as already suggested by the other empirical results shown in previous sections.

8. Summary

NMAR nonresponse is hard to deal with and inevitably requires the use of models. In this

article we develop a comprehensive modelling approach, covering all the necessary steps

from parameter estimation and model testing to imputation of the missing covariates and

outcomes, and estimation of population means and the variance of the estimators. We

illustrate all the steps by analyzing a real data set, illustrating that the approach can be

applied very successfully.

As with any new method, there is even here need for extensions. In this article we

assumed that the sample selection is noninformative and that the outcomes are

independent. Accounting for informative sampling under the present approach can be

implemented by modifying the sample distribution along the lines of Pfeffermann and

Sverchkov (2003). Accounting for correlated observations as under two-stage cluster

sampling will be more involved and require several modifications to the approach, such as

in variance estimation and model testing. As a final possible extension we mention the use

of the proposed approach in a Bayesian set-up, thus benefitting from the extra flexibility of

Bayesian inference. An interesting problem arising in this respect is how to incorporate the

calibration equations (18) in the Bayesian paradigm. We have started working in this

direction.

APPENDIX A: Solution of Equations (15a) – (15b)

In order to solve Equations (15a) – (15b) for a given vector coefficient g we use the

Newton-Raphson algorithm. The second derivatives are as follows:

›lj

›bk

¼2aðfÞ
Xr
i¼1

VarRðYijzi;b;f;gÞxjixki; j;k¼ 0; : : : ;p

Table 8. P-values when testing the model fitted to the original

sample (Equations 35 – 36)

Test KS AD CM C(3) C(4)

p-value 0.262 0.098 0.122 0.256 0.108
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›lj

›f
¼2

›aðfÞ

›f

Xr
i¼1

VarRðYijzi;b;f;gÞ
Xp
s¼0

bsxsiþCOVRðYi;dðYiÞjzi;b;f;gÞ

 !
xki

( )

j¼ 0; : : : ;p

›lpþ1

›bk

¼2aðfÞ
Xr
i¼1

COVRðYi;dðYiÞjzi;b;f;gÞxki; k¼ 0; : : : ;p

›lpþ1

›f
¼2

›aðfÞ

›f

Xr
i¼1

VarRðdðYiÞjzi;b;f;gÞþCOVRðYi;dðYiÞjzi;b;f;gÞ
Xp
s¼0

bsxsi

 !( )

where VarR and CovR are the variance and covariance with respect to the distribution

holding for the responding units. Denote

X 0 ¼

1; : : : ; 1; 0; : : : ; 0

x1; : : : ; xr; 0; : : : ; 0

0; : : : ; 0 1; : : : ; 1

2
664

3
775; Y ¼ ½y1; : : : ; yr; dð y1Þ; : : : ; dð yrÞ�

0

m 0 ¼ {ERðY1jz1Þ; : : : ;ERðYrjzrÞ;ER½dðY1Þjz1�; : : : ;ER½dðYrÞjzr�}

V1 ¼ Diag{VarRðYijziÞ}; V2 ¼ Diag{VarRðdðYiÞjziÞ}; i ¼ 1; : : : ; r

C ¼ Diag{COVRððdðYiÞ; YiÞjziÞ}; S ¼ Diag
Xp
k¼0

bkxki

" #
; i ¼ 1; : : : ; r

Application of the Newton-Raphson method yields

b

f

 !ðmþ1Þ

¼
b

f

 !ðmÞ

2½A21ðXTWXÞ21XT ðY 2 mÞ� ðA1Þ

where A is a diagonal matrix of dimension ð pþ 2Þ £ ð pþ 2Þ, with all the elements on the

main diagonal being 2aðfÞ, except for the last element which is 2›aðfÞ=›f and

W ¼
V1 C þ SV1

C V2 þ SC

" #

APPENDIX B: Proof of Theorem 1

We need to solve the equations UðjÞ ¼ 0, where j 0 ¼ ðu 0; g 0Þ ¼ ðu0; : : : ; upþ1;

g0; : : : ; gqþ1Þ and U ¼ ðl0; h 0Þ0 ¼ ðl0; : : : ; lpþ1; h0; : : : ; hqþ1Þ
0. The functions

lðjÞ ¼ ½l0ðjÞ; : : : ; lpþ1ðjÞ�
0 are defined by (15a)–15(b) with u 0 ¼ ðb 0;fÞ. The functions

hðjÞ ¼ ½h0ðjÞ; : : : ; hqþ1ðjÞ�
0 are defined right before Theorem 1 in Section 3.4. We now

show that the solution ĵ of the algorithm of Section 3.4 converges in probability to the

solution of the equations UðjÞ ¼ 0, which we denote by j0 ¼ ðu 0
0; g

0
0Þ

0.
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Consider the familiar Newton-Raphson algorithm. Application of this algorithm to the

present problem requires computing iteratively until convergence the estimators

j ðmþ1Þ ¼ j ðmÞ 2 A21
m Uðj ðmÞÞ ðB1Þ

where j ðmÞ is the solution on the mth iteration. The matrix Am is defined as,

Am ¼

›lðu ðmÞ; g ðmÞÞ

›u ðmÞ

›lðu ðmÞ; g ðmÞÞ

›g ðmÞ

›hðu ðmÞ; g ðmÞÞ

›u ðmÞ

›hðu ðmÞ; g ðmÞÞ

›g ðmÞ

0
BBBB@

1
CCCCA; where

›lðu ðmÞ; g ðmÞÞ

›u ðmÞ

is the matrix of partial derivatives of lðu; gÞ with respect to u evaluated at ðu ðmÞ; g ðmÞÞ, and

similarly for the other block matrices. The estimation algorithm in Section 3.4 splits

instead the system UðjÞ ¼ 0 into the two systems, lðjÞ ¼ 0 and hðjÞ ¼ 0, and solves them

iteratively until convergence as follows:

Apply one Newton-Raphson iteration to the equations lðjÞ ¼ 0 with respect to u for

given g, and one Newton-Raphson iteration to the equations hðjÞ ¼ 0 with respect to g

for given u, where the given values of u and g are the solutions from the previous iteration.

The updating equations in this case can be written as,

j ðmþ1Þ ¼ j ðmÞ 2 B21
m Uðj ðmÞÞ ðB2Þ

whereBm ¼

›lðu ðmÞ; g ðmÞÞ

›u ðmÞ
0

0
›hðu ðmÞ; g ðmÞÞ

›g ðmÞ

0
BBB@

1
CCCA

Splitting the system of equations into the two subsystems is advantageous for large

dimensional systems, since it saves the computation of 2ð pþ 2Þ £ ðqþ 2Þ (possibly

complicated) partial derivatives. Define matrices M01and M02 as follows:

M01 ¼
›lðu0; g0Þ

›u0

	 
21
›lðu0; g0Þ

›g0

›hðu0; g0Þ

›g0

	 
21
›hðu0; g0Þ

›u0

M02 ¼
›hðu0; g0Þ

›g0

	 
21
›hðu0; g0Þ

›u0

›lðu0; g0Þ

›u0

	 
21
›lðu0; g0Þ

›g0

Suppose now that the conditions of Theorem 1 hold and that
N!1;n!1
P lim kM01k ¼

l01 , 1,
N!1;n!1
P lim kM02k ¼ l02 , 1, where k�k defines the Euclidian norm. We later

check the fulfillment of the conditions for the model used for the empirical study in Section 7.

Proof of Theorem 1 It is known that the Newton-Raphson algorithm has a quadratic rate

of convergence, implying k1 ðmþ1Þk , ck1 ðmÞk
2
, where 1 ðmÞ ¼ ðj ðmÞ 2 j0Þ and c is a

constant. Thus, by (B1),

k1 ðmÞ 2 A21
m Uðj ðmÞÞk , ck1 ðmÞk

2
ðB3Þ
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Next, rewrite the equations B(2) as j ðmþ1Þ ¼ j ðmÞ 2 B21
m AmA

21
m Uðj ðmÞÞ. The rate of

convergence of the proposed algorithm can be derived therefore as,

1 ðmþ1Þ ¼ 1 ðmÞ 2 B21
m AmA

21
m Uðj ðmÞÞ

¼ 1 ðmÞ þ B21
m Am 1 ðmÞ 2 A21

m Uðj ðmÞÞ
� �

2 1 ðmÞ
� �

¼ I 2 B21
m Am

� �
1 ðmÞ þ B21

m Am 1 ðmÞ 2 A21
m UðjmÞ

� �
; or;

k1 ðmþ1Þk # kI 2 B21
m Amk�k1

ðmÞk þ kB21
m Amk�k1

ðmÞ 2 A21
m Uðj ðmÞÞk

ðB4Þ

By (B3), k1 ðmþ1Þk # kI 2 B21
m Amk�k1

ðmÞk þ ckB21
m Amk�k1

ðmÞk
2
and hence for 1 ðmÞ

sufficiently small,

k1 ðmþ1Þk # kHmk�k1
ðmÞk ðB5Þ

where Hm ¼ Hðu ðmÞ; g ðmÞÞ ¼ I 2 B21
m Am. It follows that,

k1 ðmþ1Þk # kHm21Hmk�k1
ðm21Þk ðB6Þ

Now; Hm ¼

0ð pþ2Þ£ð pþ2Þ 2
›lðu ðmÞ; g ðmÞÞ

›u ðmÞ

	 
21
›lðu ðmÞ; g ðmÞÞ

›g ðmÞ

2
›hðu ðmÞ; g ðmÞÞ

›g ðmÞ

	 
21
›hðu ðmÞ; g ðmÞÞ

›u ðmÞ
0ðqþ2Þ£ðqþ2Þ

2
666664

3
777775

and let H0 ¼ Hðu; gÞjðu0;g0Þ. By Taylor expansion of Hm around ðu0; g0Þ,

Hm < H0 þ D0E
ðmÞ, where the elements of D0 and E(m) are defined as follows: Let hijk

be the derivative ›Hij=›jk, where Hij denotes the (i,j )th element of the matrix H0. The

matrix D0 is obtained from H0 by replacing each element Hij by the row vector

ðhij0; : : : ; hijp; hij;pþ1; : : : ; hij;pþqþ3Þ. The matrix E (m) is E ðmÞ ¼ Ipþqþ4^1 ðmÞ where ^

defines the Kronecker product. Note that dim ðD0Þ ¼ ð pþ qþ 4Þ £ ð pþ qþ 4Þ2, and

dim ðEðmÞÞ ¼ ð pþ qþ 4Þ2 £ ð pþ qþ 4Þ. It follows that,

k1 ðmþ1Þk # kHm21Hmk�k1
ðm21Þk <

kðH0 þ D0E
ðm21ÞðH0 þ D0E

ðmÞÞÞk�k1 ðm21Þk < kH2
0k�k1

ðm21Þk, and hence by (B6),

k1 ðmþ1Þk # kH2
0k

k
�k1 ðm22kþ1Þk ðB7Þ

where H2
0 ¼

M01 0

0 M02

" #

Since we assume,
N!1;n!1
P lim kM01k ¼ l01 , 1,

N!1;n!1
P lim kM02k ¼ l02 , 1, we obtain

N!1;n!1
P lim kH2

0k
k
¼ 0 as k!1, and

k1 ðmþ1Þk ¼ kj ðmþ1Þ 2 j0k
p
!0 form2 2k!1; k!1 ðB8Þ

showing that the solution j ðmÞ of the proposed algorithm converges in probability to

j0. QED
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It remains to show that the conditions of the theorem are satisfied by Equations (15a) –

(15b) and (18a) – (18b) as obtained for the model defined by (35) – (36). It is easy to show

that in this case the functions lðu; gÞ and hðu; gÞ satisfy the conditions I) and III), provided

that 0 , pð yi; vi; gÞ , 1 with bounded first derivatives (Condition II). For example, in

(36) pð yi; vi; gÞ is the logistic probability and denoting

v0;i ¼ 1; vqþ1;i ¼ yi;
›pð yi; vi; gÞ

›gl
¼

vlie
2ðv 0igþg0vqþ1;iÞ

1þ e2ðv 0
i
gþg0vqþ1;iÞ

� �2 for l ¼ 0; : : : ; ðqþ 1Þ

In order to show that the norms ofM01 andM02 converge in probability to limits smaller

than 1, we assume (r1)
Pr

i¼1wi ¼ OðN dÞ for 0:5 , d # 1, (r2)
PN

j¼1wj ¼ OðNÞ and

ðr3Þ Var
Xr
i¼1

wi

xki

pð yi; vi; gÞ

" #
¼ OðNÞ

These are standard requirements in sample surveys. As a simple example suppose that

the sample is drawn by simple random sampling without replacement and the response

probabilities are pð yi; vi; gÞ ¼ ðr=nÞ. In this case, wi ¼ ðN=nÞ and
PN

j¼1wj ¼ N 2=n ¼

OðNÞ since we assume that ðN=nÞ is bounded. Clearly,
Pr

i¼1wi ¼ rðN=nÞ ¼ OðN dÞ for

0:5 , d # 1 and the condition (r3) is also satisfied as long as ðN=rÞ ¼ ðN=nÞðn=rÞ is

bounded.

Suppose for convenience that dim ðxiÞ ¼ 2 and dim ðviÞ ¼ 1. Then, u ¼ ðb0;b1;b2;fÞ
0

and g ¼ ðg0; g1; g2Þ
0. The matrix

›hðu; gÞ

›u

����
ðu0;g0Þ

for the functions hðu; gÞ in (18a)–(18b) is then a 3 £ 4 matrix with all of its elements equal

to zero except for the (3,3)th element, which equals

Xr
i¼1

wi
~xi

pð yi; vi; gÞ
2 ~Xpop

Next consider the derivatives of the functions in hðu; gÞ with respect to g. Denoting as

above v0;i ¼ 1, vqþ1;i ¼ yi, we have that

›

›gl

Xr
i¼1

wi

1

pð yi; vi; gÞ
¼ 2

Xr
i¼1

wi

1

pð yi; vi; gÞ
2

›pð yi; vi; gÞ

›gl
l ¼ 0; : : : ; ðqþ 1Þ

Note that under the logistic model

1
pð yi;vi;gÞ

2

›pð yi;vi;gÞ
›gl

¼ Oð1Þ and
Pr

i¼1 wi ¼ OðN dÞ by (r1) and therefore the whole expression

is OðN dÞ. Some further algebra shows that the only nonzero entry of the matrix

›hðu; gÞ

›g

	 
21
›hðu; gÞ

›u
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is a constant times

N2d
Xr
i¼1

wi

~xi

pð yi; vi; gÞ
2 ~Xpop

" #

and by Chebyshev inequality and the condition (r3),

P N2d
Xr
i¼1

wi
~xi

pð yi; vi;gÞ
2 ~Xpop

�����
����� . 1

 !" #
�!
P

N!1
0; if d . 0:5

It follows that all the elements of

›hðu; gÞ

›g

	 
21
›hðu; gÞ

›u
�!
P

N!1
0

and hence the norms of M01 and M02 converge in probability to limits smaller than 1, as

assumed for the proof.

APPENDIX C: Proof of Theorem 2

The consistency of the estimator follows from a result by Huber (1967), which states that

under the conditions of the theorem, as n!1 the estimator j0 solving the equations

UðjÞ ¼ 0 is consistent for ~j, the solution of the equations E½UðjÞ� ¼ 0. By Theorem 1, the

estimator ĵ converges in probability to j0, establishing its consistency under the same

conditions.

The asymptotic normality of the estimator ĵ follows from a result by Newey and

McFadden (1994), which states that under the same conditions,ffiffiffi
n

p
ðĵ2 ~jÞ

D
�!N½0;Vð ~jÞ� ðC1Þ

with the variance matrix Vð ~jÞ defined as Vð ~jÞ ¼ Að ~jÞ21Bð ~jÞ½Að ~jÞ21�0, where by

abbreviating wi ¼ wðRi; yi; zi; ~jÞ, Anð ~jÞ ¼ 1=n
Pn

i¼1 Eð27wiÞ, Bnð ~jÞ ¼ 1=n
Pn

i¼1 Eðwiw
0
iÞ;

Að ~jÞ ¼
n!1
limAnð ~jÞ, Bð ~jÞ ¼ n!1

limBnð ~jÞ and 7wi is the matrix of first derivatives of wi with

respect to ~j.

Equations (15a) – (15b) and (18a) – (18b) satisfy the conditions of the theorem, thus

establishing the consistency and asymptotic normality of the estimator ĵ. QED.
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