Income Measurement Error in Surveys:
A Review

Jeffrey C. Moore,1 Linda L. Stinson,2 and Edward J. Welniak, Jr.3

Because income data are germane to a wide array of important policy issues, income questions are almost ubiquitous in government-sponsored surveys. We review research on the quality of survey measures of income, with a particular focus on U.S. government surveys. We briefly examine two of the more typical quality indicators – “benchmark” comparisons of survey estimates to independent aggregate estimates, and nonresponse – but focus our attention primarily on response error research which compares individual survey respondents’ reports to external measures of truth, often obtained from independent record systems. The latter investigation reveals a wide range of error properties across income characteristics (sources, amounts received) and income types, which includes high levels of both random error and bias in some instances. We also examine the recent findings of “cognitive” research into respondents’ understanding of the meaning of income questions, their interpretations of the tasks which income questions present, their motivations, etc., and attempt to link what we know about income reporting errors to these cognitive processes.

Key words: Data quality; response error; response bias; random error; income source reports; income amount reports; cognitive research.

1. Introduction and Overview

Of all the statistics gathered in government-sponsored surveys, perhaps none is more pervasive than income, or more universally germane to a wide array of important policy issues. This article reviews research evidence on the quality of survey measures of income, with a particular focus on survey programs of the U.S. government. Its primary intent is to assess what is known about the magnitude and nature of the errors made by individual respondents in providing survey reports of income, as well as what is known about the cognitive bases of those errors.

To assess measurement quality we examine research results of several different types. We start with brief examinations of “benchmark” comparisons of survey estimates to

1 Statistical Research Division, U.S. Census Bureau, Washington, DC 20233, U.S.A. E-mail: jeffrey.c.moore@census.gov
2 Office of Survey Methods Research, U.S. Bureau of Labor Statistics, Washington, DC 20212, U.S.A. E-mail: stinson_l@bls.gov
3 Housing and Household Economic Statistics Division, U.S. Census Bureau, Washington, DC 20233, U.S.A. E-mail: edward.j.welniak.jr@census.gov

Acknowledgments: We are grateful to Martin David, Kent Marquis, Betsy Martin, Nancy Mathiowetz, and two anonymous reviewers for their useful comments and suggestions. An early draft of this article served as a background document for participants in the “Cognitive Aspects of Survey Methodology II” conference held in Charlottesville, VA, in June 1997. A highly condensed version appears as chapter 10 in the proceedings monograph from the conference – Sirken, M., D. Herrmann, S. Schechter, N. Schwarz, J. Tanur, and R. Tourangeau (eds.), Cognition and Survey Research, New York, John Wiley and Sons, 1999. The opinions expressed herein are the authors’ and do not necessarily represent the official views or positions of either the U.S. Census Bureau or the U.S. Bureau of Labor Statistics.

© Statistics Sweden
independent estimates, and nonresponse analyses, including both nonresponse to income surveys and to income questions specifically. Primarily, however, we focus on comparisons of individual survey respondents’ responses to external measures of truth, often obtained from independent record systems. We then attempt to link these measurement quality results to the results of recent ‘‘cognitive’’ research into respondents’ understanding of the meaning of income questions, their interpretations of the tasks which those questions present, their motivations, etc.

The comparison of nationally-weighted survey estimates to benchmark aggregates in Section 2 shows consistent shortfalls in the survey estimates. The size of these shortfalls relative to their benchmarks varies substantially across different types of income, from quite small (e.g., 5–8% for wage and salary income and for social security payments), to quite large (e.g., 50% or more for interest and dividend income), but the consistency with which the survey estimates fall below the benchmarks is striking. The conclusion that tends to be drawn from this research is that survey respondents underreport income. However, our review of the extent of nonresponse to income surveys and income questions in Section 3 suggests that other factors besides underreporting may play a role in the survey underestimates. The response error research summarized in Section 4 (income sources) and in Section 5 (income amounts) suggests that income amount underreporting errors do tend to predominate over overreporting errors, but that even more important factors affecting the quality of income survey data are the underreporting of income sources and often extensive random error in income reports. Finally, our review of investigations of the cognitive aspects of providing income data in surveys (Section 6) finds many possible contributors to inaccurate reporting, including definitional issues, recall and salience problems, and confusion, as well as the much-suspected issue of data sensitivity.

2. Aggregate Income Estimates

In its role as producer of the nation’s ‘‘official statistics,’’ the U.S. Census Bureau has, over the years, examined the quality of its income estimates through comparisons to independent estimates derived from independent, outside sources – e.g., the National Income and Products Accounts (NIPA), individual income tax data, Social Security Administration records, and caseload statistics from agencies that administer various transfer programs. Table 1, derived from Coder and Scoon-Rogers (1995), summarizes the results of recent work comparing survey-based estimates and independent benchmarks for an extensive set of income types. The U.S. Census Bureau’s two major income surveys, the Survey of Income and Program Participation (SIPP) and the Current Population Survey’s (CPS) March Income Supplement, supply the survey estimates. Two conclusions are immediately obvious from Table 1. First, a primary goal of SIPP was to provide more complete income data than CPS. The fact that SIPP’s estimates are generally closer to the benchmarks than CPS’s suggests that SIPP has had some success in meeting that goal, perhaps especially for transfer program income. Second, however, and even more pronounced, is the consistency with which the survey estimates fall short of the benchmarks – across surveys, across time, and across income categories.

It is tempting to conclude from these consistent underestimates an underlying tendency
Table 1. Ratio of SIPP and CPS March income supplement aggregate income estimates to independent aggregate income estimates for 1984 and 1990 (source: adapted from Coder and Scoon-Rogers, 1995)

<table>
<thead>
<tr>
<th>Source of Income</th>
<th>1984</th>
<th></th>
<th>1990</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indep. aggregate estimate USD</td>
<td>SIPP (%)</td>
<td>CPS (%)</td>
<td>Indep. aggregate estimate USD</td>
</tr>
<tr>
<td>EMPLOYMENT INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages and salaries</td>
<td>1,820.1</td>
<td>91.4</td>
<td>97.3</td>
<td>2,695.6</td>
</tr>
<tr>
<td>Self-employment</td>
<td>192.6</td>
<td>103.1</td>
<td>70.2</td>
<td>341.4</td>
</tr>
<tr>
<td>ASSET INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>244.8</td>
<td>48.3</td>
<td>56.7</td>
<td>282.8</td>
</tr>
<tr>
<td>Dividends</td>
<td>59.3</td>
<td>65.9</td>
<td>51.8</td>
<td>126.3</td>
</tr>
<tr>
<td>Rents and royalties</td>
<td>19.4</td>
<td>211.3</td>
<td>95.4</td>
<td>44.1</td>
</tr>
<tr>
<td>GOVERNMENT TRANSFER INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social security</td>
<td>160.5</td>
<td>96.2</td>
<td>91.9</td>
<td>225.5</td>
</tr>
<tr>
<td>Railroad retirement</td>
<td>5.6</td>
<td>96.4</td>
<td>71.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Supplement security income</td>
<td>9.9</td>
<td>88.9</td>
<td>84.8</td>
<td>13.6</td>
</tr>
<tr>
<td>Aid to families w/dependent children</td>
<td>13.9</td>
<td>83.5</td>
<td>78.4</td>
<td>19.7</td>
</tr>
<tr>
<td>Other cash welfare</td>
<td>2.0</td>
<td>135.0</td>
<td>120.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Unemployment insurance</td>
<td>16.3</td>
<td>76.1</td>
<td>74.8</td>
<td>17.7</td>
</tr>
<tr>
<td>Workers’ compensation</td>
<td>14.1</td>
<td>56.7</td>
<td>48.2</td>
<td>14.6</td>
</tr>
<tr>
<td>Veterans’ pensions and compensation</td>
<td>13.9</td>
<td>82.0</td>
<td>59.7</td>
<td>13.8</td>
</tr>
<tr>
<td>RETIREMENT INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private pensions</td>
<td>65.2</td>
<td>63.8</td>
<td>57.2</td>
<td>70.2</td>
</tr>
<tr>
<td>Federal employee pensions</td>
<td>20.3</td>
<td>98.0</td>
<td>84.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Military retirement</td>
<td>15.6</td>
<td>105.1</td>
<td>98.1</td>
<td>20.4</td>
</tr>
<tr>
<td>State and local employee pensions</td>
<td>21.9</td>
<td>88.1</td>
<td>71.7</td>
<td>36.1</td>
</tr>
<tr>
<td>MISCELLANEOUS INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alimony</td>
<td>2.7</td>
<td>100.0</td>
<td>81.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

for survey respondents to underreport their income. We urge caution in drawing this conclusion from these results. As Marquis et al. (1981) and others have pointed out, there are multiple competing explanations for the failure of survey estimates to match benchmark totals, many of which have nothing to do with errors of response to survey questions about income. Even the most carefully constructed aggregate income comparisons are rarely, if ever, straightforward. Data from independent sources are almost never completely comparable to the survey data – due to sampling frame differences, timing differences, definitional differences, etc. – and the adjustments necessary to make them comparable are often inadequate. The flawed adjustments, and the fact that the independent estimates themselves are subject to various errors and omissions, add uncertainty to any comparison of survey and benchmark estimates. Thus, while the benchmark comparisons do indicate a problem, without more information the exact nature
of that problem remains uncertain, as does the path toward effective survey design solutions.

3. Income Nonresponse

A major competing explanation for the lack of alignment of survey and benchmark estimates, with definite implications for survey design, is nonresponse. To the extent that nonresponse is both frequent and nonrandom, survey estimates are more prone to inaccuracy, even if respondents’ reports are highly accurate. In this section we examine very briefly the extent of nonresponse to income questions and find it to be severe across almost all income types.

Surveys conducted under the aegis of the U.S. government typically achieve much higher levels of cooperation than nongovernment surveys (e.g., Heberlein and Baumgartner 1978; Goyer 1987; Bradburn and Sudman 1989). Even with this built-in advantage, however, income questions in U.S. government surveys are still prone to high rates of item nonresponse. Table 2 shows results from the 1996 CPS March Income Supplement in the form of imputation rates for most of the income categories whose

<table>
<thead>
<tr>
<th>Source of Income</th>
<th>Total number of persons with income (000’s) USD</th>
<th>Number of persons with income amount reported</th>
<th>Number of persons with imputed income amount</th>
<th>Percent of persons with imputed amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMPLOYMENT INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage and salary income</td>
<td>134,135</td>
<td>98,930</td>
<td>35,205</td>
<td>26.2</td>
</tr>
<tr>
<td>Nonfarm self-employment income</td>
<td>11,618</td>
<td>8,622</td>
<td>2,996</td>
<td>25.8</td>
</tr>
<tr>
<td>ASSET INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>107,871</td>
<td>60,354</td>
<td>47,518</td>
<td>44.1</td>
</tr>
<tr>
<td>Dividends</td>
<td>29,697</td>
<td>15,253</td>
<td>14,444</td>
<td>48.6</td>
</tr>
<tr>
<td>GOVERNMENT TRANSFER INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social security</td>
<td>37,530</td>
<td>26,490</td>
<td>11,039</td>
<td>29.4</td>
</tr>
<tr>
<td>Supplemental security income</td>
<td>4,808</td>
<td>3,855</td>
<td>943</td>
<td>19.6</td>
</tr>
<tr>
<td>Public assistance</td>
<td>4,943</td>
<td>3,855</td>
<td>1,088</td>
<td>22.0</td>
</tr>
<tr>
<td>Workers’ compensation</td>
<td>2,064</td>
<td>1,498</td>
<td>566</td>
<td>27.4</td>
</tr>
<tr>
<td>Veterans’ pensions and compensation</td>
<td>2,549</td>
<td>1,875</td>
<td>674</td>
<td>26.4</td>
</tr>
<tr>
<td>RETIREMENT INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pension income</td>
<td>14,350</td>
<td>10,013</td>
<td>4,337</td>
<td>30.2</td>
</tr>
<tr>
<td>MISCELLANEOUS INCOME:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alimony</td>
<td>463</td>
<td>329</td>
<td>134</td>
<td>28.9</td>
</tr>
<tr>
<td>Child support</td>
<td>5,190</td>
<td>4,180</td>
<td>1,010</td>
<td>19.5</td>
</tr>
</tbody>
</table>
benchmark results were described in the previous section. As the table amply indicates, even in the best of circumstances about one in five survey ‘reports’ of income is produced not by the intended response process but rather by the process used to fill the holes left by nonresponse, and typically the rate is closer to (or exceeds) one in four. These rates, as large as they are, still do not account for all nonresponse to the income questions in the CPS, since they do not include CPS’s typical initial household nonresponse rate of around 7–8%. Clearly, the magnitude of the nonresponse to income questions is more than sufficient to wreak considerable mischief with the alignment of survey and benchmark estimates.

4. Response Error in Income Source Reports

In this section we begin to examine research evidence on the extent and nature of income response (or measurement) errors, by which we mean discrepancies between the objective truth concerning a respondent’s income and his or her report about that income. We refer to studies which employ defensible ‘truth’ criteria as validity assessments. It is generally useful to distinguish two facets of response error which can never be attributed with certainty to any individual survey response, but which only emerge with clarity over sufficiently large numbers of responses. These are: first, bias, which affects the size and sign of the discrepancy between the means of the reported and true values for a given set of responses; and second, random error, or reliability, which refers, roughly, to the distribution of errors around their average value. The two error forms can operate quite independently – low bias and low random error is the goal of every survey, but it is certainly possible for a highly biased response process to display very little random error (e.g., if every response to some income question were to elicit a response that understated the truth by some substantial and comparable amount), just as a completely unbiased process can mask substantial error (e.g., if the overreports and underreports largely cancel each other out). We draw this bias/random error distinction, and highlight each where appropriate in the research we review in this section, because of the likelihood that they represent different response error mechanisms, possibly calling for different survey design solutions.

Income reporting in surveys is generally a two-stage process involving first the reporting of income sources, and then the reporting of amounts received from those sources. Response errors can occur at either stage. An entire source of income can be misreported, leading to either the respondent’s failure to report true income or his or her ‘false positive’ reporting of income not actually received. Or, the source of income may be reported correctly but the amount received from that source can be misreported. Again, we draw this distinction because of the likelihood that different cognitive

4 An item’s value is imputed during processing to fill in missing data resulting primarily from the failure of the interview to produce a valid entry. The vast majority of imputations result from blank, ‘don’t know,’ or ‘refused’ entries. Imputation values are derived from respondent ‘donors’ who share certain characteristics with the sample person whose information is missing.

5 See Horowitz and Manki (1995) for a discussion of the impact of household and item nonresponse on survey estimates — in particular, survey estimates of household income in the U.S.

6 More formal, statistical presentations of survey measurement error issues abound — see, for example, Groves (1989). We adopt a much less technical approach here, due in part to the exceptionally wide range of types of indicators of these basic error characteristics in the research literature.
mechanisms underlie these different types of error, implying the need for different survey design solutions.

Section 4 examines research evidence concerning response error in respondents’ reports of income sources. We separate three major categories of income sources – wage and salary income from employment, participation in government transfer programs designed to provide assistance to the poor, and income-producing assets. We find a general tendency toward underreporting of income sources whose magnitude is highly variable across different income types – underreporting bias seems to affect wage and salary income source reports only very modestly, reports of transfer income sources somewhat more so, and perhaps asset income sources most of all. Indicators of random error propensities seem to follow this same trend, although the data are quite scant.

4.1. Wage and salary income sources

This section focuses on the quality of respondents’ reports of the receipt of wage or salary income paid by an employer. Wages and salaries comprise the single most important source of personal income in the U.S. and the overwhelming majority of labor income.7

Checking the accuracy of non-reported wage or salary income sources is simply not feasible, so a direct and thorough examination of response quality for reports of specific work-related income sources is impossible. As a result, research which attempts to address errors in respondents’ reports of this income source has fallen back on proxy strategies, the most common of which consists of an assessment of the quality of survey reports of the receipt of any wage/salary income. The most common approach to evaluating measurement errors in wage/salary income source reports involves the use of income tax records. An argument can be made that tax return information is simply a second, independent, survey-like report, and thus more useful for assessing response reliability than response validity. Other limitations of tax reports in assessing survey reporting accuracy have to do with: (a) the fact that only incomes above a certain minimum must be reported; (b) the substantial underground work economy that operates outside of the tax system; and (c) the tendency of married couples to file joint returns, making the attachment of job income to particular individuals problematic. However, the legal sanctions associated with the accuracy of income tax reporting, and the official records of wages and salary received that must accompany those reports, make tax reports a reasonable tool for estimating survey response errors, at least among particular segments of the population.

The several studies which have used tax reports as criterion measures have consistently found quite modest negative biases in survey reports of the receipt of any wage/salary income. Miller and Paley (1958) offer perhaps the earliest example of this type of research, in a comparison of a subsample of 1950 census post-enumeration survey income reports for those reporting “taxable” income against matched tax forms. Miller and Paley report that, among the approximately 4,000 matched cases for analysis, the census-derived rate of receipt of wage/salary income falls short of the tax-form derived rate by approximately

2–6%.8 Miller and Paley do not provide sufficient data to derive the separate overreporting and underreporting components of this “net bias” estimate. Herriot and Spiers (1980) find a similar level and direction of error in a comparison of CPS reports of the receipt of wage/salary income matched to tax records. They find a very low (4–6%) rate of inaccurate reporting, leading to a modest net underreporting bias of about –1% among married couples who file joint returns, increasing to about –4% among all tax filers.

Other studies confirm that errors of any kind are quite rare, but suggest an even lower net bias in survey reports of any wage/salary income. An evaluation of married couple, joint filer tax returns matched to 1960 census income reports (U.S. Bureau of the Census 1970) finds very little error and virtually zero net bias in the census reports of receipt of any wage/salary income. About 95% of the approximately 34,000 matched census/tax cases included in the study are in agreement concerning the receipt of wage/salary income. The data show almost equal numbers of underreporters and overreporters, yielding a census rate of wage/salary income receipt only about one-tenth of a percentage point below the rate reported on the tax forms (derived from Table 2, p. 9). Coder’s (1992) match to tax forms, using a very restricted set of SIPP respondents (e.g., married couples, each with valid social security numbers, matched to married-joint tax returns, with nonzero wage/salary income reported either in SIPP or on the tax return), also finds a very small “net bias” in SIPP’s wage/salary income source reports. Again, about 95% of the approximately 5700 cases in Coder’s study are in agreement on the receipt of wage/salary income, and the net bias is trivially negative, with the SIPP-reported rate about 0.4 percentage points below the tax form rate. A Canadian tax study (Grondin and Michaud 1994) suggests somewhat more underreporting of the receipt of any wage/salary income – in one instance the survey-reported rate was about eight percentage points below the rate reported on tax returns; in a second the difference was only about two percentage points.

Kaluzny’s (1978) comparison of the survey responses of participants in a Gary, IN, income maintenance experiment to the wage and salary reports of their employers presents a very different picture of the quality of wage/salary source reporting. Kaluzny’s results suggest substantial underreporting of wage/salary income sources. The proportion of those with true wage/salary earnings in a calendar quarter who failed to report any earnings in the survey range from a minimum of 10–15% among male household heads, to 35–45% among female heads, to as much as 40–60% among nonheads.9 It should be noted that Kaluzny’s analysis sample suffers from major limitations, leading some commentators (e.g., Greenberg and Halsey 1983) to express concern about the level of care with which the Gary experiment was administered, and to question the validity of the study’s results.10

The research summarized above concerns the quality of survey reports of wages and salary as an income category. Moore, Marquis, and Bogen (1996) report the only known study which directly assesses the quality of survey reports of receipt of wage/salary

8 This estimate is derived from Table 10 (Miller and Paley 1958, p. 196); the uncertainty in the net bias estimate derives from varying assumptions concerning the behavior of nonrespondents.

9 Note that these are rates of underreporting among “true positive” cases, which are only suggestive of the extent to which study participants’ income reports are in error, and are not necessarily indicative of the magnitude – or even the sign – of the net reporting bias.

10 Examples of these limitations include the fact that all participants were poor, several major employment categories are excluded from the record system, representing about one-third of all wage earners in the experiment in any quarter, and analysis is limited to respondents with both positive state-record earnings and complete interview reports.
income from a specific employer. Moore et al. tested a revised SIPP interview among a sample of known employees of a single employer. They report that respondents failed to mention the employer as a source of income in 4–11% (depending on the interviewing treatment) of the months in which they were known to have received such income.11 Virtually all job holders reported the presence of their job with the relevant employer – the observed underreporting was mostly a result of failure to report all months of employment in an interview which covered four months.

4.2. Transfer program income sources

Income from government transfer programs also constitutes a substantial proportion of total personal income in the United States, particularly, of course, among the poor.12 This section focuses on the quality of respondents’ reports of their participation in transfer programs. A common assumption is that social desirability pressures create a general tendency toward underreporting participation in these programs. We are in accord with Marquis et al. (1981) in suspecting that this assumption derives in part from a misinterpretation of the results of flawed research, which tends to focus on the survey behavior of known program participants, and thus is biased toward uncovering only underreport errors. We include such “partial design” studies in our review because they do offer some evidence concerning the frequency with which respondents make errors. In the end, however, after consideration of the results of research which allows the full array of errors to emerge, we do find evidence for a rather modest but fairly consistent net underreporting bias for most transfer program income sources.

Marquis et al. (1981) review several early studies which assess the accuracy of the survey reports of known program participants. These studies suggest generally modest levels of underreporting error, ranging from only about 2% of known participants failing to report their receipt of General Assistance income (Weiss 1969), to a 7% underreporting rate among a similar population (David 1962), to a 13% failure rate for Supplemental Security Income (SSI) recipients (Vaughan 1978). Other studies among known program participants suggest that program participation may be somewhat more frequently underreported than the Marquis et al. review indicates. For example, Livingston (1969) compares reports gathered in a 1968 special census of Dane County, WI, regarding receipt of “public assistance” (which could include any of several income types: Aid to Families with Dependent Children (AFDC), old age assistance, general assistance, aid to the blind/disabled, etc.) with local administrative records. He finds that 22% of known recipients failed to report any public assistance income in the census. Similarly, in an examination of the survey reports of approximately 200 respondents selected from families who were known recipients of cash assistance or medical assistance for children, Hu (1971) finds that 27% of the informants failed to report their assistance receipt. Somewhat more recent work by Vaughan and colleagues among small samples of known recipients

11 Note that the design of this study only permitted an assessment of underreporting errors.
of AFDC has found underreport levels of 14% (Klein and Vaughan 1980) and 9%13 (Goodreau, Oberheu, and Vaughan 1984).

The above studies offer clear evidence that survey reporting of transfer program participation is far from perfect, but do not support any conclusions concerning respondents’ general error tendencies – the overall frequency of errors in program participation reports, for example, and the magnitude and direction of the resulting net response bias. This more complete evidence on the nature of the distribution of response errors requires what Marquis et al. (1981) term “complete design” studies, which permit an assessment of the accuracy of both positive and negative survey reports. Marquis et al. review the results of two such studies. Both rely on small samples of low income families residing in specific locations, so their results are not necessarily generalizable to any larger population. Nevertheless, they certainly “challenge the conventional wisdom that transfer participation is underreported in sample surveys” (Marquis et al. 1981, p. 22). Of the four comparisons generated by the two studies, only one suggests a net underreporting bias, and that is very small – Oberheu and Ono (1975) find that survey reports of AFDC participation “last month” fall short of record data by about 2 percentage points. The other three comparisons actually indicate modest net overreporting of the receipt of General Assistance (by about five percentage points ~ Bancroft 1940), yearly AFDC (eight percentage points), and Food Stamps (six percentage points) (Oberheu and Ono 1975).

As Marquis et al. are careful to point out, small net biases do not necessarily indicate that response errors are infrequent, only that the difference between the number of over- and underreports is small. In fact, the small net biases in the studies they review mask substantial amounts of underlying error. The correlation between survey and record values is reasonably high in the Bancroft (1940) study – about +.8 – but quite low in the various survey-record comparisons reported in Oberheu and Ono (1975) – in the +.3 to +.5 range.

More recently, Grondin and Michaud (1994) compare matched Canadian tax return information concerning the receipt of unemployment benefits to reports in two surveys. Grondin and Michaud find a moderate level (i.e., 12–19%) of error, with underreports substantially exceeding overreports such that the survey-reported rates of participation fall about 10–13 percentage points below the rate derived from the tax returns.14

Marquis and Moore (1990) report on the results of perhaps the most comprehensive examination of transfer program participation reporting accuracy – a large-scale, complete design record check study of survey reports from two waves of the 1984 SIPP Panel. They examine reporting of several major government transfer programs (including AFDC, Food Stamps (FOOD), Unemployment Insurance benefits (UNEM), Workers Compensation benefits (WCOMP), “social security” (OASDI) payments, Supplemental Security Income (SSI), and Veterans’ Pensions and Compensation (VETS)) in four states (FL, NY, PA, and WI). Marquis and Moore find that, in general, error rates for transfer program participation reports are extremely low – around 1% or less for all programs except

13 This composite result masks considerable variation among the four states included in the study.

14 The report is scant on details. The nature of the sample is not clear, nor are any results presented which would permit the assessment of underreporting and overreporting rates, or the resulting relative net bias in the survey estimate.
OASDI, for which about 2% of respondents’ reports are in error. In part, of course, these low overall error rates are a function of the rarity of the events being measured – the vast majority of respondents are nonparticipants in these programs and report that fact correctly. At the same time, the low overall error rates often mask substantial underreporting among the rare true program participants, which exceeds 50% for WCOMP, for example. Other programs in which true participants often failed to report their participation were AFDC (49%, on average across the eight months of the survey), UNEM (39%), and FOOD and SSI (both 23%); underreporting was moderate for VETS (17%) and quite low for OASDI (5%).

Except for OASDI, all programs examined by Marquis and Moore show a bias in the direction of underreporting; that is, there are more true participants who fail to report their participation than there are true nonparticipants who provide false positive reports. Although the absolute differences between the survey and record participation means for all programs are exceedingly small, the low frequency of true participation in most of these programs magnifies some of the small absolute biases into fairly large biases relative to the true participation mean. Marquis and Moore report trivial relative net biases for some programs (e.g., +1% for OASDI; −3% for VETS), modest levels of bias for others (e.g., −12% for SSI; −13% for FOOD), and relative biases in the survey estimates that are quite high for still others (e.g., −18% for WCOMP; −20% for UNEM; −39% for AFDC).

In subsequent research exploring ways to reduce SIPP measurement errors, Moore, Marquis, and Bogen (1996) describe an experiment to test a new SIPP interviewing approach among a Milwaukee, WI, sample of known recipients of four programs. Moore et al. report rates of underreporting that are somewhat lower than those of the earlier record check study, but still substantial – true program participants failed to report 10–12% of their true AFDC participation months (depending on the experimental treatment), 12–17% of their FOOD months, 8–13% of their SSI months, and 41–44% of their UNEM months. Moore et al. also find that most underreporting (from about 60% to 90%, depending on the source and the experimental treatment) is due to participants’ failure to report the source at all, as opposed to failure to report all months of participation. Also, all programs yield false positive reports among known nonparticipants, although, because of the much larger base of true nonparticipants, overreport rates are substantially lower than underreport rates – e.g., 3–4% for AFDC, 2–3% for FOOD, 3% for SSI, and 1% for UNEM.15

Yen and Nelson (1996) provide the final example of a type of “complete design” measurement error research, in a comparison of survey reports and record data for a sample of Washington state residents who were AFDC recipients at the time of the initial interview and who were interviewed annually over a 5-year period. They find 93% of the almost 49,000 person-months available for analysis to have been reported correctly. They also find that for this particular sample, overreports exceed underreports, such that the survey-estimated monthly participation rate exceeds the true rate by a little more than one percentage point.

15 Note that this experiment used separate samples of people to produce the underreport and overreport estimates, and so does not permit calculation of a net bias estimate combining the underreports and overreports.
4.3. Asset income sources

The third major type of income source that we examine is income deriving from the ownership of assets or property.\(^{16}\) With a single exception, all of the research reviewed here is of the partial design variety, involving the comparison of survey reports and financial institution records for samples of known asset holders. The near-unanimous conclusion of this research is that those who own such assets very often fail to report them in response to survey questions. As noted before, however, research of this type is of limited use in describing the general nature of survey response errors. The only legitimate conclusion it allows is that surveys will fail to identify many people who own assets; it can address neither the accuracy of positive survey reports of asset ownership, nor the general tendencies of respondents to under- or overreport asset ownership.

We also note, however, that the one example of a complete design study does suggest both high levels of random error and a substantial net underreporting bias in the reporting of asset ownership.

Lansing, Ginsburg, and Braaten (1961) set the tone for much later work in their research on response errors in the survey reports of known owners of savings accounts. In two separate small-scale studies conducted in 1958 and 1959, they report that about one-quarter (24% and 26%) of survey respondents failed to report a savings account’s existence. These were not insignificant accounts; the authors deliberately restricted the study populations to owners of large (for that time) accounts, with balances of at least 500 USD in one case and 1,000 USD in the other, to avoid problems associated with recalling what might be considered trivial income details. Later in the decade, Ferber and colleagues carried out a number of similar studies on asset (mostly savings account) ownership, reaching similar conclusions about the tendency of asset owners to underreport. In all cases, these researchers find underreporting among true asset owners to be extensive – 19%, 35%, and 22% in three savings accounts studies reported by Ferber (1966); 46% in another savings account study reported by Ferber, Forsythe, Guthrie, and Maynes (1969a); and 30% in a study of stock ownership (Ferber, Forsythe, Guthrie, and Maynes 1969b). It is undoubtedly such consistent and large effects that led Sudman and Bradburn (1974) to conclude that “‘for savings accounts the major source of response effect is failure to report at all’” (p. 56).

Maynes (1965), however, reports a similar study whose results seem something of an outlier. Among approximately 3,300 known savings account owners from a particular financial institution in the Netherlands, only about 5% failed to report ownership of the sample account in a financial survey. In another, more recent study conducted outside the United States, Grondin and Michaud (1994) report the results of perhaps the only “‘complete design’” research on the accuracy of asset ownership reporting, in a comparison of individual-level annual income reports from two different surveys with Canadian tax return data. Consistent with the majority of the earlier studies, Grondin and Michaud find high levels of error in the reports of any income from interest or dividends – 43% of survey reports are in error in one survey, 27% in the other – and an overwhelming

predominance of underreports relative to overreports. In one instance the survey estimate falls short of the tax record estimate by 39 percentage points; in the other the net difference is ‘only’ 15 percentage points.

5. Response Error in Income Amount Reports

The research summarized in Section 4 suggests that one dimension of error in survey reports of income is the reporting of income sources. Clearly, the accuracy of income source reporting can exert a major influence on the accuracy of reported income amounts, since both failures to report income sources and false positive reports of nonexistent income sources can produce major errors in the reporting of income amounts received. Our review also shows the extent to which different major income categories are differentially subject to errors at this initial ‘screening’ stage of income reporting.

In this section we switch to the second stage of income reporting, and examine response error for reports of income amounts. Once again we distinguish three major categories of income – wage and salary income (with which we also fold in some studies of total income), income from participation in government transfer programs, and income from assets. In order to assess income amount reporting errors unconfounded by errors in the reporting of income sources, we follow customary practice and generally restrict our focus to studies of amount reporting given correctly reported sources. A review such as this is at the mercy of how authors choose to present their results, and thus we are not always able to avoid the confounding of income source and amount reports. Rather than omit such studies from consideration we choose instead to include them but to point out where the original author’s analysis strategy admits the possible contaminating influence of source misreports on amount reporting errors.

In their review of response effects, Sudman and Bradburn (1974) conclude that income data are ‘‘pretty well reported, although there are some small understatements of income from sources other than wages and salaries’’ (p. 56). Radner (1982), drawing on his experience with aggregate comparisons, is quick to draw a much more negative inference about respondents’ propensities to report accurately: ‘‘It is well-known that estimates of the size distribution of annual family money income obtained from household surveys contain substantial error, particularly response error’’ (p. 19). In this section we attempt to reach our own conclusion about the accuracy of reported income amounts. In the end the evidence we present seems to side more with Sudman and Bradburn’s assessment than with Radner’s. Wage and salary income response bias estimates from a wide variety of studies are generally small and without consistent sign, and indicators of random error are quite low. Bias estimates for transfer income amount reports vary in magnitude but are generally negative, indicating underreporting, and random error is also an important problem. Random error is also marked in asset income reports, although indicators of consistent bias are less clear.

5.1. Wage and salary income (and total family income) amounts

Marquis et al. (1981) review a substantial body of research on response error in reports of wage/salary and total income, including reinterviews and record checks using widely varying types of records. These authors find some evidence suggesting that small and
irregular earnings sources might be underreported, but the primary conclusion of their review is that there is very little net bias in reports of wage/salary income – “The overall picture that emerges . . . is that self-reports of wage and salary data are relatively unbiased” (p. 29). Marquis et al. also find very little random measurement error, as indicated by both high consistency in reinterview studies, and high correlations between individual reports and their matched record values. Although there are fewer studies to draw on, particularly with regard to net bias estimates, a similar conclusion applies to reports of total income as well. In this section we review studies not included in the Marquis et al. report, primarily studies of more recent vintage. In general we find that the additional data continue to support Marquis et al.’s conclusion of very little bias in survey reports of wage/salary income, and little random error as well.

One of the more common means of assessing income reporting errors is through a comparison of survey reports with tax records. In an early study which somehow escaped the Marquis et al. net, Miller and Paley (1958) compare income reporting for a subsample of 1950 census Post Enumeration Survey (PES) cases matched to tax records. Their comparison of the median census/PES reports of total income for both individuals and for families to the medians from matched tax returns suggests a small net bias which is slightly negative for matched families (the census/PES median is about 3% less than the median tax form amount), but slightly positive for matched unrelated individuals (by about 4%). A more recent study by Coder (1992) assesses errors in SIPP wage/salary income reports through an exact match comparison of combined calendar year 1990 SIPP reports with tax return information. Using a very restricted set of respondents,17 Coder finds a small negative net bias in the SIPP reports in the form of a mean annual wage/salary income in SIPP that is about 4% less than the mean computed from the matched tax records.18 In keeping with the earlier results summarized by Marquis et al., Coder also finds very high reliability in the SIPP reports, which correlate about +.83 with the tax data.

Two comparisons to tax records conducted outside the U.S. also find low levels of net bias in survey respondents’ earned income reports. Andersen and Christoffersen (1982 – cited in Körnendi 1988), in an analysis of 1976 interview data compared to Danish tax records, find a slight positive net bias in respondents’ reports of about 2.5%. In her own subsequent study, Körnendi (1988) compares telephone and personal visit interview reports with national register (tax) information, and also finds “a surprisingly high degree of accuracy” (p. 352) in reports of personal gross and net income and “family” gross and net income. Körnendi’s correlational analysis generally shows very high correlations – from +.8 to well over +.9 – between the tax and survey reports, and her analysis comparing the means of the survey reports and tax records suggests very small net biases (even the few significant bias estimates are generally less than ±5%) with no consistent sign across many different comparison groups.

17 The respondents were limited to married couples, each with a valid social security number, matched to married-joint tax returns, with no missing or imputed SIPP data, and with nonzero wage/salary income on at least one of the two sources.
18 Note that this figure is probably an upper bound on the extent of response error in SIPP’s income amounts reports, since it includes an unknown number of cases which did not agree on the presence of any wage/ salary income. The reported estimates will overstate the difference in reported amounts to the extent that there were more 0-income SIPP cases matched to tax reports with nonzero income, compared to the reverse. (Coder’s results suggest but do not state conclusively that this is the case.)
Gröndin and Michaud’s (1994) Canadian study (cited earlier) presents a somewhat different picture, although their report offers insufficient detail to permit a careful comparison with other research. They find fairly high error frequencies in their comparison of annual income data with tax information. In two different studies, about one-third of the interview reports differed from their matched tax reports by more than ±5%.19 The report offers no evidence regarding the sign or magnitude of the resulting net bias in the survey reports.

Other researchers have matched survey reports to Social Security Administration (SSA) earnings records. Bound and Krueger (1991) summarize a study matching earnings reports from the CPS to SSA earnings records, which finds essentially zero net bias in CPS income reports (for incomes below SSA’s maximum earnings cutoff). Thus, with the possible exception of the Gröndin and Michaud work, the evidence from comparisons of survey reports with tax return and other official government data supports Marquis et al.’s (1981) earlier conclusion that wage/salary income (and total income) amounts are reported in surveys with little bias and fairly small random error.

Employers’ records provide perhaps the best source of “true” wage and salary information for the detection of errors in respondents’ survey reports. Several of the studies reviewed by Marquis et al. (1981) are of this type; here we examine several additional works. Kaluzny (1978) finds substantial negative bias in the survey responses of Gary income maintenance experiment sample cases matched to income reports provided by their employers. His bias estimates vary widely for different types of respondents, but they are consistently negative (indicating survey underreporting), except for male household heads at the lowest income levels who overreported their quarterly income by 15–20%. For other categories of respondents, however, net bias estimates range from a low of −13% (for steadily-working female heads of household) to −79% (for non-steadily working nonheads of household). Other findings cast doubt on Kaluzny’s results. Halsey (1978) reports the results of wage/salary amount validations among similar low income populations in similar income maintenance experiments in Seattle and Denver. Halsey shows statistically significant negative biases, but only on the order of 2–4% – “not large enough to be economically important” (p. (IV)46); he also finds very high correlations (of approximately +.90) between the record and report values. In a subsequent paper, Greenberg and Halsey (1983) speculate that the stark differences between these results and those of the earlier Gary experiment are in part attributable to a less careful administration of the latter, leading to more apparent error.

Hoaglin (1978) reports on a study which verified annual and monthly income reported by participants in a housing allowance experiment among low-income renters in Pittsburgh and Phoenix. The verification was accomplished using consent forms to check all reported income with reported employers; cases included in the verification analyses include only those for which all verifiable income was successfully verified. Hoaglin’s presentation of the results makes it impossible to derive precise bias and error estimates. It is clear, however, that the net bias in the survey reports is only very slightly negative. Hoaglin reports mean discrepancies in respondents’ annual income reports of USD 63

19 As with the Coder (1992) study cited earlier, this figure is biased upward to some extent by the inclusion of an unknown number of cases in which the survey and tax reports did not agree on the presence of any wage/salary income.
in one site and USD 37 in the other (these appear to be within ±2% of the true mean in each case). Errors in monthly reports seem slightly larger (perhaps −10%) and more consistently negative than the annual reports. Mellow and Sider (1983) use a similar methodology in a validation study of a 1977 CPS income supplement, using waivers to contact reported employers and the pay records of successfully contacted employers to assess survey response errors. They find a nonsignificant tendency for respondents to overreport both their annual job income (by about 5%) and their monthly income (by about 10%); weekly and hourly pay rates, however, tend to be nonsignificantly underreported (by about 4–6%).

In a validation study designed to mimic a Panel Study of Income Dynamics (PSID) interview, and conducted among a small sample of employees of a single large manufacturing company, Duncan and Hill (1985) find essentially zero bias in respondents’ annual earnings reports. Looking at reports for two years, they find a net bias of 55 USD (−0.2%) in one instance, and 294 USD (−1%) in the other. However, these net bias results mask what are rather more substantial, but largely compensating, absolute errors, averaging 7% for one year’s annual income reports and 9% for the other year’s.20

Rodgers, Brown, and Duncan (1993) report the results of a 1987 followup study of Duncan and Hill’s respondents. Again using a PSID-type interview among the same employees of a single manufacturing company, they validated the respondents’ replies with the company’s payroll records. Once again they report relatively little evidence of important net bias in the survey results. This is especially true for annual earnings, the mean of which differed from the employer record mean by less than 1%, but with no indication of the sign of the bias provided. Other measures show occasional statistically significant discrepancies, but none exceeding ±5%. Rogers et al. do find somewhat higher levels of random error than prior investigators, as indicated by the relatively low survey-record correlations (of the logarithms) for last pay period (+.60), and for usual pay period earnings (+.46), although the estimate for annual earnings remains quite high (+.79).

The Moore, Marquis, and Bogen (1996) study cited earlier represents something of a middle ground regarding response errors for wage/salary income amount reports. In an experiment testing a new SIPP interview among a sample of known employees of a single employer, Moore et al. find substantial (but far from complete) agreement between survey reports of monthly income and the employer’s payroll records – between 65% and 75% of respondents’ monthly reports are accurate within ±5% of the record value.

5.2. Transfer program income amounts

The evidence cited is scant, but Marquis et al.’s (1981) review presents a somewhat inconsistent picture concerning response error in survey reports of income from government transfer programs, although underreporting seems to predominate. Two studies of social security income reporting (Haber 1966; Vaughan and Yuskavage 1976) agree in suggesting modest levels of net bias (of approximately 5 or 6%) – but the sign of the bias is negative in one case and positive in the other. David (1962) finds a net bias of about

20 That is to say, the average response in the Duncan and Hill (1985) study differed from the true value by 7% in one year and 9% in the second year, regardless of the direction of the difference. These estimates may be too high. For reasons that are not clear, Bound, Brown, Duncan, and Rodgers (1990), describing the same research, report average absolute discrepancies of only about 3%.
−18% for “general assistance” amounts reports; Oberheu and Ono (1975) find much more severe underreporting (about −30%) of amounts for a later incarnation of a similar transfer program, AFDC income.

In this section we review additional evidence on the reporting of transfer program income, mostly from studies conducted in the intervening two decades since Marquis et al.’s work. We examine two studies which use tax records as criterion measures; the remainder use the payment records of the administering government agencies to assess errors. This more recent work suggests a fairly consistent negative (underreporting) response bias across almost all transfer programs, but with substantial variation in magnitude across programs. Indicators of random error, however, are uniformly high, even for income amount types that show little bias.

Michaud and colleagues have conducted several studies comparing survey reports to Canadian tax records. Grondin and Michaud (1994), in their assessment of annual income data from two different surveys, assess unemployment insurance (UI) benefits. Among those with nonzero amounts in either the survey or the tax record, and excluding the approximately 8% of cases with a missing (DK) survey response, they find evidence of fairly substantial error. In each survey, only slightly more than half of the survey reports are fully in one case, 55% in the other – are in agreement within ±5% of the tax record amount. More evidence on net bias in UI reports is presented in Dibbs, Hale, Loverock, and Michaud (1995). In a test of dependent interviewing procedures for improving the reporting of UI and other benefits, these authors find a modest general tendency to underreport annual benefit amounts, by about 5% on average.

The records of the agencies which administer the various transfer programs represent the most direct and most common means for establishing the nature and level of response error in transfer income amount reports. The several studies of this type suggest a general tendency for transfer program income to be at least modestly underreported, and in some instances underreporting is substantial. Livingston (1969), for example, compares reports regarding the receipt of “public assistance” income (AFDC, old age assistance (OAA), general assistance, aid to the blind or disabled) as reported in a special census in Dane County, WI, with administrative records. Among those who reported public assistance receipt, and whose receipt is corroborated in agency records, amount underreporting is generally about twice as common as overreporting. For all types of assistance income considered together, the net bias in the census reports is −27% (in a comparison of medians). Underreporting appears to have been concentrated in the very poorest cases, however – those with family incomes of under 1,000 USD reported only 14% of the assistance they received (−86% net bias!); at income levels above 2,000 USD underreporting was trivial (for one category the bias is actually positive in sign). Livingston also considers AFDC and OAA separately and finds both to be marked by rather severe underreporting – OAA recipients on average reported only 80% of their OAA income (i.e., net bias = −20%); for AFDC recipients the level of bias is even more extreme, with only 70% of AFDC income reported in the census.

21 Note that these figures represent an upper bound on the extent of income amount reporting error. The analysis includes some cases which did not agree on the presence of any UI income, so the reported amount differences are confounded with income source reporting errors. Also, the authors present no evidence regarding the direction of errors for disagreement cases, so this research cannot address net bias in amount reports.
Halsey's (1978) summary of income reporting verifications carried out in conjunction with the Seattle and Denver income maintenance experiments also suggests a substantial underreporting bias for transfer income amounts, as well as substantial random error. In an analysis of amount reporting among those for whom either the report or the record was nonzero (which therefore confounds the analysis of amount reporting with source reporting errors to some unknown extent), Halsey finds that reports of transfer program income are mostly negatively biased -- for AFDC, for example, the average survey report is approximately 25–30% below the average record amount; for UI benefits the net bias is perhaps as much as −50%. The correlations between record and survey reports are also quite low, with values only in the .40–.60 range.

In contrast, Hoaglin’s (1978) results in a housing allowance experiment conducted in Pittsburgh and Phoenix present a very different picture, suggesting that net bias in transfer income reports is essentially zero. The surveys subject to verification include both an initial annual income report, and subsequent monthly reports, of which one, taken approximately 18 months after the initial annual survey, is selected for analysis. Hoaglin’s presentation does not permit the derivation of precise estimates, since he only presents median error amount data, without the true (verified) median amounts necessary for the calculation of the magnitude of response bias. Nevertheless, the results clearly indicate that the net bias in transfer income amount reports is negligible, regardless of the source or the reporting period: for both annual and monthly Social Security reports the median error in reported amounts is very slightly negative (but by only about 3% of the median reported amount); however, for monthly and annual SSI and “welfare” (which combines AFDC, general assistance, other welfare) reports, and for monthly UI reports (no annual data are available), the median response error amount is 0 USD.

Goodreau, Oberheu, and Vaughan (1984) compare administrative record data with the survey reports of a sample of approximately 200 families of known AFDC recipients in four states. In keeping with Hoaglin’s results, they find fairly high overall accuracy: averaged across all survey months, about 65% of respondents who reported receipt of any AFDC assistance reported an “accurate” (within $5, or about ±2%) amount. There is a modest underreporting tendency overall, with the total amount of survey-reported assistance reaching only 96% of actually received amount, and underreporters outnumbering overreporters by about a 2:1 ratio.

Moore, Marquis, and Bogen (1996) also offer some insights into measurement errors in transfer income reports in their description of the results of a field experiment testing a new approach to SIPP interviewing. Their sample of known program participants who correctly reported their participation reported most program amounts with a fairly high level of accuracy. Averaged across eight months of interviewing, about 70 to 80% of AFDC, FOOD, and SSI recipients reported their income amounts within ±5% of truth. UI reports are substantially less accurate, with a maximum accuracy rate of only 61%, and most estimates in the 20 to 30% accuracy range.

Note that both the figure and the reporting accuracy results may minimize the true extent of response error. Goodreau et al.’s analysis includes as AFDC income reporters those who reported their AFDC income but mislabeled it as some other type of assistance. Goodreau et al. took the close correspondence of the true amount paid (according to the records) with a reported amount in some other income category as the primary signal of a “misclassification” error. This procedure overlooks any misclassifiers who reported highly inaccurate amounts.
5.3. **Asset income amounts**

Studies assessing response errors in reports of income from assets use the records of selected financial institutions to identify measurement errors, or, in one case, tax records. With the exception of the study which uses tax records, the studies also focus on the value of reported assets (generally, savings account balances) rather than the amounts of income they produce. We summarize these studies in this section. We find little evidence of consistent response bias in reported asset values (i.e., the bias estimates are occasionally substantial, but about as likely to be positive in sign as negative), but substantial levels of random error.

Lasing, Ginsburg, and Braaten (1961) report the results of several studies of response error in survey reports of (among other things) known owners of savings accounts. Two are of relevance here; each is limited by a very small sample of cases. The first study finds a net bias in reported savings account balances of −14% (i.e., the mean reported balance is almost 500 USD less than the mean actual balance of 3,310 USD), with about twice as many underreported amounts as overreported amounts. The net bias, while fairly substantial in this study, masks a much higher average discrepancy, which approaches 50% (1,571 USD) on average. However, Lansing et al.’s second study finds a much more moderate – and in this case positive – net bias of +2%. No further details are presented which might permit an assessment of the preponderance of the sign of the discrepancies, nor the average absolute discrepancy. As noted earlier, the sampled accounts in both studies had balances that were quite substantial, in order to avoid problems associated with recalling what might be considered trivial income details. Ferber (1966), like Lansing et al., finds widely diverging bias estimates in three studies, ranging from the substantially large and negative (−20%) in one instance, to the trivially positive (+0.3%) in another, to the moderately positive (+8%) in a third.

Maynes (1965) finds a very moderate level of bias in his record check study of known savings account owners from a particular financial institution in the Netherlands. He reports a net bias of approximately −5% in reported account balances; overall, underreporters outnumber overreporters by about a 2 : 1 ratio. Maynes also finds a ‘‘strong tendency of survey respondents to underreport large balances and to overreport small balances’’ (p. 379), and he finds more error (but approximately equivalent net bias) for reports about 10-months ago account balances as compared to current balance reports. In a subsequent study, Maynes (1968) finds little difference in the net bias in savings account balance reports according to whether respondents were instructed to consult their records or instructed not to consult records – the bias is +1% in one experimental treatment and −2% in another. However, the amount of random error is clearly affected by the use of records: 85% of record users’ account balance reports are within ±1% of the truth, versus only 49% among ‘‘no records’’ respondents (91% versus 70% are within ±5%).

Ferber, Forsythe, Guthrie, and Maynes (1969a) also find very little net bias in the reports of savings account balances – less than +0.1% – but substantial random error, with only about 40% of reports falling within ±10% of the true amount. The trivial net bias, however, seems to mask more pronounced biases for different sized accounts; the authors find ‘‘a pronounced tendency to over-report the size of small accounts and to under-report

23 Lack of detail makes a precise estimate of bias impossible, but see Table 2.
the size of large accounts” (p. 441). The same group of researchers (Ferber, Forsythe, Guthrie, and Maynes 1969b) also find a trivial net bias (+0.2%) in the reports of stock holdings; in this case the vast majority of reports, approximately 80%, are “fully accurate” (p. 426), that is, reported with no error.

Grondin and Michaud’s (1994) comparison of survey reports with tax records is the only known study of response error in the amounts of income from asset holdings – in this case, interest and dividend income. Unfortunately, they only report the frequency with which the survey reports are in agreement (within ±5%) with the tax data – 37% in one survey, 50% in another.24 These results suggest that such reports carry a substantial random error burden, but they offer no clues as to the magnitude or direction of response bias.

6. Cognitive Factors in Income Reporting

In this final section we review research which addresses the possible cognitive bases of respondents’ apparent difficulties in reporting all their income sources, and all their amounts of income received from those sources, fully and accurately. In reviewing this evidence we follow the common practice, suggested by Tourangeau (1984) and others, of distinguishing several distinct stages in the cognitive “work” necessary to answer a survey question, which we label here as understanding, retrieval, and response production.

6.1. Understanding income concepts and terms

Deliberate prevarication – in particular, deliberate underreporting – is probably the most commonly assumed cause of income survey response errors. However, close consideration reveals an abundance of areas of potential difficulty without invoking motivated misreporting at all. Consider the magnitude of the survey designer’s task in designing a survey to collect income data. The most difficult step of this process may, in fact, be the first: defining the construct for survey respondents in clear, simple, and easily understood language. The fact that income has so many varied components partially explains the complexity of the task. Not only are there many different forms of remuneration (e.g., pay-in-kind, nonwage cash payments, cash and noncash program benefits, take-home pay and gross income, fringe benefits, assets, etc.) that may or may not be included within the definition, but there are also varying recipients (e.g., households, families, couples, individuals) and receipt periods (e.g., weekly, biweekly, bimonthly, monthly, quarterly, annual) that must be defined and conveyed.

6.1.1. Types of misunderstanding

A reasonable assumption, certainly, is that technical definitions will not be widely known among the general public. An example of a definition not widely understood by the population at large is the phrase “nonwage cash payments.” Dippo and Norwood (1992) cite U.S. Bureau of Labor Statistics research which shows a wide range of interpretations of “nonwage cash payments,” from the inclusion of in-kind payments, such as a car, to the exclusion of even cashable checks. U.S. Census Bureau research on some of

24 As noted earlier, these “amount accuracy” figures are biased upward to some extent by the inclusion of an unknown number of source reporting error cases in which the survey and tax reports did not agree on the presence of any interest/dividend income.
SIPP’s less central income definitions finds more support for the lack of definitional consensus. For example, SIPP’s definition of income is intended to include both gains and losses. However, even owners of real estate and other income-generating property, for whom losses (both real and on paper) are commonplace, often fail to include common types of losses (e.g., losses due to the failure to rent property, stock fluctuations, and commodity holdings) in their reports of property income (Cantor, Brandt, and Green 1991).

Other research shows, however, that even the most commonplace terms and phrases elicit highly variable understandings among survey respondents. Stinson (1997) asked respondents what they included when calculating their “total family income.” Some respondents reported excluding their own or a spouse’s part-time wages, or interest income, because the amounts were small and not a significant contributor to the family’s income. Other reasons for omitting income from the family total were that the wages were kept for individual use, or handed over to other parts of the extended family, and thus were not available to the immediate family. Likewise, Bogen (1995), in a cognitive assessment of the SIPP interview, finds that people often omit money earned from sporadic self-employment, their third or fourth job, and “odd jobs,” such as occasional babysitting or maintenance work. Other SIPP research has demonstrated confusion over the distinction between income “earned” during a specified period and income “received” during that time (Marquis 1990; Cantor, Brandt, and Green 1991; Bogen and Robinson 1995). This distinction is critical to SIPP, which is intended to identify short-term ebbs and flows of income receipt, program participation, and poverty status.

6.1.2. Survey design solutions to problems of misunderstanding

Fowler (1995) offers two possible solutions to the problems presented by respondents’ failure to share survey designers’ income definitions. Since the technical definitions of income are not intuitively obvious to respondents, they must be clearly conveyed to them. First, survey designers can develop simple and clear definitions for income-relevant terms and include those definitions within the questions. The obvious drawback to this procedure is that, in some cases, the definitions cannot be simple because the concepts to be defined are not simple. Embedding a complicated definition in an otherwise simple question often renders the entire question so complicated as to risk respondents’ comprehension of it. Fowler’s second suggestion is to begin with simple but largely undefined questions (e.g., “What is your total family income?”), and follow up with specific probes to cover the aspects of the definition that are frequently misunderstood or omitted. This procedure covers all definitional details incrementally, without requiring that respondents understand everything all at once.

6.2. Retrieval problems

Assuming that the survey designer can formulate income questions that effectively convey his or her intended meanings to respondents, the next challenge is for respondents to retrieve the appropriate income information from memory. The retrieval process can

25 Although they do not speculate about a cognitive mechanism, Marquis et al. (1981) reach a similar conclusion. On the basis of their observation of a modest underreporting bias for annual earnings from all sources, in contrast to an absence of any such bias in reports of earnings from a specified employer, they hypothesize “that earnings from odd jobs and other irregular sources of earnings are underreported” (p. 27).
introduce error into survey reports in a wide variety of ways. In this section we review a number of studies which demonstrate some of the common ways in which faulty retrieval has been shown to affect the quality of income reports.

6.2.1. Types of retrieval problems
Lack of knowledge is an immediate and common problem; respondents often simply do not carry the necessary information in memory. Nonresponse to income questions is always comprised of a significant proportion of ‘‘don’t know’’ responses as well as refusals. In a SIPP investigation of respondents’ income reporting strategies, those who did not use records, particularly when reporting asset income, often appeared to observers to almost blindly guess at both asset types and amounts, because the information concerning their assets was simply not stored in memory (Cantor, Brandt, and Green 1991).

Even when knowledge about income is present in memory, the Moore, Marquis, and Bogen (1996) results demonstrate that the low salience of some income types might cause some income sources to be overlooked in a cursory recall effort. Their test of experimental SIPP interview procedures found that an income ‘‘free recall’’ reporting task, without specific probes for specific types of income, was sufficient for eliciting over 90% reports of job income, pensions, and major transfer income sources such as OASDI, SSI, and AFDC – the apparently highly salient, easy-to-retrieve income sources. Other important income sources, such as Food Stamps and asset income sources, were much more rarely reported in free recall. In fact, less than 40% of all Food Stamps reports eventually produced in the first interview administration were elicited during ‘‘free recall.’’ This percentage increases to 64% in the second interview, but still remains substantially below the averages for job income and other transfer programs. Assets are apparently even less salient – only 22% of interest-earning savings accounts were reported in response to free recall procedures, 23% of interest-earning checking accounts, 34% of stock dividends, 35% of money market account interest, etc. Most of these income sources required specific ‘‘recognition’’ probes before they emerged in respondents’ reports, even in a second interview wave.

One demonstrated correlate of transfer income reporting problems which is probably related to salience issues is brief ‘‘spells’’ of receipt, which often leads to recall failure. For example, Livingston (1969) compares census reports of receipt of ‘‘public assistance’’ with administrative record information and finds that underreporting of receipt is associated with both a small total benefit amount and fewer months of receipt. Hu’s (1971) subsequent examination of the survey reports of approximately 200 ‘‘welfare family’’ respondents for whom detailed data were available from local records finds that failure to report is associated with younger household heads and higher reported household income, and, therefore, less time receiving welfare. Similarly, Goodreau, Oberheu, and Vaughan (1984) find that known AFDC recipients are three times more likely to underreport their AFDC participation if they were ‘‘part-period’’ participants versus participants throughout the entire survey reference period.

When the required income information is not directly retrievable from memory, respondents adopt any of a number of error-prone ‘‘reconstruction’’ strategies, some of which may be more successful than others. Cantor, Brandt, and Green (1991) reported that very few SIPP respondents who were asked to report their monthly income attempted
a direct retrieval. Most used one of three main reconstruction strategies: (1) recalling paycheck amounts (and occasionally actually looking at paycheck records) and then calculating the number of paychecks received within the relevant time period; (2) trying to estimate the number of hours worked during the reference period and then multiplying by the hourly wage rate; and (3) dividing an annual salary by twelve. Marquis (1990) describes the same types of reconstruction strategies in the absence of knowledge and records, as well as some additional ones:

- identifying an “average” pay amount and multiplying that by a “typical” pattern of hours worked;
- recalling a paycheck amount, rounding to hundreds, and translating into a monthly estimate;
- identifying an “average” pay amount and then estimating whether more or less than that average amount was received in a given month;
- recalling exact amounts for recent months and then recalling circumstances that would raise or lower monthly amounts for more distant months;
- recalling the annual gross salary and then dividing by twelve for a monthly estimate;
- recalling take-home pay from the last paycheck and then multiplying it by the number of pay periods per month;
- recalling hourly amounts, multiplying by the number of hours per week and the number of weeks per month;
- recalling weekly amounts and multiplying by four.

Bogen (1995) provides additional examples of income amount reporting strategies that result in inexact estimates, including:

- reporting weekly pay, but failing to include a fifth payday in a month with five weeks;
- severe rounding of reported dollar amounts; and
- reporting “average” amounts.

Another frequent pitfall for income reporting accuracy is confusion among income category labels. This can be especially troubling for a detailed accounting of asset income, and many researchers – most notably, Vaughan and his colleagues (Vaughan 1978; Klein and Vaughan 1980; Vaughan, Liningier, and Klein 1983; Goodreau, Oberheu, and Vaughan 1984) – have noted respondents’ tendencies to confuse transfer program names. Marquis and Moore (1990), for example, find that a significant proportion of AFDC response errors are actually due to misclassification of AFDC income as “general welfare” income. Other U.S. Census Bureau investigations have found that respondents have great difficulty recognizing and distinguishing the official names for various sources of income, such as “Medicaid,” “Supplemental Security Income,” “Worker’s Compensation” (Cantor, Brandt, and Green 1991; Bogen 1994).

Some evidence suggests that recall period length contributes to faulty recall. In a study comparing respondents’ self-reports of income collected as “current income” in one year and as “last year’s income” collected through re-interview one year later, Withey (1954) found that only 61% of the cases reported the same income in their current and retrospective reports. On the other hand, Marquis and Moore (1990) compare reports about “last month” with reports about “four months ago” and find evidence of increased
“forgetting” (underreporting) with the passage of time for only one of the eight programs in their SIPP record check study. Nor do Marquis and Moore’s data show consistent increases in error rates for the more distant reference month – for four of the programs there are numerically more errors in the “four months ago” reports than in the “last month” reports, but for three other programs this trend is reversed (and one program shows inconsistent results; see Appendix Table 1 in Marquis and Moore 1990).

6.2.2. Survey design solutions to retrieval problems
Survey methodologists have directed a great deal of attention toward attempts to solve or reduce income survey recall/retrieval problems. One common method for avoiding the inevitable “don’t know’s” and guesses that result from a respondent’s lack of knowledge is to find a memory system which does contain the desired information – i.e., use a more knowledgeable respondent. Moore’s (1988) review of self/proxy effects on survey response quality finds that self-response conditions do tend to reduce nonresponse to income questions, although the benefits of self-response with regard to response completeness may be washed out by increases in household and person nonresponse.

A second solution to recall/retrieval problems is to bypass memory retrieval altogether through the use of records. A number of investigations have tried this approach, with some notable successes in reducing response error. For example, in the Maynes (1968) study cited earlier, respondents who were instructed to consult their records reported their savings account balances with much greater accuracy than those instructed not to consult records. Similarly, Grondin and Michaud (1994) find major reductions in income amount reporting errors among respondents who used a pre-mailed notebook, or referred to tax forms during the interview, compared to those who answered the interview questions unaided. About 85% of “assisted” wage/salary income reports were accurate (within ±5% of the true (tax report) value), versus 36% of amounts reported without notebook or tax forms; for UI the comparable figures were about 75% versus 16%; and, for interest/dividend income, about 70% of those who used some form of record were accurate versus 10% of those who did not. Grondin and Michaud also note that these memory aids reduce survey “don’t know’s” to practically zero. Finally, Moore, Marquis, and Bogen’s (1996) experimental SIPP interview procedures achieved notable success in getting respondents to use their income records, which produced significantly improved income amount reports among record users, although both survey nonresponse and interviewing costs may have been adversely affected by the record use procedures.

Another important potential drawback of encouraging record use to assist income reporting is interviewers’ lack of enthusiasm for such procedures. Observers have noted that interviewers do not readily encourage respondents to use records, and on occasion overtly discourage record use (Marquis 1990), although Moore, Marquis, and Bogen (1996) find that interviewers did quite well administering experimental SIPP procedures involving major emphasis on record use. Nor are records always helpful. Marquis (1990) reports one instance in which retrieved pay stubs were in sufficient disorder as to render them of almost no use in collecting accurate information; in another case, a respondent was unable to decipher the record information which, it turned out, also failed to cover the appropriate time period. Most respondents in the Marquis study reported that they would have been willing to use their income records had the interviewer
requested them. A few, however, cited reasons why they might be unlikely to use records, including:

- difficulty finding the records;
- the “convenience” of simply recalling a close approximation of the desired income amount without the bother of a search for and interpretation of records; and
- the lack of availability of records for some types of income.

Other proposed solutions have to do with modifications to the timing and focus of the income inquiry. For example, Sudman and Bradburn (1982) suggest that the recall of total family income may be more accurate if the specified time period is “the last calendar year,” especially if data collection occurs when people are preparing their income tax returns in the spring. Another strategy to address the challenge of accurate recall seeks to avoid the problems caused by fluctuations in hours and wages, in turn caused by such events as holidays, vacations, illness, and overtime, by requiring respondents to remember and report only the most recent pay period (Rodgers, Brown, and Duncan 1993). A related approach would reduce the emphasis upon precise recall and shift toward the integration of estimates into a report of “usual pay.” However, the results of research in the PSID by Rodgers, Brown, and Duncan (1993) call into question the proposed solutions. Rodgers et al. report a +.79 correlation between company-recorded yearly income and respondent reports – substantially higher than the correlation between records and survey reports of income received in the last pay period (+.49) or the respondent’s “usual” pay (+.46).

6.3. Sensitivity

While both misunderstanding of income concepts and memory fallibility play roles in the inaccurate reporting of income, these two factors alone do not completely explain reporting problems. It seems clear that in some cases respondents’ sensitivity about discussing their income may also lead to “motivated mis-remembering.” This should not be surprising since the taboo against speaking about money is so strong in U.S. society that to even raise the topic is considered rude. A therapist in San Francisco specializing in the “psychology of money” estimated that 90% of her clients reported never discussing money in their homes (Gallagher 1992). In a study on attitudes toward money conducted on a nonrepresentative, Washington, DC, area convenience sample, van Melis-Wright and Stone (1993) found that the two most frequently endorsed statements were “I think it is impolite to ask others about their financial situation,” and “Surveys asking about my finances should be completely anonymous.” Clearly, social conventions of politeness and the desire for anonymity may contribute some of the sensitivity respondents feel about reporting their income, and may also create hesitancy on the part of interviewers to even ask the questions.

The difficulty experienced by respondents and interviewers alike when discussing income seems to be borne out by a behavior coding study conducted by the U.S. Census Bureau (Miller, Bogen, and Moore 1997), which indicated that SIPP interviewers often make major changes to income questions. These changes include omitting definitions, reference periods, and, in some cases, entire questions. The mode of the interview may also contribute to the difficulty respondents and interviewers experience when talking
about income (Brehm 1993). There is some indication that telephone respondents are more likely to feel uncomfortable discussing income than are respondents to face-to-face interviews (Groves 1989). Jordan, Marcus, and Reeder (1979) find more missing values for family income in telephone surveys than in personal interviews. This may reflect respondents’ greater discomfort about discussing income over the telephone than in person – or, on the other hand, the telephone may simply lower some of the social barriers against expressing such discomfort overtly. Laumann, Ganon, Michael and Michaels (1994) report the recent experience of the National Opinion Research Center’s landmark survey of sexual practices in the United States. The study was designed so that the most sensitive questions from this exceedingly sensitive interview could be self-administered and not depend upon questioning by interviewers. Among the questions included in the self-administered privacy section was a question about personal family income, since for many of their respondents the income question was the most personal and sensitive question asked.

Singer, Von Thurn, and Miller (1995) have shown that assurances of confidentiality reduce nonresponse and/or increase the accuracy of responses to income questions and other sensitive survey topics. In addition, recent technological advances raise some possibilities for gathering income information under more anonymous conditions, without the direct involvement of an interviewer, which may substantially reduce sensitivity pressures and thus yield more complete reporting. Research is starting to show the benefits of anonymous reporting – for example, via audio computer-assisted self-interviewing (A-CASI) – on the quality of sensitive behavior reports (Turner, Lessler, and Devore 1992; Tourangeau and Smith 1996), although as yet there has been no clear demonstration that income reports would similarly benefit.

7. Summary and Conclusions

Our review has demonstrated many problems with the measurement of income in surveys, some of which are visible to the naked eye, and others whose existence can only be confirmed under the microscope. Among the more obvious problem indicators are the following:

- consistent and often large shortfalls in nationally-weighted survey estimates when compared to independent benchmarks; and
- very high levels of nonresponse in survey reports of income.

The nature and magnitude of other problems only emerge with more focused study, for example:

- errors in individual respondents’ survey reports of both income sources and income amounts that signal the presence of both bias and random error effects;
- the substantially varying propensities for these errors across different income types; and
- the wide array of cognitive difficulties which have been implicated in attempts to understand income reporting problems.

Summarizing the measurement error results of a large number of studies is a daunting task at best, and is rendered even more so by the broad array of measurement error
statistics used to assess the quality of income reports. Is such a summary even possible? We think so, particularly if we focus attention on net bias results. Net bias estimates, especially in their relative form – the signed average error as a percent of the true mean of the characteristic – provide information about both the general direction of response errors and their magnitude, and thus offer arguably the best single, general-purpose indicator of measurement error tendencies. Restricting our focus to net bias results permits the following general conclusions:

- wage/salary income source reports may suffer a very modest level of net under-reporting bias; response bias estimates for wage/salary income amounts are generally small and without consistent sign, indicating neither under- nor overreporting bias given accurate source reporting;
- on the other hand, response bias estimates for transfer program income sources especially, but also for transfer income amounts, are consistently negative, indicating that underreporting is the predominant error form at each stage of the reporting process; and
- because of the paucity of data, conclusions are hardest to draw about assets, but from the data that do exist we conclude tentatively that asset income sources may suffer more than either of the other income types from severe underreporting, while indicators of consistent bias are less clear for asset income (or more accurately, their proxies in asset value reports).

Our review of investigations into the cognitive aspects of providing income data in surveys suggests, first of all, that the field is a long way from having final and definitive information on how respondents understand, think about, and form answers to income questions. The review does serve to highlight the many possible contributors to inaccurate reporting, including lack of knowledge, misunderstanding and other definitional issues, recall problems and confusion, as well as the much-suspected issue of sensitivity. Taken all together, it is apparent that asking respondents to report their income is taxing in many ways, although no single cognitive issue seems predominant. The positive side of this situation is that many avenues are available for making inroads on income measurement error problems. The more daunting specter that it raises, however, is that so many problems must be solved in order to significantly improve measurement quality, some of which – respondents’ lack of knowledge of some aspects of their own income situation, for example – seem largely immune to “cognitive” solutions.

8. References

Received January 1998
Revised February 2000