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Inference about the finite population total from probability-proportional-to-size (PPS)
samples is considered. In a previous article (Zheng and Little 2003), penalized spline
( p-spline) nonparametric model-based estimators were shown to generally outperform the
Horvitz-Thompson (HT) and generalized regression (GR) estimators in terms of the root mean
squared error. In this article we develop model-based, jackknife and balanced repeated
replicate variance estimation methods for the p-spline based estimators. Asymptotic
properties of the jackknife method are discussed. Simulations show that p-spline point
estimators and their jackknife standard errors lead to inferences that are superior to HT or GR
based inferences. This suggests that nonparametric model-based prediction approaches can be
successfully applied in the finite population setting by avoiding strong parametric
assumptions.
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1. Introduction

Survey sampling is perhaps unique in being the only area of current statistical activity where

inferences are primarily based on the randomization distribution rather than on statistical

models for the survey outcomes. This so-called design-based approach to survey inference

is described in standard survey texts such as Hansen, Hurwitz, and Madow (1953), Kish

(1965) and Cochran (1977). For a population with N units, let Y ¼ ðY1; : : : ; YNÞ
T , the

vector of survey variables for unit i, and let I ¼ ðI1; : : : ; INÞ
T denote the vector of inclusion

indicator variables, where Ii ¼ 1 if unit i is included in the sample and Ii ¼ 0 if it is not

included. The main characteristic of design-based inference is that it is based on the

distribution of I, with the survey variables Y treated as fixed quantities.

The model-based approach to survey sampling inference posits a model for the survey

outcomes Y, which is then used to predict the nonsampled values of the population, and

hence finite population quantities Q. There are two variants of the modeling approach:

superpopulation modeling and Bayesian modeling. In superpopulation modeling
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(Brewer 1963; Royall 1970; Valliant, Dorfman, and Royall 2000), the population values of

Y are assumed to be a random sample from a “superpopulation,” and assigned a probability

distribution pðYjuÞ indexed by fixed parameters u. The Bayesian approach (Ericson 1969;

Rubin 1987; Ghosh and Meeden 1997) adds a prior for the parameters and bases inference

for finite population quantities on the posterior predictive distribution of Y. In general,

inferences under either variant are based on the joint distribution of Y and I. However, in

probability sampling, where the distribution of I given Y does not depend on the values of

Y after conditioning on survey design variables, inferences can be based on the distribution

of Y alone provided the design variables are included in the model (Rubin 1987).

An advantage of the model-based approach is that it provides a unified approach to

survey inference, aligned with mainline statistics approaches in other application areas

such as biostatistics and econometrics. Also, the Bayesian variant may yield better

inferences for small sample problems where exact frequentist solutions are not available,

by propagating error in estimating parameters. Model-based inferences will generally

outperform design-based inferences if the model is correctly specified. However, all

models are simplifications and hence subject to misspecification error. The major

drawback with model-based inference is that if the model is seriously misspecified it can

lead to inferences that are worse (and potentially much worse) than design-based

inferences (Hansen, Madow, and Tepping 1983; Holt, Smith, and Winter 1980;

Pfeffermann and Holmes 1985). A key to robust models for sample surveys is to account

for aspects of the survey design, such as stratification, clustering and weighting. In this

article we focus on survey weights, a particularly interesting survey design feature since it

is handled somewhat differently by the model- and design-based paradigms.

Specifically, we consider the case of sampling with probability proportional to size

(PPS), where a size measure X is known for all units in the population, and unit i is selected

with probability pi proportional to its size xi. PPS samples can be selected in a number of

ways that lead to different joint selection probabilities for pairs of units (Hanif and Brewer

1980). We consider here the practical and common fixed sample size design. From a

random starting point, units are selected systematically from a randomly ordered list, at

regular intervals on a scale of cumulated sizes (Kish 1965, Ch. 7); units that would be

selected with probability one are moved into a certainty stratum. We consider statistical

inference for the finite population total T of a continuous outcome Y; our methods can be

modified to handle ordinal or nominal outcomes.

The standard design-based approach to PPS samples is to weight sampled units by the

inverse of their probability of selection, yielding the Horvitz-Thompson (HT) estimator

T̂HT ¼
Xn

i¼1

yi=pi ð1Þ

(Horvitz and Thompson 1952), where the summation is over n sampled units. This is also the

projective estimator (Firth and Bennett 1998) for an “HT model,” where yi given pi is

assumed to have mean bpi and variance s2p2
i . It is well known that the HT estimator is

design unbiased, but can be inefficient when the “HT model” is not a good approximation to

reality. A parody of this situation is the famous “circus elephant” example in Basu (1971).

Modelers who ignore the design weights do so at their peril: results are highly

vulnerable to model misspecification. However, a number of authors (Rubin 1983;
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Little 1983a) have argued that from a modeling perspective, the weights should be used as

predictors in a model rather than used to weight the sampled cases. In the case of PPS

sampling, this suggests basing inferences on the predictions of a regression model relating

Y to X. Recently, several authors have argued for models in survey settings that make

relatively weak assumptions of the form of the relationship, since sample sizes are often

large and strong models are viewed with skepticism. In particular, Dorfman (1992) and

Chambers, Dorfman, and Wehrly (1993) estimate a finite population total by a

nonparametric model relating Y to an auxiliary variable, using kernel smoothing. Rizzo

(1992) discusses inference of finite population quantities conditioned on the selection

probabilities. Breidt and Opsomer (2000) use the local polynomial kernel as the smoothing

tool and develop a design-consistent model-assisted estimator of the total.

A modification of the prediction approach is to base the estimate of T on predictions

from a model, but then adjust the estimator to achieve design consistency. In particular,

generalized regression estimators (GR) achieve this by adding a calibration term

consisting of a design-weighted sum of residuals to the predictions ŷi from the model:

T̂GR ¼
XN

i¼1

ŷi þ
Xn

i¼1

ðyi 2 ŷiÞ=pi ð2Þ

This estimator is design consistent for the total, and more efficient than the HT estimator if

the auxiliary variables are good predictors of Y. For discussions of this “model assisted”

approach, see Särndal, Swensson, and Wretman (1989; 1992).

Some have argued that the calibration correction in (2) is unnecessary if the model is

chosen so that the prediction or projection estimator is design consistent, a condition that is

relatively easy to achieve (Little 1983b; Firth and Bennett 1998). Zheng and Little (2003)

compared prediction estimates of the population total based on p-splines with the HT and

the GR estimates. These simulations, which are briefly summarized in Section 4, indicate

that nonparametric models lead to prediction estimators of T with negligible bias and

improved efficiency over HT or GR estimators, for a wide range of simulated populations.

Even if the spline-based prediction estimators were more efficient than design-based

competitors, the latter might still be preferred if they yielded better inferences, that is had

better confidence coverage, or tests closer to their nominal significance levels. Hence, the

goal of the current article is to consider variance estimation and inference properties of the

estimators compared in Zheng and Little (2003). A variety of approaches to variance

estimation, based on the information matrix, balanced repeated replication and the

jackknife, are considered for both the spline-based estimator and competitors. A simulation

study indicates that the spline-based estimator is not only more efficient, but yields design-

based inferences that are as good as, or better than, inferences based on the HT and GR

estimators. We view this as further evidence that a model-based prediction approach can be

successfully applied in the finite population setting, providing strong parametric

assumptions are avoided and attention is paid to modeling the features of the survey design.

The rest of the article is organized as follows. In Section 2 we describe penalized spline

model-based point estimation and three associated variance estimators. In Section 3 we

present a simulation study that compares inferences under the various approaches for a

variety of simulated populations and situations. Conclusions and suggestions for future

work are presented in Section 4.
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2. Inference About a Finite Population Total Based on Penalized Spline Model

2.1. Penalized spline model-based estimation

A model-based alternative to HT given by Zheng and Little (2003) predicts nonsampled

values of yi; i [ P 2 S using the following penalized spline (Ruppert, Wand, and Carroll

2003) nonparametric regression model:

yi ¼ f ðpi;bÞ þ 1i; 1i , ind Nð0;p2k
i s2Þ ð3Þ

where the function f is a spline:

f ðpi;bÞ ¼ b0 þ
Xp

j¼1

bjp
j

i þ
Xm

l¼1

blþpðpi 2 klÞ
p
þ; i ¼ 1; : : : ;N ð4Þ

Here k $ 0 is a constant reflecting the knowledge of error variance and the constants

k1 , : : : , km are selected fixed knots, and ðuÞ
p
þ ¼ up if u . 0 and 0, otherwise. In the

spirit of Ruppert and Carroll (2000), Ruppert (2002), and Ruppert, Wand, and Carroll

(2003), we favor a modeling strategy that places a large number of knots (for example, 15

or 30) at prespecified locations, and then achieves smoothness by treating bpþ1; : : : ;bpþm

as random effects centered at 0. The least squares estimation of coefficients

bpþ1; : : : ;bpþm tends to result in over-fitting. To penalize the roughness of the

regression function f, a penalization term aS
m
l¼1b

2
lþp is added to the log-likelihood. This is

equivalent to giving ðbpþ1; : : : ;bpþmÞ
T a normal prior Nmð0; t

2ImÞ, where t2 ¼ s2=a.

The degree of smoothing is then based empirically on the estimate of the variance ratio

a ¼ s2=t2. Assuming constant error variance (that is, k ¼ 0), the maximum likelihood

(ML) estimate of the regression parameters conditional on a ¼ s2=t2 is

ðb̂0; : : : ; b̂mþpÞ
T ¼ ðP* TP* þ DðaÞÞ21P* T Y* ¼ ðPT WPþ DðaÞÞ21PT WY ð5Þ

where Y ¼ ðy1; : : : ; ynÞ
T , the ith row of P is Pi ¼ ð1;pi; : : : ;p

p
i ; ðpi 2 k1Þ

p
þ; : : : ;

ðpi 2 kmÞ
p
þÞ, the matrix DðaÞ is diagonal with first p þ 1 elements equal to 0 and

remaining m elements equal to a ¼ s2=t2, W ¼ diagðp22k
1 ;p22k

2 ; : : : ;p22k
n Þ, P* ¼

W 1=2P and Y* ¼ W 1=2Y . For the constant variance model k ¼ 0, W ¼ I and P* ¼ P.

For unknown s2 and t2, restricted maximum likelihood (REML) estimates of b are

obtained by replacing DðaÞ in (5) by DðâÞ, where â ¼ ŝ2=t̂2 and ŝ2 and t̂2 are REML

estimates of s2 and t2. We consider the predictive estimator of the total based on this

model

T̂PRED ¼
Xn

i¼1

yi þ
XN

i¼nþ1

ÊðYijpiÞ ð6Þ

where ÊðYijpiÞ ¼ f ðpi; b̂Þ ¼ b̂0 þ b̂1pi þ : : :þ b̂pp
p
i þ S

m
j¼1b̂jþpðpi 2 kjÞ

p
þ

. The pro-

jective estimator

T̂PROJ ¼
XN

i¼1

ÊðYijpiÞ ð7Þ
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is also considered by some survey samplers, but makes less sense from a model-based

perspective.

2.2. Model-based variance estimation

The empirical Bayes posterior variance of b in (3), when conditioned on ŝ2 and

â ¼ ŝ2=t̂2, is ŝ2{P* TP* þ DðâÞ}21. It follows that the estimated variance for the

projective estimator is

VarðT̂PROJÞ ¼ ŝ21T
NP

T
P{P* TP* þ DðâÞ}21PP1N ð8Þ

where 1N is an ðN £ 1Þ vector with elements equal to 1 and PP is the analogous quantity to

P for the whole population P. The empirical Bayes posterior variance for the predictive

estimator is

VarðT̂PREDÞ ¼ ŝ21T
N2nP

T
P2S{P* TP* þ DðâÞ}21PP2S1N2n ð9Þ

where 1N2n is an (N-n) by 1 vector of elements equal 1 and PP2S is the analogous quantity

to P for the nonsampled population P-S. The estimates (6) and (7) and associated variance

estimates (8) and (9) can be computed with standard software such as SAS Proc Mixed and

S-plus function lme. Since the empirical Bayes posterior variance does not incorporate the

variability in estimating the variance components, it tends to underestimate the variance of

the point estimator. However, the underestimation is not big enough to seriously bias the

variance estimation. This assessment was mentioned in Ruppert and Carroll (2000) and is

empirically validated in our simulation study.

2.3. Replication-based variance estimation methods

The variance estimators (8) and (9) rely on model assumptions, and might fail when the

model (specifically, the assumed variance structure) is incorrect. In this section we

propose replication-based methods that are less reliant on the model and hence are more

consistent with design-based perspectives.

2.3.1. The jackknife method

Originally introduced by Quenouille (1949), the jackknife method is a broadly useful

method for both finite and infinite population inference (Shao and Wu 1989).

The jackknife method involves the following procedure. The sample S is divided into G

subgroups with equal number of units and the gth pseudovalue is computed as

T̂g ¼ GT̂ 2 ðG 2 1ÞT̂ðgÞ, where T̂ is the original p-spline model-based estimator and T̂ðgÞ is

the same estimator calculated from the reduced sample not including the elements in the

gth subgroup.

The jackknife variance estimate of T̂ is

vðT̂Þ ¼
1

GðG 2 1Þ

XG

g¼1

ðT̂g 2 �̂TÞ2 ð10Þ

where �̂T ¼ S
G
g¼1T̂g=G. In order to balance the distribution of the selection probabilities

across the subgroups, sampled units are stratified into n/G strata each of size G with similar

values of pi, and the G subgroups are then constructed by removing one element at a time

without replacement from each stratum.
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We suggest the following strategy for choosing the smoothing parameter â ¼ ŝ2=t̂2.

When the sample size is not large and repeatedly fitting the p-spline model does not

require an unreasonably large amount of computation, â should be estimated for each

replicate sample when computing the replicate estimates. When the sample size is very

large, the portion of observations removed in each replicate is not large, and repeated

computing of â becomes burdensome, we suggest that â not be recomputed for each

replicate sample. That is, we compute pseudovalues as bT
ðgÞ ¼ ðPT

ðgÞPðgÞ þ DðâÞÞ21PT
ðgÞY ,

where PðgÞ is constructed in the same way as P but omitting the gth subgroup, but the

estimate â is computed for the full sample. Asymptotic theories similar to that in the

Appendix imply that doing so will not hurt the consistency of the variance estimator.

Miller (1974) proved the asymptotic properties of the jackknife estimator in the case of

multiple regression. In the sample survey setting, Shao and Wu (1987; 1989) discussed the

properties of jackknife variance estimation in linear regression models. In our case, the

p-spline regression is a form of ridge regression conditioned on â. If the p-spline is a low

dimensional smoother, that is, the dimension of the “design matrix” P* is small compared

with the sample size n, then the jackknife method has asymptotic properties similar to

linear regression. In the Appendix, we give a brief proof of the asymptotic consistency of

the jackknife variance estimator in the delete-one case and under regularity conditions

similar to those in Miller (1974). Simulations in Section 3 study the performance of the

jackknife method for moderate-sized samples.

2.3.2. The balanced repeated replicate method

The BRR method was developed for stratified designs with two units sampled in each

stratum. It is the most computationally efficient technique when the half-samples are fully

balanced. In practical applications of BRR, clusters (PSUs or small strata) are often

grouped into pairs, and units within large strata are randomly split.

The systematic PPS design can be viewed approximately as a stratified design with

n strata each consisting of units with cumulative measures of approximate size S
N
i¼1xi=n.

One unit is sampled from each of the n strata. Assuming n is even, the design can also be

approximated by a stratified design with n/2 strata with cumulative measures of size

2S
N
i¼1xi=n, and two units are sampled per stratum. Balanced repeated half-samples are then

constructed by selecting one unit from each stratum, with the selection scheme based on

Hadamard matrices (Plackett and Burman 1946). Let T̂b be the p-spline estimator

computed from the bth half-sample, using the same knots as used in the computation using

the full sample – the number and placement of knots needs to allow the spline model to be

fitted on each half-sample. The BRR estimator is then given by

vBRRðT̂Þ ¼
1

B

XB

b¼1

ðT̂b 2 T̂Þ2 ð11Þ

For smoothing parameter â, we suggest a replicate estimate be computed for each replicate

sample.

To construct half-samples, pairs of units are selected according to the sequence in which

they are selected from the random list. This BRR method with two units sampled per

stratum does not fully reflect the improved efficiency from the systematic PPS sampling
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method, and hence can be expected to overestimate the true variance of the p-spline

estimator. This conjecture is consistent with simulation results reported in the next section.

3. Simulation Study

3.1. The simulated populations

Artificial populations are simulated according to six different mean functions relating to

outcome yi and the inclusion probabilities pi. We simulate the inclusion probabilities as

proportional to consecutive integer values: 11, 12, : : : , 310 for N ¼ 300; 35, 36, : : : ,

1,034 for N ¼ 1; 000; and 71, 72, : : : , 2,070 for N ¼ 2; 000.

Five of the simulated populations are generated by adding independent errors with

variance 0.2 to the following mean functions:

(NULL) f ðpiÞ ; 0:30

(LINUP) f ðpiÞ ¼ 3pi, linearly increasing function with a zero intercept

(LINDOWN) f ðpiÞ ¼ 0:58 2 3pi, linearly decreasing function with positive intercept

(EXP) f ðpiÞ ¼ expð24:64 þ 26piÞ, an exponentially increasing function

(SINE) f ðpiÞ ¼ sinð35:69piÞ.

A sixth population is generated to yield an “S” shaped function:

(ESS) yi ¼ 0:6 logit21ð50*pi 2 5 þ 1iÞ; 1i
iid,Nð0; 1Þ.

Since the errors in ESS lie inside the logit function, this population has heteroscedastic

errors. Plots of samples from these populations are provided in Figure 1. Population sizes

300, 1,000, and 2,000 with respective sample sizes 32, 96, and 192 are simulated for each

mean function. For each simulated population, 1,000 repeated samples are drawn using the

systematic PPS sampling design. Numerical comparisons of various methods are all based

on the empirical results from the repeated samples.

Fig. 1. Six simulated populations (N ¼ 300) X-axis: pi(i); Y-axis: y(i) with normal errors
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3.2. Bias and mean squared error of alternative point estimators

A detailed discussion of bias and mean squared error properties of the p-spline, HT, and

GR estimators is presented elsewhere (Zheng and Little 2003). We illustrate those findings

in Table 1, which presents empirical bias and root mean squared error (RMSE) of point

estimates from the following methods:

(a) P0_15, a p-spline prediction estimator (6) with k ¼ 0 and the knots selected to be 15

equal sample percentiles of pi and with degree of spline p ¼ 1.

(b) HT, the Horvitz-Thompson estimator (1).

(c) GR, a generalized regression estimator (2) assisted by a simple linear with intercept

regression model that regresses yi on pi, assuming a constant error variance.

For each of the six mean structures described in Section 3.1, the estimates were computed

for 500 systematic PPS samples of size 96. Table 1 suggests that P0_15 has smaller

empirical RMSE than HT or GR for the populations with nonlinear mean structures (SINE

EXP and ESS). P0_15 has similar RMSE as GR when the mean function is linear (NULL,

LINUP and LINDOWN). P0_15 has similar RMSE as HT for the population with a

linearly increasing mean function without an intercept (LINUP), which favors HT. The

empirical bias of P0_15 is small and in most cases P0_15 has empirical bias comparable to

HT and GR. Similar findings are presented in the more extensive simulations in Zheng and

Little (2003).

3.3. Variance estimation for alternative methods

In this section we compare the inferences for the p-spline prediction and projection

estimators, the variances being estimated by (8)–(11), with inferences based on the HT

and GR estimators. For HT, we show results for two variance estimation methods:

A) the random groups variance estimator

vRG ¼
1

KðK 2 1Þ

XK

i¼1

T̂i 2 T̂HT

� �2
ð12Þ

where the sample is divided into K random subsamples, each of size m ¼ n=K, and

T̂i ¼ S
m
l¼1yl=ðmplÞ with pl ¼ pl=n is the HT estimator from the ith subsample;

Table 1. Empirical bias and root mean squared error of three point estimators: P0_15, HT and GR

N ¼ 1; 000, n ¼ 96

P0_15 HT GR

Empirical
bias

RMSE Empirical
bias

RMSE Empirical
bias

RMSE

NULL 0.27 21.79 21.93 35.11 0.99 23.69
LINUP 3.24 25.89 1.49 27.32 22.79 34.29
LINDOWN 0.87 26.71 2.04 63.29 21.63 35.33
SINE 22.01 45.48 4.85 112.71 23.63 94.61
EXP 0.15 27.39 1.09 34.74 20.57 54.34
ESS 24.41 10.22 0.82 11.20 0.92 30.24
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B) the with-replacement PPS variance estimator

vWR ¼
1

nðn 2 1Þ

Xn

i¼1

yi

pi

2 T̂HT

� �2

ð13Þ

which ignores the effect of sampling without replacement on the variance. This is also a

model-based variance estimator for the projective estimator, assuming the “HT model.”

We also considered three other variance estimators suggested in Wolter (1985), a Yates-

Grundy estimator with joint inclusion probabilities approximated as in Hartley and Rao

(1962), a paired units estimator and a consecutive differences estimator. These did less

well in our simulations, and their performance is reported elsewhere (Zheng 2003).

For GR, we apply the formula given by Särndal et al. (1989) for a regression on a

covariate X:

vGR ¼
Xn

k¼1

Xn

l¼1

Dkl

pkl

gkek

pk

glel

pl

ð14Þ

where

Dkl ¼ pkl 2 pkpl;pkk ¼ pk; gk ¼ 1 þ
XN

k¼1

xT
k 2

Xn

i¼1

xT
k

pk

 ! Xn

k¼1

xkxT
k

pk

 !21

xk

ek ¼ yk 2 ŷk; k ¼ 1: : :n

where the covariate is xk ¼ ½1pk�
T .

We use the Hartley-Rao approximation

pij ¼
n 2 1

n
pipj þ

n 2 1

n2
p2

i pj þ p2
j pi

� 	
2

n 2 1

n3
pipj

XN

k¼1

p2
k

for estimating the pairwise joint inclusion probabilities. This approximation for the joint

inclusion probability is valid when maxð{pi; i ¼ 1: : :n}Þ ¼ OðN 21Þ, which is satisfied by

our simulation sampling design.

First, 1,000 repeated PPS samples are drawn from each artificial population using the

systematic sampling method. For each repeated sample, the proposed inference method

( p-spline point estimation and empirical Bayes, JRR, and BRR variance estimators) as

well as inference methods associated with HT and GR are computed. The coverages of

these inference methods are then compared on the basis of their empirical

performances.

Next, we consider the robustness of the model-based and replication-based methods in

the presence of misspecification of the variance structure, by assessing their performance

for populations with heteroscedastic errors. We apply the total estimator P0_15, which

assumes constant error variance, on two groups of populations. The first group of

populations is generated with constant-variance error and the second group generated with

the same mean structure as the first group but with error variances proportional to p2
i .
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Thus, P0_15 assumes the correct error variance for the first group while it misspecifies the

error variance for the second group.

Last, we study how the number of knots influences the coverage in population SINE,

whose mean function requires more knots than the other populations. We study the

relationship between the coverage of 95% C.I. and the number of knots employed.

4. Results

Table 2 gives a comparison of six variance estimators in terms of the mean estimates of the

variance. The six variance estimators are: vRG and vWR for HT; design-based variance

estimator for GR; and empirical Bayes, JRR, and BRR for P0_15. The empirical variances

of HT, GR, and P0_15 are also listed in Table 2. The averages of the two variance

estimators for HT track the empirical mean squared errors reasonably well, particularly for

the larger sample sizes. This table also suggests that the design-based estimator for the

variance of GR can seriously underestimate the variance for small to moderate-size

samples.

For populations other than SINE and for the two larger sample sizes (n ¼ 96 and

192), the average estimated variances from the jackknife and empirical Bayes methods

track the empirical mean squared errors well, and the BRR method tends to yield

conservative estimated variances. For the small sample size (n ¼ 32) and populations

other than SINE, the empirical Bayes variance tends to underestimate the variances of

the p-spline point estimators for populations other than ESS, and to overestimate the

variance for the population ESS, perhaps because the variance structure for that

population is hetereoscedastic and hence misspecified by the model; the jackknife and

BRR methods tend to have upward biases for these cases. For the SINE population the

average of the empirical Bayes variance estimates seriously underestimates the

empirical mean squared error. As discussed later, this finding appears to reflect the fact

that there are not enough knots in the p-spline regression to estimate the SINE function

well for these populations. The jackknife and BRR methods overestimate the variance

for the SINE population, the BBR method severely so. Besides the replication methods’

conservative tendency, the estimated smoothing parameters also contribute to the

overestimation by the BRR.

In Table 3, three inference approaches are compared: HT with the random groups

variance estimator (9), GR with the design-based variance estimator (13), and the p-spline

with the jackknife variance estimator. From this table, it is clear that the p-spline method

gives confidence intervals that are shorter than those given by the HT method when the

mean function is not linear-with-no-intercept. It also gives C.I.s that are shorter than those

from the GR method when the mean function is not linear. When the data are in favor of

HT or GR, p-spline based inferences yield comparable coverage. With the exception of

population SINE, the p-spline method generates C.I.s with satisfactory coverage rates for

the simulated populations. There is some undercoverage by the C.I.s from the HT method

for the populations NULL and LINDOWN, which seriously violate the “HT model”

assumption. In terms of coverage rate, the C.I.s given by the GR method are quite

unsatisfactory for small (32) to moderate (96) sample sizes and only become better for a

large sample size (192).
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Table 2. Empirical variance of HT, GR and spline estimates, and means of associated variance estimators. Values are presented as ratios to the empirical variance of the HT

estimator for the associated population

Population Horvitz-Thompson GR P-spline(P0_15) Predictive estimator BRR

Empirical
variance

Mean vRG

(K ¼ 10)
Mean
vWR

Empirical
variance

Mean
vGR

Empirical
variance

Empirical
Bayes

Jackknife
(G ¼ 10)

NULL 1 1.11 1.11 0.45 0.32 0.38 0.40 0.49 0.49
LINUP 1 1.14 1.05 1.76 1.26 0.80 0.91 1.04 1.06

N ¼ 300 LINDOWN 1 0.90 0.89 0.28 0.19 0.17 0.13 0.20 0.19
n ¼ 32 SINE 1 1.13 1.13 0.86 0.55 0.27 0.11 0.41 0.44

EXP 1 1.12 1.09 3.09 2.22 0.79 0.92 1.07 1.32
ESS 1 1.52 1.06 7.06 5.65 1.26 1.03 1.65 2.29

NULL 1 1.09 1.09 0.46 0.43 0.39 0.41 0.45 0.47
LINUP 1 1.17 1.12 1.57 1.37 0.89 0.77 0.91 0.94

N ¼ 1; 000 LINDOWN 1 1.03 1.02 0.31 0.26 0.18 0.15 0.16 0.16
n ¼ 96 SINE 1 1.10 1.11 0.70 0.60 0.12 0.06 0.15 0.32

EXP 1 1.10 1.06 2.45 2.09 0.62 0.60 0.64 0.79
ESS 1 1.27 1.06 7.31 6.29 0.68 0.91 0.80 1.13

NULL 1 0.96 0.93 0.47 0.43 0.38 0.39 0.39 0.41
LINUP 1 1.11 1.13 1.68 1.61 0.82 0.81 0.89 0.92

N ¼ 2; 000 LINDOWN 1 0.99 1.01 0.31 0.29 0.16 0.15 0.16 0.16
n ¼ 192 SINE 1 1.13 1.13 0.84 0.71 0.09 0.05 0.11 0.21

EXP 1 1.01 1.01 2.60 2.42 0.54 0.56 0.58 0.65
ESS 1 1.10 1.05 7.53 6.86 0.57 0.79 0.58 0.74
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For the SINE population, the coverage rates of the C.I.s corresponding to the three

variance estimators for the p-spline with 15 knots are unsatisfactory. Figure 2 displays

these coverage rates as a function of the number of knots, and indicates that for this

population at least 30 knots are needed for valid inference. This figure also shows that

the jackknife method has quite robust coverage, while the BRR method tends to be

conservative and yields 95% confidence intervals that over-cover the population

quantity.

Table 4 provides more information on the effect of misspecification of the variance

structure. We compare model-based and jackknife variance estimators of P0_15, which

corresponds to a p-spline with 15 knots and assuming constant error variance, on

populations with homoscedastic and heteroscedastic errors with variance proportional to

p2
i . This table suggests that the model-based variance estimator is sensitive to

misspecification of the variance structure while the jackknife method is more robust to this

type of misspecification.

5. Discussion

The HT estimator is design-unbiased, and it can be used with an appropriate variance

estimator to yield valid large-sample inferences. However, its efficiency and its

Table 3. Comparison of three approaches to inference: HT with Random Group estimator and C.I. constructed

with 9 degrees of freedom; GR with Yates-Grundy estimator; P-spline with Jackknife estimator. Average width

(A.W.) of 95% CI and coverage rate (%) of 95% C.I.

Population HT with
Random
Group
method
(K ¼ 10,
df ¼ 9)

GR with
Yates-
Grundy
method

P0_15 with
Jackknife
method

A.W. % A.W. % A.W. %

N ¼ 300, n ¼ 32 NULL 68 89 40 88 48 95
LINUP 48 98 53 87 47 96
LINDOWN 98 82 52 87 51 95
SINE 223 92 161 84 114 80
EXP 63 95 89 86 57 94
ESS 26 97 51 89 24 95

N ¼ 1; 000, n ¼ 96 NULL 131 93 88 92 89 97
LINUP 109 96 123 94 98 95
LINDOWN 230 92 124 92 94 94
SINE 446 94 340 93 145 91
EXP 135 96 193 90 105 95
ESS 48 98 109 92 37 93

N ¼ 2; 000, n ¼ 192 NULL 196 92 137 95 129 96
LINUP 142 97 178 95 130 97
LINDOWN 317 92 180 94 129 94
SINE 611 94 497 92 182 93
EXP 184 95 289 93 138 95
ESS 63 97 161 92 45 95
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performance in moderate-sized samples depend on the validity of the underlying “HT

model.” The GR estimator can yield increases in efficiency but is sub-optimal if based on

a poorly chosen model and can yield anti-conservative inferences in moderate-sized

samples. We note that coverage of GR-based inferences may be improved by using

usually more conservative variance estimators such as the jackknife estimator. However,

using an inflexible mean function can be expected to result in wide confidence intervals

for populations with nonlinear mean structures, such as ESS and EXP.

Our proposed nonparametric model based on p-splines assumes a more flexible mean

structure than that implied by the HT or GR model. Since these models give a close

approximation to the mean function, bias calibration as in Equation (2) is either

automatic (Zheng and Little 2003) or unnecessary. In particular, Breidt, Claeskens, and

Opsomer (2004) propose the GR estimator with the linear model replaced by a penalized

spline on covariates. We expect this approach (with the selection probabilities as

Fig. 2. Coverage rate (percentage) of 95% C.I. vs number of knots for population SINE N ¼ 2; 000, n ¼ 192,

Coverage rate computed from 500 repeated samples (target ¼ 93–97%)

Table 4. Inferences based on P0_15 and model-based and jackknife variance estimators, when the variance is

correctly and incorrectly specified. Coverage rate (%) of 95% C.I. and relative bias, the ratio of empirical bias to

the empirical variance. (N¼ 1; 000, n¼ 100)

Population Variance structure incorrectly
specified

Variance structure correctly
specified

Model based Jackknife Model based Jackknife

Relative
bias

% Relative
bias

% Relative
bias

% Relative
bias

%

NULL 1.64 99 0.20 96 20.18 93 20.06 93
LINUP 1.82 99 0.35 97 0.04 95 0.23 96
LINDOWN 1.50 99 0.17 97 20.11 94 0.00 97
SINE 20.52 82 0.32 88 0.02 95 0.13 96
EXP 2.54 100 0.15 97 0.00 95 0.05 94
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covariate) will perform similarly to our method, but do not think the calibration

component of the estimator is needed. The p-spline method with the jackknife variance

estimate yields shorter confidence intervals than the design-based methods while

achieving coverage rates that are superior to those of traditional methods. An exception

is its performance in the SINE populations, where more than the chosen number of

15 knots is needed for inference. Our jackknife method might be improved by using

adjustments of the type considered by Hinkley (1977); this remains a topic for future

research.

The model-based empirical Bayes variance estimator is valid if the model is correctly

specified. However, our simulations suggest that it is vulnerable to misspecification of the

variance structure. One possible solution is to estimate parameters for the variance

structure, such as the parameter k in Equation (3), from the data by parametric

(e.g., likelihood-based) or nonparametric methods. Here we adopted the less efficient but

simpler approach of fixing k and using a robust variance estimator based on the jackknife.

We imagine more general methods for estimating the variance structure will be developed

in the future.

The jackknife method of variance estimation worked well in our simulations, whereas

the BRR method tended to yield conservative standard errors. The bootstrap might also be

expected to work well if the bootstrapping was done in a way that balanced the distribution

of the selection probabilities in the bootstrap samples.

Survey samplers favor simple estimation methods that can be applied to large samples

in a production setting. Thus, we deliberately chose a relatively straightforward

parametric approach to spline regression with fixed knots, which can be readily

implemented with existing software. Our simulations suggested that this approach

worked well in most cases, but yielded unsatisfactory confidence coverage in the SINE

population when an insufficient number of knots were used. Numerous authors

(Friedman and Silverman 1989; Friedman 1991; Stone et al. 1997; Denison, Mallick, and

Smith 1998; Ruppert and Carroll 2000; Ruppert 2002) have proposed sophisticated knot

selection methods that might be profitably applied to complex mean functions. An

advantage of our parametric penalized spline approach is that it extends in an obvious

way to nonnormal outcomes, by replacing the linear mixed model (3) – (4) by a

generalized linear mixed model. Specifically, the normal specification in (3) could be

replaced by a generalized linear model, with a canonical link relating the mean outcome

to the spline function f ðpi;bÞ.

Many other useful extensions of the proposed approach can be envisaged. For example,

here we have confined attention to regression on a single covariate, namely the selection

probability. In practice, there may be a set of covariates X1; : : : ;Xp available to predict Y,

and the selection probabilities may be determined by all or a subset of these variables, say

p ¼ pðX1; : : : ;XqÞ for q # p. The relationship between Y and X1; : : : ;Xp might then be

modeled by a p-dimensional spline, but for moderate values of p (say, three or more), this

approach is vulnerable to the so-called “curse of dimensionality.” We suggest in such

settings modeling the relationship between Y and pðX1; : : : ;XqÞ by a spline as described

here, and including the other covariates parametrically. For example, linear additive terms in

the other covariates might be added to the model defined by Equations (3) and (4), dropping

one covariate to avoid multi-collinearity. Even if the linear additive terms in X1; : : : ;Xp in
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this model are not correctly specified, the estimated finite population mean from this

prediction model can be design-consistent provided the relationship with the selection

probability is captured by the spline on the inclusion probability; the additional covariates

may still reduce prediction errors and hence increase precision. His approach is discussed in

the context of missing-data adjustments in Little and An (2004). We have focused here on

modeling the relationship with the selection probability, without considering covariates,

since this is the crucial relationship to specify correctly in the model. Another extension of

our proposed approach, to multistage sampling, is discussed in Zheng and Little (2004).

In conclusion, we believe that p-spline models on the selection probabilities provide

an attractive approach to survey inference based on probability-proportional-to-size

samples.

Appendix

Asymptotic Consistency of the Jackknife Variance Estimator

We prove the jackknife variance estimation method works for the penalized-spline

regression whenever it works for the simple linear regression of splines.

First, we define some notation:

A. b ¼ ðb0; : : : ;bmþpÞ
T , the coefficients in Model (4).

B.b̂0 ¼ PTP
� �21

PT Y , the least squares (LS) estimator of b from the whole sample.

C. b̂ ¼ PTPþ DðâÞ
� �21

PT Y , the estimator of b given by (5) from the whole sample,

DðâÞ is defined as in (5). From here on we replace the notation DðâÞ by D for simplicity.

D. b̂
0

2i ¼ PT
2iP2i

� �21
PT

2iY2i, the LS estimator of b and from the reduced sample with

the ith element omitted, P2i is constructed the same way as P but omitting the ith

observation.

E. b̂2i ¼ PT
2iP2i þ D

� �21
PT

2iY2i the estimator of b given by (5) and from the reduced

sample.

F. Pi, the ith row of matrix P.

We prove the validity of the jackknife method under the following conditions:

(1) yi ¼ f ðpi;bÞ þ 1i; 1i , ind Nð0; p 2k
i s2Þ,

f ðpi;bÞ ¼ b0 þ S
p
j¼1bjp

j
i þ S

m
l¼1blþpðpi 2 klÞ

p
þ, the knots k1 , : : : , km are fixed,

m does not depend on n, and b0; : : : ;bmþp are fixed and nonzero, which is

equivalent to a ¼ 0. Under this condition, the underlying mean function is fixed

rather than varying and the priors of bpþ1; : : : ;bmþp in Model (3) only serve as a

roughness control technique for moderate-size samples and do not reflect prior belief

on the coefficients. Another implication of this condition is that a! 0 as n !1, so â

is bounded.

(2) Eð14
i Þ , 1 and k ¼ 0; when k is not zero, the proof holds after the transformation

P* ¼ W 1=2P, Y* ¼ W 1=2Y .

(3) Pi, the ith row in the matrix P, is bounded for all i and n;

(4) 1
n
PTP! S, as n !1 for all i for a positive definite matrix S.

With Assumptions (3) and (4), it follows that 1=ðn 2 1ÞPT
2iP2i ! S as n !1 uniformly

with respect to i.
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Under the above assumptions, nVarðb̂0Þ! s2S
21

and nVarðb̂Þ! s2S21.

Lemma 1 b̂0 2 b̂ ¼ DðPTPÞ21b̂

Proof

b̂0 2 b̂ ¼ ðPTPÞ21PT Y 2 ðPTPþ DÞ21PTY

¼ ðPTPÞ21PT Y 2 ðPTPÞ21ðPTPÞðPTPþ DÞ21PT Y

¼ ðPTPÞ21PT Y 2 ðPTPÞ21ðPTPþ DÞðPTPþ DÞ21PT Y

þ ðPTPÞ21DðPTPþ DÞ21PT Y

¼ ðPTPÞ21DðPTPþ DÞ21PT Y ¼ ðPTPÞ21Db̂

QED.

Lemma 2 b̂
0

2i 2 b̂0 ¼ Oðn21Þ uniformly for all i.

Proof

b̂
0

2i 2 b̂0 ¼ ðPT
2iP2iÞ

21PT
2iY2i 2 ðPTPÞ21PT Y

¼ ðPT
2iP2iÞ

21PT
2iðY2i 2P2ib̂

0Þ

¼ ðPT
2iP2iÞ

21ðPT ðY 2Pb̂0Þ2PT
i ðYi 2Pib̂

0ÞÞ

¼ 2ðPT
2iP2iÞ

21PT
i ðYi 2Pib̂

0Þ

PT
i ðYi 2Pib̂

0Þ is uniformly O(1) and ðPT
2iP2iÞ

21 is uniformly Oðn21Þ. Hence

b̂
0

2i 2 b̂0 ¼ Oðn21Þ uniformly. QED.

Lemma 3 b̂2i 2 b̂ ¼ ðb̂
0

2i 2 b̂0Þ þ Oðn22Þ uniformly for all i.

Proof

b̂2i2 b̂¼ðPT
2iP2iþDÞ21PT

2iY2i2ðPTPþDÞ21PT Y

¼ðPT
2iP2iþDÞ21PT

2iY2i2ðPT
2iP2iþDÞ21ðPT

2iP2iþDÞðPTPþDÞ21PT Y

¼ðPT
2iP2iþDÞ21PT

2iðY2i2P2ib̂Þ2ðPT
2iP2iþDÞ21Db̂

from Lemma 1, b̂ ¼ b̂0 2 DðPTPÞ21b̂,
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¼ðPT
2iP2iþDÞ21PT

2iðY2i2P2iðb̂
02DðPTPÞ21b̂ÞÞ2ðPT

2iP2iþDÞ21Db̂

¼ðPT
2iP2iþDÞ21PT

2iðY2i2P2ib̂
0ÞþðPT

2iP2iþDÞ21ðPT
2iP2iÞDðPTPÞ21b̂

2ðPT
2iP2iþDÞ21Db̂

¼ðPT
2iP2iþDÞ21ðPT

2iP2iÞðP
T
2iP2iÞ

21PT
2iðY2i2P2ib̂

0Þ

þðPT
2iP2iþDÞ21ððPT

2iP2iÞðP
TPÞ212IÞDb̂

¼ðPT
2iP2iþDÞ21ðPT

2iP2iÞðb̂
0

2i2b̂0Þ2ðPT
2iP2iþDÞ21ðPT

i PiÞðP
TPÞ21Db̂

¼ðPT
2iP2iþDÞ21ðPT

2iP2iþDÞðb̂
0

2i2b̂0Þ2ðPT
2iP2iþDÞ21Dðb̂

0

2i2b̂0Þ

2ðPT
2iP2iþDÞ21ðPT

i PiÞðPPÞ21Db̂

¼ðb̂
0

2i2b̂0Þ2ðPT
2iP2iþDÞ21Dðb̂

0

2i2 b̂0Þ2ðPT
2iP2iþDÞ21ðPT

i PiÞðP
TPÞ21Db̂

By Assumption (3) and that â is bounded, ðPT
2iP2i þ DÞ21 is Oðn21Þ uniformly; by

Lemma 2, b̂
0

2i 2 b̂0 ¼ Oðn21Þ uniformly. So the second term in the last line of the

equation is Oðn22Þ uniformly.

By Assumption (3), ðPPÞ21 is Oðn21Þ; by Assumption (3) and that â is bounded,

ðPT
2iP2i þ DÞ21 is Oðn21Þ uniformly; by Assumption (3), PT

i Pi is bounded; b̂! b in

probability. So the third term in the last line of the equation is also Oðn22Þ uniformly.

QED.

Theorem. If Assumptions (1) - (4) are all satisfied, then the delete-one jackknife

variance estimator for b̂, vJ ¼ ðn 2 1Þ=ðnÞSn
i¼1 b̂2i 2 b̂
� �T

b̂2i 2 b̂
� �

, is asymptotically

consistent, i.e., nvJ ! s2S21 in probability.

Proof.

nvJ ¼ ðn 2 1Þ
Xn

i¼1

b̂2i 2 b̂
� �T

b̂2i 2 b̂
� �

from Lemma 3,

¼ ðn 2 1Þ
Xn

i¼1

b̂
0

2i 2 b̂0 þ Oðn22Þ
� 	T

b̂
0

2i 2 b̂0 þ Oðn22Þ
� 	

since b̂
0

2i 2 b̂0 is Oðn21Þ for all i,

¼ ðn 2 1Þ
Xn

i¼1

b̂
0

2i 2 b̂0
� 	T

b̂
0

2i 2 b̂0
� 	

þ Oðn22Þ þ Oðn21Þ

¼ ðn 2 1Þ
Xn

i¼1

b̂
0

2i 2 b̂0
� 	T

b̂
0

2i 2 b̂0
� 	

þ Oðn21Þ
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Under the Assumptions (1), (2), and (3), the jackknife estimator for the LSE

v0
J ¼ ðn 2 1Þ=ðnÞSn

i¼1 b̂
0

2i 2 b̂0
� 	T

b̂
0

2J 2 b̂0
� 	

satisfies nv0
J ! s2S21 in probability,

which leads to nvJ ! s2S21 in probability. QED.

The validity of the jackknife variance estimation for T̂PROJ and T̂PRED follows from the

validity of jackknife variance estimation for b̂.

Whether or not the jackknife method is valid for p-spline regression when the number of

knots increases with sample size remains a question to be answered.
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