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Inference with Survey Weights

Roderick J.A. Little'

Abstract: This article considers the analysis
of disproportionate stratified samples from
a model-based (Bayesian) perspective. It is
argued that a key element of models for
such samples is that they explicitly account
for differences between strata, even when
the target quantity is aggregated over strata.
Two general classes of models with this prop-
erty are proposed. The first class, which I
call fixed stratum-effects models, yields as
special cases standard probability-weighted
inferences favored by survey statisticians.
The second class, which I call random
stratum-effects models, yields estimators
that behave like fixed stratum-effects esti-
mators when the stratum sample sizes are
large. In moderate samples they are com-
promises between estimators from fixed
stratum-effects models and estimators from
models that ignore stratum effects. In simple
settings these are weighted estimators where
the weights have been smoothed towards
one, yielding in certain cases a reduction in
mean-squared error.

1. Introduction and Framework

The role of sampling weights in statistical
analysis of survey data is the subject of con-
troversy amongst theorists and confusion
amongst practitioners. For descriptive infer-
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For inference about a finite population
mean, a fixed stratum-effects model leads to
posterior probability intervals identical to
standard randomization inference based on
the stratified mean; random stratum-effects
models yield estimators with smoothed
weights. Repeated sampling properties of
these estimators and associated probabil-
ity intervals are illustrated by a simula-
tion study on normal and non-normal
populations.

For inference about a population slope, it
is shown that classical design-based infer-
ence using the sample weights approximates
Bayesian inference under a fixed stratum-
effects model. Thus the need to model
stratum effects leads to the probability-
weighted methods usually associated with
design-based inference.
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sistency; James-Stein shrinkage; random
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ence about means and totals, probability or
n-weighted estimates, where cases are
weighted by the inverse of the probability of
selection and response, are widely accepted.
For more complex modeling exercises, there
is a wide spectrum of opinions on the role of
weights, from modelers who view weights as
largely irrelevant to survey statisticians who
incorporate weights, along with other
features of the sample design, routinely into
every analysis (Klein and Morgan 1951;
Konijn 1962; Brewer and Mellor 1973; Kish
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and Frankel 1974; Siarndal 1978, 1980; Holt,
Smith and Winter 1980; DuMouchel and
Duncan 1983; Hansen, Madow and Tepping
1983; Little 1983a,b; Rubin 1983a, Pfeffer-
mann and Holmes 1985; Chambers 1986;
Ghosh and Lahiri 1987; Pfeffermann and
Lavange 1989; and Skinner, Holt and Smith
1989).

My own view is that (a) focusing on finite
population quantities is a useful discipline,
even for analytic inferences; (b) inference for
finite population quantities should in prin-
ciple be based on suitable models; (c) models
need to be robust, in the sense that inferences
based on them are insensitive to misspecifi-
cation errors rendered important by the
sample design; in the context of dispro-
portionate stratified sampling, robust
models need to reflect stratum differences,
even if these differences are not detectable
from diagnostic tests applied to the sample
at hand; (d) simple models that reflect
stratum differences often lead to n-weighted
inferences similar to those derived from
randomization theory, thus providing a
model-based justification of at least some
design-based m-:hods; (e) the modeling
approach provides principled modifications
of m-weighted inference that can yield
better inferences in small or moderate
samples.

This viewpoint is developed here in the
context of stratified samples, where the
population is grouped into J strata defined
by values of a variable Z, and units are
sampled with probability m; in stratum j,
where m; varies across the strata. To avoid
additional complications such as clustering
of the sample, I assume that a simple random
sample of units is selected in each stratum,
so that m; = n;/N; where N; is the number of
population units in stratum j and #; is the
number that are sampled; also let & denote
the set of units sampled in stratum j. I focus
on situations where the m; vary across the
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strata, but the selection probabilities are
constant within strata; important examples
include disproportionate stratified sampling
with sampling probabilities m;, and post-
stratification for surveys with nonresponse,
where respondents are weighted up to known
post-strata totals. In the latter case #; is the
number of respondents in post-stratum j
and N, represents a known total from census
data.

In practice, surveys often do not involve
simple random sampling within strata.
However, it is still useful to think of Z as
defining the strata of the population over
which the sampling or nonresponse frac-
tions vary. For example, in the U.S. Panel
Study of Income Dynamics, Z involves
region and Standard Metropolitan Statistical

" Area, and variables used to form non-

response adjustments. In the U.S. National
Health and Examination Survey, Z includes
a poverty/non-poverty stratum since
poverty strata were oversampled; age and
household size also enters the definition of Z
for some estimands, since one individual
was sampled from each household, with
young and old age groups being oversampled
relative to intermediate groups. In the U.S.
Statistics of Income Survey of tax returns, Z
is a complex measure of size of return, with
large returns being sampled at much higher
rates than small returns.

Suppose K variables X, ..., Xy are
measured in the survey, and let X denote the
N x Kmatrix of values of these variables in
the population. I consider inference about a
finite population quantity 0 = Q(X) based
on the sample. For example, Q could be the
mean of a particular variable, a regression
coefficient in a multiple regression, or a fac-
tor score in some complex factor-analytic
model.

For analytic rather than descriptive infer-
ence, the parameters 0 of a superpopulation
model, which I shall call the target model,
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may be of interest. In such cases I choose to
regard the target quantity as not 0 itself, but
rather the population quantity Q(X) =
0,0, (X) that would be obtained by fitting the
target model to the entire population, using
some specified fitting procedure such as least

squares. Statisticians who build models for

the data tend to focus on 0, whereas survey
statisticians who base inference on the sam-
pling distribution treating X fixed tend to’
focus on 6,,, (Brewer and Mellor 1973,
Hansen, Madow and Tepping 1983; and
DuMouchel and Duncan 1983). Although a
modeler by philosophy, I like the survey
sampler’s focus on 6,,,, since it is a real entity
that exists irrespective of the validity of the
model. The parameter 0 exists only within
the context of the target model, and given
model misspecification has no clear defi-
nition. It is true that the target model usually
must have some face validity for 0, to be a
reasonable estimand; for example, estimation
of the population least squares slope of X,
on X, is questionable unless the regression
of X, on X, is at least approximately linear.
Nevertheless models are simplified descrip-
tions that ignore fine structure, particularly
in large populations. Focusing on 0,,, keeps
the target well-defined in the presence of
model misspecification. For those unim-
pressed by this argument who still prefer to
focus on 0, I suggest that if trouble is taken
to design a probability sample of the popu-
lation, then any good estimator of ©
must also be a good estimator of 0,,,, so
focusing on 6,,,, should not lead us seriously
astray.

Following the Bayesian formulation of
finite population inference (Ericson 1969), 1
base inference about Q(X) given the
sampled data X, on its posterior predictive
distribution p(Q|X,,) under a working
model for X, characterized by a prior distri-
bution p(X) for the population values. The
working models I consider have the general
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form

J

[] Px©);

Jj=1

pX)

pXO) =
[1 [Py, 0y, 0)dnde,, (1)

where XV is the (N, x K) matrix of popu-
lation values in stratum j; x; is the (1 x K)
vector of population values for unit 7 in
stratum j ; A; is a set of location parameters
indexing the distribution of x;;, ¢; is a set of
dispersion or shape parameters, and (A;, ¢,)
has prior distribution p(};, ;).

A crucial feature of this model is the fact
that distinct parameters (\;,9,) are specified
for each stratum j. Borrowing ANOVA ter-
minology, I call the location parameters {A,}
stratum effects, and define fixed stratum-
effects models as models with noninform-
ative priors on A;:

@

Alternatively I consider random stratum
effects models where the prior for A, has the
form

p(Ay,...,7A) oc const.

) |
POy he) = [[] POyIR, 8)dhdd
j=1

3)

where A and 8 are respectively location and
scale/shape parameters, which are assigned
uniform priors. Previous applications to
surveys of random effects models of this
type include Scott and Smith (1969) in the
context of multistage cluster sampling, and
Battese and Fuller (1981) in the context of
small area estimation.

Notes:

1. In large samples, inferences are insen-
sitive to the form of the prior, and this
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Bayesian formulation is practically indis-
tinguishable from non-Bayesian superpopu-
lation models that avoid priors for A; and ¢,
and treat these parameters as fixed; for argu-
ments in favor of the Bayesian formulation
see for example Little and Rubin (1983).

2. The simple random sampling design
within strata motivates a model that treats
the vectors x;(i = 1,...,N,) as exchange-
able within strata. By De Finetti’s theorem,
this justifies an iid model for x; conditional
on stratum parameters. (Ericson 1969;
Rubin 1987, Section 2.5.)

3. The inclusion of distinct parameters
A;, ¢; for each stratum j is important to
overcome distortions in the sample intro-
duced by the differential selection prob-
abilities (Little 1983a; Rubin 1983a). In
particular, models need to be constructed
that yield design-consistent estimators,
where design consistency means that as the
sample sizes increase the estimates of 0,,,
converge to 6,,, even when the model is
misspecified (Brewer 1979; and Robinson
and Tsui 1979). Working models that dis-
tinguish stratum parameters are more likely
to be design-consistent than models that do
not, as can be seen from the examples in
Little (1983b) and in this article.

4. The target quantity exists quite indepen-
dently of the working model. In particular,
the working model needs to reflect differ-
ences between strata, but the target quantity
may be aggregated over strata. For example,
0,,, might be the slope of the regression of X,
on X in the whole population, pooled across
strata since the conceptual model does not
treat Z as an exogenous variable.

5. In small or moderate sized samples, the
form of the prior for A; and ¢, becomes more
important. Priors should in principle be
tailored to each specific problem; we consider
the class (3) of random stratum-effects since
they provide useful compromises between
estimates from models that recognize
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stratum effects and estimates from models
that ignore them. They lead to James-Stein-
type estimators of location parameters (for
example Efron and Morris 1973), and were
previously considered for estimating survey
means in Little (1983b), Ghosh and Meeden
(1986), and Ghosh and Lahiri (1987). Ghosh
and Lahiri (1987) proved asymptotic
optimality properties for empirical Bayes
estimators of stratum means, and showed
reductions in risk over stratum means by
theory and simulation.

Sections 2 and 3 concern the application of
this modeling approach to inference about a
finite population mean or total. Section 4
considers inference about regression slopes.

2. Normal Models for Means and Totals

Two kinds of weights arise in the analysis of
disproportionate stratified samples: prob-
ability weights determined by the prob-
abilities of selection, and variance weights
determined by within-stratum variation of
the outcome variable. We first consider the
role of these weights for the basic problem
of inference about the population mean X of
a scalar variable X. Then X = %;P.X,, where
P, = N,/N and X, are respectively the popu-
lation proportion and mean of X in stratum
Jj. Weighting sampled units by the inverse of
the selection probability m; in stratum j
yields the n-weighted (or stratified) mean

Xp = %(ijiegjxij/nj), = L,BX; )]
where % denotes the sample in stratum j
(Horvitz and Thompson 1952). Weighting
sampled units by the inverse of the sample
variance s; in stratum j yields the variance-
weighted mean:

nls;

TU.X; v = 5 -
Znls;

©)

The n-weighted estimator aims at control-
ling bias, the variance-weighted estimator
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aims at controlling variance. Thus X, is
unbiased for X, but it can have excessive
variance if the variance of x is high in strata
with low selection probabilities, as when an
extreme value of x has low probability of
selection; %, is the weighted average of the

stratum means with lowest variance (ignor--

ing errors in estimating the varian’ces), but it
can be seriously biased if the variance-
weights differ markedly from the design
weights and stratum means are far apart.

Since m-weighting relates to the sample
design and variance-weighting relates to the
distribution of x in the population, it is
natural to view X, as a design-based estimator
and %, as a model-based estimator. However
I prefer to view both of these estimators as
arising from models for the population. An
abstract philosophical argument between
“design-based” and ‘“model-based” infer-
ence is thereby replaced by a concrete prag-
matic argument concerning the appropriate
choice of model.

Table 1 displays the approximate posterior
mean and variance of X under five models
for the distribution of {x;}; the approxi-
mation arises from ignoring variance com-
ponents due to estimating the population
variances in the models. Posterior probability
intervals for X take the form

m + zv, (6)

where m is the posterior mean, v is the pos-
terior variance and z is the appropriate
normal percentile (e.g., 1.96 for 95% inter-
vals). The probability-weighted (PWT)
model specifies fixed stratum effects:

xjil)“p ¢j ~ indG()"ja ¢12),

p(A;, log ;) oc const. 7

where x; is the value of x for unit 7 in
stratum j, G(a, b) denotes the normal distri-
bution with mean a, variance b. The
posterior mean from the PWT model is the
n-weighted estimator (4). Moreover pos-
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terior intervals (6) based on model (7) are
identical to the randomization-based con-
fidence intervals from classical stratified
sampling theory (Ericson 1969).

VWT (variance-weighted) and UWT
(unweighted) are null stratum-effects
models which assume A; = A for all j. VWT
allows distinct variances in each stratum

xji““ja ¢j ~ indG(xja ¢]2)9

p(\, log d;) oc const. ®)

and UWT assumes a constant within-
stratum variance

xji|7‘0 ¢j ~ indG()\w ¢2)9

p(A, log ) oc const. C)

When the sampling fraction f is small, the
posterior mean under (8) reduces to the
variance-weighted estimator (5), and the pos-
terior mean under (9) reduces to the
unweighted sample mean X. These models
violate the notion of allowing different
location parameters across strata. Although
they yield better inferences than PWT when
correctly specified, the assumption of equal
stratum means is usually unrealistic, par-
ticularly since efficiently-designed samples
are heterogeneous between strata. We show
in Section 3 that inferences from these
models are very vulnerable to model
misspecification.

EBV, which denotes empirical Bayes
shrinkage towards the variance-weighted
mean, is obtained by replacing the uniform
prior for A; in (7) by a proper prior:

xjil)"j: ¢j ~ indG()"j’ ¢,2),

My1h, &) ~ 3G, 8%);
p(\, log 7, log %) oc const. (10)

where the stratum means A; are assumed to
be an iid sample from an underlying distri-
bution (e.g., Ericson 1965). The estimate
of & in this model is obtained using the



410

Journal of Official Statistics

Table 1. Approximate Bayesian inference for X under five models

Model Posterior mean Posterior variance

(Eq.)

PWT %, = L P%; P — f)siIn)

M

VWT x4+ (1 =N, P — f)s;/N

t)] + (A =Y {Zmls)

UWT X (1 — f)s*n

)]

EBV f% + B~ f) P — )+ (A = fw)sIn,
(10) x {w¥ + (1 — w)x,} + {ZB0 = £)A — W)}z,
EBU fE + B - f) P — )+ (A = Hulsin
an x {w% + (1 — w)x,} + {ZB( - HA — w) &[T,
Notation:

B = NJIN; f; = m|N;; f = n|N;

X, s = sample mean and variance; X, s} = sample mean and variance, stratum j;

= L Bx; X, = LuX v = (”j/S})/(Ek”k/Si);

xﬂ'

%, = TwE[Zw; w = n&{nd + sk R

§? = solution of the fixed point equation: (J — 1)8* = Zw/(%, — %,)
%, = Sk u = nd{nd + £}, 8 = T(n, — Dsj/z(m — 1);
5? = solution of the fixed point equation: (J — 1)& = Zu(%; — X\

iterative method of Carter and Rolph (1974)
described below Table 1. The posterior
mean and variance approximate values for
PWT when #, is large, & >> s}/n; and
w; ~ 1; this property implies design con-
sistency of the posterior mean. On the other
hand the posterior mean and variance
approximate values for VWT when § <<
s?/n; and w; ~ n;8/s;. Thus the posterior
mean is a Stein-type shrinkage estimate that
behaves like X, when the sample size is large
and bias is the main issue, and moves to-
wards X, when the sample size is small and
variance is more of a concern.

EBU, which stands for empirical Bayes
shrinkage towards the unweighted mean,
differs from EBV in assuming a constant
variance across strata:

Xl Ay & ~ inaG (A, 9%),
M1, ) ~ W Gk, &)

p(\, log ¢, log 8*) oc const. (11)

The posterior mean is again a Stein-type
shrinkage estimate, which behaves like
%, when the sample size is large, and
moves towards ¥ when the sample size is
small.

Refinements of EBV and EBU may be
important in applications:
1. The assumption of exchangeability of the
stratum means in (10) and (11) is crucial, as
can be seen from simulations in Section 3. It
can be refined by modifying the priors to
model systematic variation. For example, if
covariates are available that characterize the
strata (such as measures of size), the prior
mean E();) might be modeled as a linear
combination of these covariates.
2. The expressions for EBV and EBU in
Table 1 effectively treat the variances ¢; and
8 as if they were known. In small samples
the posterior variance should be increased
to allow for uncertainty in estimating these
variances. See Rubin (1984) and Kackar
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and Harville (1984) respectively for Baye-
sian and frequentist approaches to this pro-
“blem.

3. A more elaborate treatment of the
variances ¢} is to specify a prior that models
the ¢; as iid from a common distribution,

yielding estimates of ¢; that smooth the’

sample variances {s’} towards' a pooled
value. '

4. Although the normal is a standard
baseline model, other distributions also
yield design-consistent estimates of X. For
example, if x; is binary, the Beta-Binomial
model

x;|A; ~ Binomial (});
A; ~ Beta (A, SA(1 — )

is more natural, where A and dA(1 — A) are
the mean and variance of the Beta distri-
bution; or if x; is a count, one might assume
the Gamma-Poisson model

x;|A; ~ Poisson (A;);
A; ~ Gamma (A, 81

where A and dA are the mean and variance of
the Gamma distribution. These models have
more plausible variance structures for pro-
portions and counts. They yield design-
consistent estimates of X since in both cases
the posterior mean of X; converges to ¥; in
large samples.

5. A tempting modification to achieve
robustness in the presence of outliers is to
replace the normal by longer-tailed distri-
butions such as the ¢ (for example, West
1984; Lange, Little and Taylor 1989).
Interestingly, estimates under such models
are not design consistent, since they rely on
an assumption of symmetry, often violated
by the skewed variables many surveys
measure. Transformation to symmetry is
not necessarily a solution when interest is in
the mean on the original scale (Rubin
1983b).
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3. Simulation Study

3.1. Description of the study

Repeated-sampling properties of inferences
based on (7)—(11) were assessed by a simu-
lation study, for populations generated
under a variety of conditions.

3.1.1. Populations studied

Sixteen populations of N = 3600 values of
a variable X were constructed in 10 strata.
Population sizes {N;} in the strata were as
follows:

Stratum j: 1 2 3 4 5 6 7 8 910

Nj 1000 750 500 400 300 200 150 120 100 80

Equal-sized samples were selected from each
stratum, so m; increased with j. The 16 popu-
lations were generated in a 2* factorial
design with the following four factors:

CORR = Correlation between selec-
tion probability (m;) and

mean (};) (Low, High)

BVAR = Variation in Stratum Means
(Low, High)

DIST = Distribution of X-Values
(Normal, Chi-square)

CTAM = Contamination by Outliers

(0%, 10%)

Specifically, values of X in stratum j were

sampled from a distribution with mean
A, = 100 + k9,

7

where the elements of 8 = (5,,...,8,y) were
essentially linear transforms of uniform
draws. Two choices of & were used:

8,=(-2,—-7,17,—12,21,—4,-20,2,11,—4)

(CORR = Low)

8y = (=5, —3, —13,5,6,2,21, 8, 28,33)
(CORR = High).
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In both cases ZN;5,/ZN, = 0, so the expected
value of the overall population mean is 100.
The between-stratum variance was con-
trolled by k, which was set at either 1
(BVAR = Low) or 2 (BVAR = High).

Let z; denote a standard normal deviate.
For the uncontaminated normal popu-
lations, the value of X for unit i in stratum
j was computed as

xX; =

A + 84z;.
For the contaminated normal populations

X; =

A + 6094z

where z¥ = z; with probability 0.9, \/—lﬁzﬁ
with probability 0.1; the scale factor 60.94 is
chosen so that x; has the same marginal
standard deviation (84) as for the uncon-
taminated populations. For the chi-square
populations

X, = 020z + 27

yielding scaled noncentral chi-squared
deviates with mean A;, coefficient of vari-
ation 0.85 in each stratum, and average
within-stratum standard deviation 82.44
when CORR = Low, 85.3 when CORR =
High, close to that in the normal popu-
lations (84). Since the variance depends on
the mean, these populations exhibit both
skewness and heteroskedasticity. For the
contaminated chi-square populations

xX; =

0.13750,(zF + 2.444)

where z}f is defined above and the constants
are chosen to match the mean and variance
of x; in the absence of contamination. The
16 populations were generated from the
same random number seeds to reduce
the variance of comparisons of methods
between populations.

To give some indication of the distri-
butions generated by these methods, Figure 1
shows samples of size 50 from the five odd-
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numbered strata for the four populations
with CORR = High and BVAR = High;
samples with CORR = Low are similar but
lack the systematic increase in the means
across the strata, and samples with
BVAR = Low have stratum means that are
closer together. Figure 1A shows well-
behaved homoskedastic normal data;
Figure 1B shows a symmetric distribution
with outliers; Figure 1C shows right-skewed
data such as might be encountered with
establishment surveys measuring inherently
positive variables; within-stratum variances
increase with the mean in these cases, as is
typically the case in practice; and Figure 1D
shows data with a combination of skewness,
heteroskedasticity and outliers.

3.1.2. Sampling scheme

A stratified sample of n; = 10 values was
chosen without replacement from each
stratum, yielding a total sample size of
n = 100. This scheme implies probabilities
of selection that increase across the strata
from mn, = 1/100 to m,, = 1/8. This pro-
cedure was repeated 1000 times for each
population (starting with the same random
seed for each population), and estimates of
the population mean computed for each
sample. To assess the effect of increasing
sample size, this procedure was repeated
with samples of 20 in each stratum (and a
different random number seed), yielding a
total sample size of n = 200.

3.2. Results

For each population and sample size, Table 2
displays average bias of the posterior mean
of X under each model over the 1000
samples, Table 3 shows average root mean
squared error (RMSE), and Table 4 shows
the number of samples for which the 95%
interval (6) does not include X — nominally
we expect 50 such cases. Bias and RMSE are
expressed as a percentage of the RMSE for
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PWT, which is viewed as the standard
method. We first discuss results for the five
models PWT, VWT, UWT, EBU, and EBV
described above. Results for a filtered
variance-weighted procedure (VWTF) and
a filtered unweighted procedure (UWTF)

are described in Section 3.3.
b

A. PWT

As expected, PWT has good repeated

sampling properties, with low bias and non-
coverage close to or a bit above the nominal
value (the large sample approximation was
less satisfactory for 99% intervals, where
noncoverage rates ranged from 1.6% to
4%). However, PWT does not always have
the lowest RMSE, reflecting lack of control
of variance.

B. UWT

The parameter CORR plays a key role in
the performance of UWT. When CORR =
Low the stratum means are weakly corre-
lated with the sampling rates, and the
unweighted average of the stratum means
(100.25 when BVAR = Low, 100.5 when
BVAR = High) is close to the weighted
mean (100). Thus biases from assuming no
stratum effects in UWT tend to cancel out.
Thus the bias of UWT is small (Table 2A,
B), and UWT has consistently lower RMSE
than PWT, with reductions ranging from
22-27% (Table 3A, B). Noncoverage rates
of UWT are close to nominal levels
(Table 4A, B).

When CORR = High the unweighted
average of the stratum means (108 when
BVAR = Low, 116 when BVAR = High)
is larger than the weighted average (100).
Thus UWT is seriously biased when
BVAR = Low, and disastrously biased
when BVAR = High (Table 2C, D), when
95% intervals miss the true population
value most of the time (Table 4C, D).
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C. VWT

In the normal populations VWT has slightly
higher RMSE than UWT, presumably
because in these populations the within-
stratum variance is constant, so a pooled
estimate of variance is optimal. In the chi-

"~ squared populations, the within-stratum

variance increases systematically with the
mean, smaller means get a higher variance
weight, so VWT yields a smaller estimate
than UWT. Thus when CORR = Low and
UWT is nearly unbiased, VWT has a nega-
tive bias, which is particularly severe for
cases where BVAR = High. On the other
hand when CORR = High, VWT tends to
do better than UWT, since variance weight-
ing reduces the positive bias of %, (Table 2).
Its performance is still very erratic,
however.

D. EBU

EBU has RMSE values between those for
PWT and UWT, reflecting the fact that it is
a compromise between these estimators.
When CORR = Low, the exchangeability
assumption of the stratum means is reason-
able, and EBU shrinks towards a good esti-
mate. EBU then achieves good reductions in
RMSE over PWT, particularly when the
between variance is low. Noncoverage rates
are also close to nominal levels. When
CORR = High, exchangeability is violated,
EBU shrinks towards a biased value, and is
generally inferior to PWT. Nevertheless, it
performs much better than UWT in this
unfavorable situation, and actually has
slightly lower RMSE than PWT when n =
100 and BVAR = Low. Coverage of inter-
vals is poor when exchangeability is violated
(Table 4).

E. EBV

In the normal populations EBV has similar
RMSE values to EBU (Table 3). Its non-
coverage rates are generally a bit higher,
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Figure 1. Histograms and summary statistics for samples of size 50 from five strata in four
populations
A) Distribution = Normal, 0% Contamination
STRATUM
MIDPOINTS 1 3 5 7 9
320 *
300 * *
260 * * * %k k %ok %k
240 * * %k k k%
220 %k * %%k 3% ok ok %k sk sk %k k %k
200 * * %k %k %
180 * kkk * %k k% sk ok sk ok sk ok sk sk ok
160 sk ok %k k k% sk sk ok ok ok % ok ok %k skkk
140 skokok sk k skokokok ok ok ok %k %k %%k M**
120 %k *ok 3k sfe ok ke ok ok ok M*** Kk sk
100 * 3% ok %k %k %k k M*** ok k sk ok ok ok ok ok
80 M*** % ok of ok sk 3k % s sk %k 5k kkk ok ok ok 3k 3k %k
60 kkkk M****** 3k o sk ok ok kkk kK k
40 sk k kkk 3k ok ok ok ok %k 3k 3% ok ok ok ok %k %k *
20 sk ok ok %k ok sk k k sk sk ok %k *
0 Kok kkkk skkk Kk %ok k *
—60 *
— 80 %k %k
—100 * *
—120 **
GROUP MEANS ARE DENOTED BY M’S
MEAN 70.2 69.8 95.9 127.2 145.2
STD. DEV. 91.3 77.2 75.8 91.7 79.7

perhaps reflecting failure to allow for esti-
mating the variances (Table 4). In the chi-
squared populations EBV has higher RMSE
than EBU when CORR = Low (and EBV
is shrinking towards an inferior estimate),
and lower RMSE than EBU when CORR =
High (and EBV is shrinking towards a
superior estimate). The disasters of VWT are
largely mitigated: The RMSE of EBV ranges
from 22% below PWT to 15% above PWT,
whereas the RMSE of VWT ranges from
23% below PWT to 167% above PWT
(Table 3). Noncoverage rates of intervals
deteriorate when the assumptions of the
model are violated (Table 4).

3.3. Modified inferences based on a filter
for bias

The above results show that null-stratum
effects models (VWT, UWT) provide sharper
inferences than PWT under favorable con-
ditions, but are very vulnerable to model
misspecification. The random effects models
(EBV, EBU) can also improve on the small-
sample performance of PWT, and avoid the
major disasters of the null-stratum models
under misspecification. These methods,
however, remain inferior to PWT when the
stratum means are systematically related to
the selection probabilities. Thus these
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Figure 1 ctd. Histograms and summary statistics for samples of size 50 from five strata in
four populations

B) Distribution = Normal, 10% Contamination

STRATUM
MIDPOINTS1 . 3 S 7 9
455 ! * o
420
385
350
315 *
280 *
245  * * ok kK
210 *k * * FoRRAAARE AR K
175  ** *kk Aok Fokkkkdk kR Rk
140 Fkdkskoskk ok kok ok Hokokokok ook ok VL sk [ ook oo
105 #%kkx ook ok MRk ko sk ook ok ook ok ko o ok
70 MEREERkkkk Rk okskok ok ok kR okkkokkkok koo
35 kkekskokskokskokdokok kokokok ok ok *okk ko
0 ek *okk Ak k *
35 ks * Rk
—70 *k
— 105 *
—140 * *
—175 *
—210
—245 *
—280
—315
—350 *
GROUP MEANS ARE DENOTED BY M’S
MEAN 74.4 70.2 96.2 129.6 146.4
STD. DEV. 74.6 64.0 97.9 121.4 60.2

methods cannot be recommended without a
preliminary check of this violation of
exchangeability.

The last two methods in Tables 2—4 incor-
porate such a check. Specifically, a filtered
version of the variance-weighted procedure
(VWTF) computes the quantity

2 _ ()-Cv - )-Cﬂ:)z
Y Var (X, — X,)
Var(%, — %,) = Z;(P, — v)’si/n

and bases inference on VWT if T2 < 3.92
and on PWTIif 77 > 3.92. Similarly UWTF

is a filtered version of UWT, with T2
replaced by a statistic that compares the
unweighted and n-weighted means

(-)E - )-cn)z
Var(x — x,)

Var(x — %) = Z(B — p)’si/n.

2
u

These filters are similar to the comparison of
weighted and unweighted estimates pro-
posed by Dumouchel and Duncan (1983) in
the regression setting. They correspond to a
preliminary 5% level significance test for
bias of the null effects model estimator. As a
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Figure 1 ctd. Histograms and summary statistics for samples of size 50 from five strata in

four populations

C) Distribution = Chi-Squared, No Contamination

STRATUM
MIDPOINTS 1 3 5 7 9
500 *
475
450 *
425
400 *k
375 * *
350 *x
325 * *
300 * * *
275 * * kkk
250 *k sk FTTTTY
225 * *k *
200 * * sk sk *
175 * Kok *okokkkk
150 ok kKK kK *okokk * *okk
125 *ok kK *k ok ok ok ok M** M**
100 *okk *okokok Y Gkt I L L Kok
75 M *** MRk ko *okkk ok sk *okokk
50 ok kKKK sodokokkokokokokokokk kokskokkokkk kokkokokk ook sk ok ok ok k
25 sokskokokokskokkokodkokokkkok  kokskokkdokkok sokkskokokkkok  kokokkkokkokkk  kokokskokkokok
0 ok kkok ok ok dokokkok ok kKK ok *okkkkk *okok
GROUP MEANS ARE DENOTED BY M’S
MEAN ©76.9 68.2 91.2 127.7 136.7
STD. DEV. 82.6 55.3 73.3 119.5 116.2

general rule inferences based on a prelimi-
nary test can be unreliable (e.g., Hurvich and
Tsai 1990). Also our filters are crude in that
the critical value (3.92) ignores ¢ corrections
for estimating variance, and more seriously
does not change according to sample size.
However, the filters provide some pro-
tection against model misspecification.

For cases where UWT and VWT estimates
are biased, applying the filter reduces the
bias of UWT and VWT estimates signifi-
cantly (Table 2). The effect of filtering on
RMSE and noncoverage is summarized in
Table 5, which compares average RMSE
and noncoverage rate classified by whether

the model (UWT or VWT) yields biased or
unbiased estimates. Filtering considerably
improves RMSE and noncoverage of UWT
and VWT in problems where the models are
biased, at the expense of some deterioration
in problems where the models are unbiased.
Interestingly UWTF and VWTF are still
outperformed by their Empirical Bayes
counterparts, EBU and EBV, and indeed
remain inferior to PWT. Thus a preliminary
check for bias helps but does not save the
models that ignore stratum effects.

The filters were also applied to EBV and
EBU, reverting to the PWT model when
bias in the null stratum-effects model
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Figure 1 ctd. Histograms and summary statistics for samples of size 50 from five strata in
Sfour populations

D) Distribution = Chi-Squared, 10% Contamination

STRATUM
MIDPOINTS1 . 3 5 7 9
660 ’ **
630
600
570 *
540
510
480
450
420 *
390 *
360 *
330 * ‘ *
270 * *
240 *k * Aok dok ok k
210 * *%k skok ok sk
180 kkok * dk skokokok ok ok *ok
150 *okk * koK ok M skokok ok ok okok
120 sk ok ok skok sk ok ok ok ok sk sk stk ok ok sk sk ok ok M**
90 M** % ok ok 3 3k ok ok k M********** sk ok %k ok % ok ok ok ok
60 sk ok ok skok VLA sk ok ook ok ook koo sk ok ko sekokokoskokokok ok skokokskokokok
30 sk sk 3k 3k 3k 3k sk 3 e ok ok ok ok ke ok ok sk ok ok ok ok ok ok ok ok ok ke sk K sk ok ok ok ok ok ok sk kK ok sk ok sk ok ok sk ok ok koK ok sk sk ok ok ok
O 3% 3k 3k %k 3k k sk ok ok ok %k 3k %k ke ok ok ok ok %k %k
GROUP MEANS ARE DENOTED BY M’S
MEAN 75.4 67.3 97.1 139.8 133.0
STD. DEV. 69.9 46.9 87.9 144.8 98.1
was apparent. The resulting procedures modeling stratum effects as distinct

had reduced bias, but showed no notice-
able improvement in RMSE or non-
coverage rates, suggesting that reduced
bias was balanced by an increase in
variance.

4. Normal Models for Slopes

The role of weights is more controversial
when interest concerns the linear regression
of one survey variable (say X,) on another
(say X;). In this section I show that by focus-
ing on a particular target quantity and

parameters, the modeler is led to the
probability-weighted inferences of ran-
domization theory! Classic design-based
inferences for regression thus have a model-
based justification.

Let x,; and x,; denote values of X, and X,
for unit i in stratum j, and write x;; = X3,
X4y = Xy;X,;. I consider inference about the
least squares regression slope of X, on X, in
the entire population

X, — X X,

B = 22
X; — X;
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Table 2. Average bias ( x 100) of seven methods for estimating the mean, expressed as
percentage of RMSE for PWT method

Population parameters

BVAR Low Low Low Low  High High High High
DIST Normal Normal Chisq Chisq Normal Normal Chisq Chisq

CTAM 0% 10% 0% 10% 0% 10% 0% 10%

A) CORR = Low, n = 100 MEAN
PWT 0 —1 1 0 0 —1 1 0 0
VWT —4 4 —107 —108 0 14 —161 —160 —65
UWT -8 —11 —14 11 -6 -9 -13 —-11 -10
EBV -3 2 -7 -7 0 6 —87 —8 —40
EBU -6 -8 —11 -9 -3 -5 -8 -7 -7
VWTF -1 2 —54 —56 2 5 —-49 =50 =25
UWTF -6 -9 —11 -9 —4 -7 —10 -8 —8
B) CORR = Low, n = 200 MEAN
PWT 1 1 2 1 1 1 2 1 1
VWT —4 7 -97 -99 3 21 —184 —181 —67
UWT -9 —13 -21 15 -7 —10 —-18 —-13 13
EBV -2 4 —66 —69 1 6 -70 —-70 =33
EBU -6 -9 —15 -1 -2 -3 -7 -6 -8
VWTF -2 6 —54 55 2 13 —33 =35 =20
UWTF -7 —10 —18 —13 —6 -7 -17 —-12 -11
C) CORR = High, n = 100 MEAN
PWT 0 -1 1 1 0 —1 1 1 0
VWT 72 85 —-53 =53 153 174 —-52 =53 34
UWT 65 66 58 68 140 144 136 152 104
EBV 47 52 —28 32 64 64 —12 —-16 18
EBU 47 46 44 50 64 64 79 84 60
VWTF 37 42 —-30 -33 36 34 —-25 28 4
UWTF 37 36 33 38 32 32 42 45 37
D) CORR = High, n = 200 ' MEAN
PWT 1 1 1 0 1 1 0 —1 1
VWT 106 122 -8 —-13 223 251 -5 12 83
UWT 95 97 82 99 202 209 195 222 150
EBV 62 64 1 —4 63 60 12 6 33
EBU 58 58 55 65 58 60 78 85 65
VWTF 47 47 -6 —12 16 13 -1 -6 12
UWTF 44 44 42 46 12 11 28 20 31

where X, = %,PX,; is the overall popu-
lation mean of X, . Classical randomization-
based inference, weighting sampled units by
the inverse of their selection probabilities,
yields the estimator

Az X‘in - )-Clnxh

= T e (12)

n = =2
X3 — Xix

where %, = X,PX,;, and X, denotes the
sample mean of {x,;} in statum j. A standard
Taylor series approximation (for example
Procedure 3 in Holt, Smith and Winter
1980) yields:

Var (b,) ~ Z,PX(1 — f)sh/n, (13)
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Table 3. Average RMSE of seven methods for estimating the mean, expressed as percentage
of RMSE for PWT

Population parameters

BVAR Low Low Low Low  High High  High High
DIST Normal Normal Chisq Chisq Normal Normal Chisq Chisq
CTAM 0% 10% 0% 10% 0% 10% 0%  10%

A) CORR = Low,n = 100 ' MEAN
PWT 100 100 100 100 100 100 100 100 100
VWT 82 79 137 137 . 86 90 181 182 122
UWT 73 77 73 75 73 77 74 77 75
EBV 82 78 108 110 84 83 120 119 98
EBU 77 80 78 79 81 82 83 84 80
VWTF 90 85 120 119 92 92 132 130 . 108
UWTF 82 85 81 83 82 84 82 84 83
B) CORR = Low, n = 200 MEAN
PWT 100 100 100 100 100 100 100 100 100
VWT 77 78 125 128 81 92 200 201 123
UWT 73 78 75 75 73 78 75 76 75
EBV 81 79 103 105 87 87 112 111 96
EBU 79 81 79 79 86 86 87 86 83
VWTF 85 83 118 119 87 93 129 127 105
UWTF 82 85 83 83 82 84 83 83 83
C) CORR = High, n = 100 MEAN
PWT 100 100 100 100 100 100 100 100 100
VWT 112 117 113 110 179 198 126 123 135
UWT 97 101 97 106 157 163 162 178 133
EBV 98 97 91 91 115 112 94 94 99
EBU 93 95 93 99 113 114 122 130 107
VWTF 108 112 104 102 126 130 109 107 112
UWTF 104 104 100 108 127 128 131 139 118
D) CORR = High, n = 200 MEAN
PWT 100 100 100 100 100 100 100 100 100
VWT 132 144 92 92 238 267 108 110 148
UWT 119 123 113 128 214 223 213 240 172
EBV 108 109 87 88 116 113 97 97 102
EBU 104 106 102 110 114 115 125 132 113
VWTF 123 127 93 94 119 117 102 104 110
UWTF 117 119 113 122 116 115 131 128 120
where s}, = Z,(d; — d,)*/n;, the sample vari- Consider the fixed stratum-effects model
ance of the d-values in stratum j, and where (x,;, x,;;) have distinct bivariate nor-

mal distributions in each stratum:
d.. =
]l
{ }{ . } (xlji9 iji) ~ indGO"ja (D,),
Xijp — Xin A% — Xon — by (X — Xyp)
- ’)_Csn — = - - p(\, ®) = const. @ (15)

(14) so A, = (Ay;,2,;) and @, are the mean and
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Table 4. Noncoverage rate of 95% confidence intervals from seven methods, out of 1000

samples; target = 50

Population parameters

BVAR Low Low Low Low  High High  High High

DIST Normal Normal Chisq Chisq Normal Normal Chisq Chisq

CTAM 0% 10% 0% 10% 0% 10% 0% 10%

A) CORR = Low, n = 100 MEAN
PWT 55 59 67 61 55 59 67 66 61
VWT 106 120 445 461 127 168 701 699 353
UWT 51 49 73 69 48 50 71 63 59
EBV 81 78 254 286 71 71 297 293 179
EBU 50 44 68 66 45 38 63 58 54
VWTF 114 131 302 308 129 154 340 321 225
UWTF 67 64 86 82 64 65 87 75 74
B) CORR = Low, n = 200 MEAN
PWT 50 50 60 62 50 50 60 56 55
VWT 77 85 348 355 95 147 784 720 326
UWT 51 45 63 51 46 42 64 52 52
EBV 62 61 194 187 47 46 191 172 120
EBU 49 37 52 46 45 34 47 40 44
VWTF 89 87 256 257 102 128 267 251 180
UWTF 70 56 77 64 64 54 77 61 65
C) CORR = High, n = 100 MEAN
PWT 55 59 69 57 55 59 70 59 60
VWT 256 331 251 244 589 710 268 263 364
UWT 153 128 92 100 478 470 290 309 253
EBV 145 172 127 123 171 160 99 101 137
EBU 112 84 66 63 165 117 100 92 100
VWTF 207 253 193 189 243 265 184 186 215
UWTF 156 118 109 105 235 221 188 187 165
D) CORR = High, n = 200 MEAN
PWT 50 50 57 59 50 50 54 59 54
VWT 348 438 132 123 859 899 167 173 392
UWT 252 236 156 180 792 749 574 639 447
EBV 157 152 79 79 131 117 69 72 107
EBU 138 119 97 88 134 104 94 78 107
VWTF 243 258 127 124 142 126 133 134 161
UWTF 196 172 151 168 119 108 174 157 156

covariance matrix of X, and X, in stratum j.
Note that this working model implies dis-
tinct linear regressions of X, on X, within
strata, whereas B is the least squares slope of
X, on X, in the whole population. Strictly
speaking, if (15) holds then the overall
regression of X, on X, may not be linear; the

assumption is that linearity is a good
enough approximation for B to be a reason-
able summary measure.

Lemma. The posterior mean and variance of
B under model (15) are approximated by
(12) and (13), respectively.

Proof. It is easily shown that under (15),
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Table 5. Aggregate summaries of RMSE
and noncoverage rates of unfiltered, filtered
and Empirical Bayes methods, classified by
whether or not model is biased

Model Biased Model Unbiased
RMSE noncov  RMSE noncov

VWT 148 440 83 116
VWTF 115 221 88 117
EBV 104 159 83 65
UWT 152 350 75 56
UWTF 119 163 83 70
EBU 110 104 81 49

E(X,|data) = X, for all j, k, and hence
E(X,|data) = %,. Hence the first term of a
Taylor series expansion yields E{B|data} ~
b,. The same expansion yields

Var{B|data} ~

‘& _ OB
Var X, —= (x,)|data
<k; kan( )| )

= Var {X,P,D,|data}
= X,P? Var(D,|data),

where D, is the population mean of d;
(defined in (14)) in stratum j. Substituting

Var (D;|data) ~ (1 — f))si/n; (16)

in this expression yields the right side of (13)
as an approximation for the posterior vari-
ance of B. Note that (16) is itself an approxi-
mation since the exact posterior variance of
D, takes into account the special forms of
skewness and kurtosis for the normal distri-
bution; however (16) seems useful given that
the Taylor series method is approximate,
and the normality assumption of the model
might not be trustworthy.

The lemma extends in an obvious way to
. multiple regression. Thus the use of prob-
ability weights in multiple regression can be
justified from a modeling perspective, with
this choice of target quantity and model.
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Chambers (1986) also provided a non-
Bayesian, superpopulation model-based
justification for regression with sample
weights.

The ordinary unweighted least squares
estimator of B, which ignores the design
weights, is the posterior mean of B for the
null stratum effects model that assumes the
same regression line of X, on X, in each
stratum. However as in the case of inference
about X in Section 2, inference under this
model is vulnerable to model misspecifi-
cation. This is demonstrated empirically in
the simulations of Holt, Smith and Winter
(1980) and Pfeffermann and Holmes (1985)
for the case where Z is continuous.

One might argue that if the regressions of
X, on X, vary across the strata as in (15), B
is not an appropriate target for inference,
and attention should focus on the within-
stratum slopes, or linear combinations of
these slopes. This argument seems to me
valid if Z is considered a truly exogenous
variable. However there are situations
where Z is not exogenous and the unadjusted
slope of X, on X is of primary interest. The
clearest case is when stratification is based
directly on the outcome variable X, (e.g.,
Hausman and Wise 1977). More indirectly,
the stratification could be based on a vari-
able associated with X, that is considered an
outcome rather than a cause of X, (Skinner,
Holt and Smith 1989, Sec. 1.3). As a practical
matter, regression analyses of survey data
such as the Panel Study of Income Dynamics
(PSID) often do not fully condition on the Z
variable, which in the PSID case includes
extensive geographic detail. Even when Z is
truly exogenous, it is often of interest to
compare the effect of X; on X, when Z is
included and excluded from the regression,
to assess the extent to which Z affects the
relationship. Thus an analysis with Z not
conditioned is often of descriptive interest
(e.g., Little and Perera 1981).
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Alternatives to (15) retain distinct regres-
sion lines across the strata, but model the
slopes as random effects; see, for example,
Pfeffermann and Lavange (1989) for a ran-
dom coefficient model that regresses the
slopes on stratum covariates.

5. Conclusion

This article emphasizes that in the setting of
disproportionate stratified sampling, models
need to be sensitive to differences between
strata, by allowing distinct parameters across
strata. Fixed effects models with this prop-
erty for means and slopes yields n-weighted
inferences similar to those arising in design-
based theory. Such results bring design-
based and model-based survey inferences
closer together. I suspect that formal links
between design-based and model-based
inferences can also be found for the case of
cluster sampling, leading me to echo a
remark by Kish and Frankel (1974) in the
discussion of their article on methods for
design-based variance calculations.
“We are not at odds with the Bayesian view-
point . . . while a unified set of Bayesian foun-
dations is far from complete, (we) conjecture
that (1) the variance estimation techniques dis-
cussed in Section 5 will prove useful in the
evaluation of posterior variance, and (2) under
a Bayesian framework for inference (diffuse
priors), the effects of clustering and stratifi-

cation will be much the same as those we have
observed.”

Kish and Frankel’s paper appears to me
more concerned with practical inferences
than in subtleties of statistical philosphy,
and I think modelers as well as samplers
need to take seriously their strictures on the
need to analyze data in a way that takes into
account features of the sample design.
Despite the practical utility of much
design-based inference, I remain convinced
that the model-based approach is prefer-
able. For me, design-based methods are
basically crude and asymptotic, good for

Journal of Official Statistics

large surveys where practical expediency
requires simple estimation procedures, but
inadequate for handling small samples.
Indeed I feel (contrary to Kish and Frankel)
that Bayesian foundations are much more
complete and unified than design-based
foundations for survey inference. What is
currently lacking in the Bayesian approach
is guidance about the choice of models for
applications that are robust to features of
the data created by the sample design.

The random effects models discussed in
this article indicate one avenue of refine-
ment for achieving better inferences from
small stratified samples. However these
gains are not achieved without some model-
ing effort; the simulations suggest that
attention to the assumptions of the models,
such as exchangeability of the stratum
effects, may be needed to realize these gains,
particularly if probability intervals for tar-
get quantities are required.
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