
Inferentially Valid, Partially Synthetic Data: Generating
from Posterior Predictive Distributions not Necessary

Jerome P. Reiter1 and Satkartar K. Kinney2

To avoid disclosures in public use microdata, one approach is to release partially synthetic
data sets. These comprise the units originally surveyed with some collected values, for
example sensitive values at high risk of disclosure or values of key identifiers, replaced with
multiple imputations. In practice, partially synthetic data typically are generated from
Bayesian posterior predictive distributions; that is, one draws repeated values of parameters in
the synthesis models before generating data from them. We show, however, that inferentially
valid, partially synthetic data can be generated by fixing the parameters of the synthesis
models at their modes. We do so with both a theoretical example and illustrative simulation
studies. We also discuss implications of these results for agencies generating synthetic data.
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1. Introduction

To limit the risks of disclosures when releasing public use data on individual records,

statistical agencies and other data disseminators can release multiply imputed, partially

synthetic data (Little 1993; Reiter 2003). These comprise the units originally surveyed

with some collected values, for instance, sensitive values at high risk of disclosure or

values of quasi-identifiers, replaced with multiple imputations. Partially synthetic data can

protect confidentiality, since identification of units and their sensitive data can be difficult

when select values in the released data are not actual, collected values. And, with

appropriate estimation methods based on the concepts of multiple imputation (Rubin

1987), they enable data users to make valid inferences for a variety of estimands using

standard, complete-data statistical methods and software. Because of these appealing

features, partially synthetic data products have been developed for several major data

sources in the U.S., including the Longitudinal Business Database (Kinney et al. 2011), the

Survey of Income and Program Participation (Abowd et al. 2006), the American

Community Survey group quarters data (Hawala 2008), and the OnTheMap database of

where people live and work (Machanavajjhala et al. 2008). Other examples of partially

synthetic data are described in Abowd and Woodcock (2004), Little et al. (2004),

Drechsler et al. (2008), and Drechsler and Reiter (2010).
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In the statistical theory underlying the generation of partially synthetic data, as well as

typical implementations in practice, replacement values are sampled from posterior

predictive distributions. That is, the agency repeatedly draws values of the model

parameters from their posterior distributions, and generates a set of replacement values

based on each parameter draw. The motivation for sampling from posterior predictive

distributions derives from multiple imputation of missing data, in which drawing the

parameters is necessary to enable approximately unbiased variance estimation (Rubin

1987, Chapter 4).

In this article, we argue that it is not necessary to draw parameters to enable valid

inferences with partially synthetic data. Instead, data disseminators can estimate posterior

modes or maximum likelihood estimates of parameters in synthesis models, and simulate

replacement values after plugging those modes into the models. Using a simple but

informative case, we show mathematically that point and variance estimates based on the

plug-in method can be approximately unbiased. We also illustrate this fact via simulation

studies and include a comparison to generating partially synthetic data from posterior

predictive distributions.

The remainder of the article is organized as follows. Section 2 reviews existing methods

of generating and making inferences from partially synthetic data. Section 3 offers the

mathematical example, and Section 4 presents results of the simulation studies. Section 5

concludes with implications of these results for agencies seeking to generate partially

synthetic data.

2. Review of Partially Synthetic Data

To review partially synthetic data, we closely follow the description and notation of Reiter

(2003). Let Ij ¼ 1 if unit j is selected in the original survey, and Ij ¼ 0 otherwise. Let

I ¼ ðI1; : : : ; INÞ. Let Yobs be the n £ p matrix of collected (real) survey data for the units

with Ij ¼ 1; let Ynobs be the (N 2 n) £ p matrix of unobserved survey data for the units with

Ij ¼ 0; and let Y ¼ (Yobs, Ynobs). For simplicity, we assume that all sampled units fully

respond to the survey; see Reiter (2004) for simultaneous imputation of missing and

synthetic data. Let X be the N £ d matrix of design variables for all N units in the

population, for instance, stratum or cluster indicators or size measures. We assume that

such design information is known approximately for all population units. It may come, for

example, from census records or the sampling frame(s).

The agency releasing synthetic data constructs synthetic data sets based on the observed

data, D ¼ (X, Yobs, I), in a two-part process. First, the agency selects the values from the

observed data that will be replaced with imputations. Second, the agency imputes new

values to replace those selected values. Let Zj ¼ 1 if unit j is selected to have any of its

observed data replaced with synthetic values, and let Zj ¼ 0 for those units with all data

left unchanged. Let Z ¼ ðZ1; : : : ; ZnÞ. Let Yrep,i be all the imputed (replaced) values in

the i th synthetic data set, and let Ynrep,i be all unchanged (unreplaced) values of Yobs. In

Reiter (2003), Yrep,i is assumed to be generated from the Bayesian posterior predictive

distribution of (Yrep,ijD, Z). The values in Ynrep are the same in all synthetic data sets. Each

synthetic data set, di, then comprises (X, Yrep,i, Ynrep, I, Z). Imputations are made
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independently for i ¼ 1; : : : ;m to yield m different synthetic data sets. These synthetic

data sets are released to the public.

Reiter (2003) also describes methods for analyzing the m public use, synthetic data sets.

Let Q be the analyst’s scalar estimand of interest, for example the population mean of Y or

some coefficient in a regression of Y on X. In each di, the analyst estimates Q with some

point estimator q and estimates the variance of q with some estimator u. The analyst

determines the q and u as if the synthetic data were in fact collected data from a random

sample of ( X, Y ) based on the actual survey design used to generate I.

For i ¼ 1; : : : ;m, let qi and ui be respectively the values of q and u computed with di.

The following quantities are needed for inferences:

�qm ¼
Xm
i¼1

qi=m ð1Þ

bm ¼
Xm
i¼1

ðqi 2 �qmÞ
2=ðm2 1Þ ð2Þ

�um ¼
Xm
i¼1

ui=m: ð3Þ

The analyst then can use �qm to estimate Q and

Tp ¼ bm=mþ �um ð4Þ

to estimate the variance of �qm. When n is large, inferences for scalar Q can be based on

t-distributions with degrees of freedom np ¼ðm2 1Þ 1 þ r21
m

� �2
, where rm ¼ ðm21bm=�umÞ.

Extensions for multivariate Q are presented in Reiter (2005a) and Kinney and

Reiter (2010).

3. Example Showing That Sampling Parameters is Unnecessary

In this section, we provide for one scenario a mathematical proof that the estimators �qm
and Tp are approximately unbiased for Q and the variance of �qm, respectively, when

generating partially synthetic data without drawing model parameters. For the scenario,

we seek to estimate the population mean of a single variable, which we denote �Y, in a

simple random sample of size n. We do not utilize additional variables for this example;

Section 4 displays simulation results involving regressions.

We suppose that the agency replaces all values of Yobs with draws from some distribution,

that is all values of Yobs are confidential. Setting Zj ¼ 1 for all j is common in practice;

for example, the synthesis for the Longitudinal Business Database, the Survey of Income

and Program Participation, and OnTheMap do so. We assume that a reasonable model for

the data is Yjm;s
2 , Nðm;s

2
Þ. Of course, since we have only n observations in Yobs, we do

not know m and s2. Let �y be the sample mean and s
2

be the sample variance, both

computed with Yobs. We propose to generate m partially synthetic data sets with two steps.

D1. Sample n values independently from N ( �y, s
2

), resulting in Yrep,i.

D2. Repeat step D1 independently for i ¼ 1; : : : ;m to create m partially synthetic data

sets that are released to the public.
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We note that this process is not sampling from a Bayesian posterior predictive distribution,

since we do not draw (m, s2) from their posterior distribution before sampling any Yrep,i.

Using data generated via D1 and D2, in each di we let qi ¼ �yi, that is, the sample

mean in di, and let ui ¼ ð1 2 n=NÞs2
i =n, where s2

i is the usual sample variance of

the values in di. Hence, we have �qm ¼
Pm

i¼1 �yi=m; �um ¼
Pm

i¼1ð1 2 n=NÞs2
i =ðnmÞ; and

bm ¼
Pm

i¼1ð�yi 2
Pm

i¼1 �yi=mÞ
2=ðm2 1Þ. We now derive the expected values of �qm and Tp

over repeated samples of Yobs from the population, that is, over repeated realizations of

(I, Z). Since Z is a vector of ones for all I, we drop it from further notation.

We first show that simulating via D1 and D2 results in an unbiased estimate of �Y

when averaging over repeated samples I. By D1, the Eð�yijY; IÞ ¼ Eð �yjY Þ. Hence,

Eð�qmjYÞ ¼ EðEð�qmjY; IjYÞ ¼ Eð�yjYÞ ¼ �Y: ð5Þ

We next show that Tp is unbiased for the actual variance of �qm
when averaging over repeated samples I. To begin, we write Varð�qmjYÞ ¼

EðVarð�qmjY ; IÞjYÞ þ VarðEð�qmjY; IÞjYÞ. From D1, we have

VarðEð�qmjY; IÞjYÞ ¼ Varð�yjYÞ ¼ ð1 2 n=NÞS2=n; ð6Þ

where S2 ¼
PN

i¼1ð yi 2
�YÞ2=ðN 2 1Þ is the population variance. Also from D1 and D2,

we have Varð�qmjY ; IÞ ¼ ðs2=nÞ=m, so that

EðVarð�qmjY; IjYÞ ¼ Eðs2=ðnmÞjYÞ ¼ S2=ðnmÞ: ð7Þ

Hence, we have Varð�qmjYÞ ¼ S2=ðnmÞ þ ð1 2 n=NÞS2=n. Moving to E(TPjY), from D1 we

have that EðuijY; IÞ ¼ ð1 2 n=NÞs2=n, so that Eð�umjYÞ ¼ ð1 2 n=NÞS2=n. Additionally,

from D1 we have EðbmjY ; IÞ ¼ s2=n. Hence, we have

EðTpjYÞ ¼ Eð�um þ bm=mjYÞ ¼ ð1 2 n=NÞS2=nþ S2=ðnmÞ ¼ Varð�qmjYÞ: ð8Þ

We note that none of the derivations for the t-reference distribution in Reiter (2003)

require sampling from posterior distributions. Hence, with approximately unbiased point

and variance estimates, we can obtain valid variance inferences with those methods.

4. Simulation Studies

In this section, we illustrate that partial synthesis without posterior predictive simulation

can result in well-calibrated inferences. To do so, we generate 10,000 observed data sets D,

each comprising n ¼ 1,000 observations and nine variables. For each D, we sample seven

of the variables, denoted as ðX1; : : : ;X7Þ, from independent N(0, 1). For each observation

j ¼ 1; : : : ; 1; 000, let x 0j ¼ ð1; xj1; : : : ; xj7Þ. For j ¼ 1; : : : ; 1; 000, we draw a continuous

variable, Y1, from the regression y1j ¼ x 0jbþ e j, where b ¼ (0, 21, 2, 2 .5, .1, .1, .1, 3),

e j , Nð0; t2Þ, and t 2 ¼ 1. We also draw a binary variable, Y2, using independent

Bernoulli distributions such that logitðPð y2j ¼ 1ÞÞ ¼ x0jaþ y1jg. Here, a ¼ b=3 and

g ¼ 21=3. This results in values of Pð y2j ¼ 1Þ that are between .2 and .8 with high

probability. We treat (Y1, Y2) as sensitive variables and synthesize all of both. We do not

change values of X ¼ ðX1; : : : ;X7Þ.

To generate partially synthetic data, we consider two possible strategies. The first is to

sample from posterior predictive distributions as recommended in Reiter (2003). We
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estimate the posterior distributions of b and t 2 based on the default improper prior

distribution, p(b, t 2) / 1/t 2. Let b̂ be the maximum likelihood estimate (MLE) of b, and

let s2
y1jx

¼
Pn

j¼1ð y1j 2 x0jb̂Þ
2=ðn2 pÞ be the usual unbiased estimate of t 2. Let ðâ; ĝÞ be

the MLE of (a, g), and let ^̂ be the estimated covariance matrix of ðâ; ĝÞ. These quantities

are obtainable from standard logistic regression output. The synthesis process following

Reiter (2003) proceeds as follows.

P1. Sample a value of t 2, say t 2*, from its inverse x 2 distribution.

P2. Sample a value of b, say b*, from a normal distribution with mean b̂ and variance

ðX 0XÞ21t2*.

P3. Sample n ¼ 1,000 values of Y1 from N(Xb*, t 2*), resulting in Y1rep,i.

P4. Sample a value of (a, g), say (a*, g*), from a multivariate normal with mean ðâ; ĝÞ

and covariance matrix ^̂ .

P5. Sample n ¼ 1,000 values of Y2 from independent Bernoulli distributions such that

logitðPð y2j ¼ 1ÞÞ ¼ x 0ja
* þ y1rep;i;jg*, resulting in one partially synthetic data set

ðX; Y1rep;i; Y2rep;iÞ.

P6. Repeat steps P1 to P5 independently m ¼ 5 times.

We note that P4 approximates the posterior distribution of (a, g) as a multivariate normal

with known covariance. For large n, this approximation is reasonable and is typically used

in practice.

The second strategy is to sample without drawing parameters. It involves only three

steps.

R1. Sample n ¼ 1,000 values of Y1 from N Xb̂; s2
y1jx

� �
, resulting in Y1rep,i.

R2. Sample n ¼ 1,000 values of Y2 from independent Bernoulli distributions such that

logitðPð y2j ¼ 1ÞÞ ¼ x 0jâþ y1rep;i;jĝ, resulting in one partially synthetic data set

ðX; Y1rep;i; Y2rep;iÞ.

R3. Repeat step R1 to R2 independently m ¼ 5 times.

Table 1 displays the simulated coverage rates of 95% confidence intervals, as well as the

simulated variances of �qm, for the mean of Y1, five coefficients in the regression of Y1 on X,

the percentage of observations with Y1 . 1, the mean of Y2, and six coefficients in the

regression of Y2 on (Y1, X). The simulated coverage rates in each case are close to the 95%

nominal rate, indicating that steps R1–R3 are sufficient for inferential validity in this

simulation. The variances of �qm across the 10,000 replications when data are generated

from R1–R3 are always smaller than those when data are generated from P1–P6.

Table 1. Comparison of simulated coverage rates for 95% confidence intervals and simulated variances of �qm
when partially synthetic data are created with (Draws) and without (No draws) sampling from the posterior

distributions of the parameters. Results based on 10,000 replications. Variances are reported in parentheses

after multiplying by 103.

E(Y1) b1 b2 b3 b4 b5 P(Y1 . 1)
Draws 94.8 (15.6) 94.9 (1.4) 95.4 (1.4) 94.8 (1.4) 94.7 (1.4) 95.2 (1.4) 97.0 (.21)
No draws 94.8 (15.4) 94.9 (1.2) 94.8 (1.2) 94.9 (1.2) 94.6 (1.2) 95.2 (1.2) 97.1 (.21)

E(Y2) a1 a2 a3 a4 a5 g
Draws 94.9 (.35) 94.6 (12.6) 94.8 (32.0) 95.1 (7.7) 95.2 (6.0) 95.1 (6.0) 94.9 (6.5)
No draws 95.1 (.30) 94.6 (10.9) 94.5 (27.5) 94.6 (6.6) 94.7 (5.3) 94.9 (5.3) 94.8 (5.5)
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The magnitude of the variance reduction is minor for the mean of Y1 and the P(Y1 . 1),

but it is generally between 15% and 20% for the other parameters.

We also ran a simulation with n ¼ 10,000 and otherwise the same design. The 95%

confidence interval coverage rates were well-calibrated. The variances of �qm across the

10,000 replications when data were generated from R1–R3 continued to be always

smaller those when data were generated from P1–P6.

5. Concluding Remarks

Based on the mathematical example and simulations, it appears that agencies do not need

to sample from the posterior distributions of parameters to facilitate valid inference from

partially synthetic data. This has considerable implications for the generation of partially

synthetic data in practice. First, sampling from posterior distributions can be time

consuming, as it may require running MCMC algorithms to get posterior distributions.

Simply plugging in modes, which often can be computed with off-the-shelf software

routines, can reduce this cost. Second, it lends support to the use of synthesizers based on

algorithmic methods from machine learning, such as regression trees (Reiter 2005b),

random forests (Caiola and Reiter 2010), and support vector machines (Drechsler 2010).

These are difficult to justify from the perspective of posterior predictive distributions,

since they do not have readily identified model parameters. However, in practice they have

been shown to perform reasonably well as data synthesizers (Drechsler and Reiter 2011).

Third, it offers agencies a way to reduce variances of secondary analyses of the released

synthetic data.

While synthesizing based on plug-in modes has analytical advantages, it could have

disadvantages from the perspective of confidentiality protection. In the setting of Section 3,

for example, suppose that an ill-intentioned data snooper knows all values of the variable Y

except for one, say yj. If the data snooper can get a sharp estimate of �y from the synthetic

data, he effectively learns the unknown yj. When synthetic data are generated from

N(�y, s2), the data snooper may be able to use �qm and �um to get close estimates of ( �y, s2), and

therefore closely estimate the unknown yj. On the other hand, when synthetic data are

generated by drawing (m, s2) first, the data snooper’s estimate of ( �y, s2) has greater

uncertainty, and hence his estimate of the unknown yj is likely to have higher error.

Of course, the “intruder knows all values but one” scenario is an unlikely one in many

surveys, and the two approaches may have similar disclosure risk profiles in practice.

Nonetheless, the example suggests that evaluating trade offs in risk and utility from the

two partial synthesis strategies is an area for future research.

Many data sets also contain missing values. Reiter (2004) presents an approach to

multiple imputation of missing data and synthetic data simultaneously, in which the

agency (i) fills in the missing data by sampling from posterior predictive distributions to

create m completed data sets, and (ii) replaces confidential values in each completed

dataset with r partially synthetic imputations. Hence, a total of mr nested data sets is

released. With this approach, it is necessary to sample from posterior predictive

distributions in the first stage of completing the missing values. However, the results in

Section 3 and 4 here imply that it is not necessary to use posterior predictive simulation at

the second stage.
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We also note that it remains necessary to draw from posterior predictive distributions

for fully synthetic data (Rubin 1993; Raghunathan et al. 2003; Si and Reiter 2011). In fully

synthetic data, the agency (i) randomly and independently samples units from the

sampling frame to comprise each synthetic data set, (ii) imputes the unknown data values

for units in the synthetic samples using models fit with the original survey data, and

(iii) releases multiple versions of these data sets to the public. Fully synthetic data

essentially involve filling in missing values for records that were not in the original

sample. Since one needs to predict values that are not observed, one needs to account for

parameter uncertainty in the synthesis models.
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Drechsler, J., Bender, S., and Rässler, S. (2008). Comparing Fully and Partially Synthetic

Datasets for Statistical Disclosure Control in the German IAB Establishment Panel.

Transactions on Data Privacy, 1, 105–130.

Drechsler, J. and Reiter, J.P. (2010). Sampling with Synthesis: A New Approach for

Releasing Public Use Census Microdata. Journal of the American Statistical

Association, 105, 1347–1357.

Drechsler, J. and Reiter, J.P. (2011). An Empirical Evaluation of Easily Implemented,

Non-parametric Methods for Generating Synthetic Datasets. Computational Statistics

and Data Analysis, 55, 3232–3243.

Hawala, S. (2008). Producing Partially Synthetic Data to Avoid Disclosure. Proceedings

of the Joint Statistical Meetings. Alexandria, VA: American Statistical Association.

Kinney, S.K. and Reiter, J.P. (2010). Tests of Multivariate Hypotheses when Using

Multiple Imputation for Missing Data and Partial Synthesis. Journal of Official

Statistics, 26, 301–315.

Kinney, S.K., Reiter, J.P., Reznek, A.P., Miranda, J., Jarmin, R.S., and Abowd, J.M.

(2011). Towards Unrestricted Public Use Business Microdata: The Synthetic

Longitudinal Business Database. International Statistical Review, 79, 363–384.

Little, R.J.A. (1993). Statistical Analysis of Masked Data. Journal of Official Statistics, 9,

407–426.

Little, R.J.A., Liu, F., and Raghunathan, T.E. (2004). Statistical Disclosure Techniques

Based on Multiple Imputation. In Applied Bayesian Modeling and Causal Inference

Reiter and Kinney: Inferentially Valid, Partially Synthetic Data 589



from Incomplete-Data Perspectives, A. Gelman and X.L. Meng (eds). New York: John

Wiley and Sons, 141–152.

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., and Vilhuber, L. (2008). Privacy:

Theory Meets Practice on the Map. IEEE 24th International Conference on Data

Engineering, 277–286.

Raghunathan, T.E., Reiter, J.P., and Rubin, D.B. (2003). Multiple Imputation for

Statistical Disclosure Limitation. Journal of Official Statistics, 19, 1–16.

Reiter, J.P. (2003). Inference for Partially Synthetic, Public Use Microdata Sets. Survey

Methodology, 29, 181–189.

Reiter, J.P. (2004). Simultaneous Use of Multiple Imputation for Missing Data and

Disclosure Limitation. Survey Methodology, 30, 235–242.

Reiter, J.P. (2005a). Significance Tests for Multi-Component Estimands from Multiply-

Imputed, Synthetic Microdata. Journal of Statistical Planning and Inference, 131,

365–377.

Reiter, J.P. (2005b). Using CART to Generate Partially Synthetic, Public Use Microdata.

Journal of Official Statistics, 21, 441–462.

Rubin, D.B. (1987b). Multiple Imputation for Nonresponse in Surveys. New York: John

Wiley and Sons.

Rubin, D.B. (1993). Discussion: Statistical Disclosure Limitation. Journal of Official

Statistics, 9, 462–468.

Si, Y. and Reiter, J.P. (2011). A Comparison of Posterior Simulation and Inference

by Combining Rules for Multiple Imputation. Journal of Statistical Theory and Practice,

5, 335–347.

Received February 2012

Revised August 2012

Journal of Official Statistics590


