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Interval Estimation from Multiply-Imputed
Data: A Case Study Using Census
Agriculture Industry Codes

Donald B. Rubin' and Nathaniel Schenker?

Abstract: We describe the use of multiple im-
putation based on logistic regression models
in a project to calibrate industry and occupa-
tion codes for public-use samples from the 1970
and 1980 United States Decennial Censuses.
The coverage properties of interval estimates
for two estimands are examined in a case study
involving multiply-imputed 1980 agriculture
industry codes. The use of just a small number
of imputations per missing code is shown to
yield much more accurate interval estimates
than single imputation. Because the problem

1. Introduction

Imputation is a standard technique for han-
dling item nonresponse in surveys. Its use is
documented in the three volumes from the
National Academy of Sciences on incomplete
data in surveys (Madow, Nisselson, and Olkin
(1983); Madow and Olkin (1983); Madow,
Olkin, and Rubin (1983)). Imputation is espe-
cially well-suited to a public-use data base
created by an organization like the United
States Census Bureau for two major reasons:
(1) the resulting completed data set can be
analyzed using standard complete-data meth-

! Department of Statistics, Harvard University,
Cambridge, MA 02138, U.S.A.

2 Undercount Research Staff, Statistical Research
Division, U.S. Bureau of the Census, Washington,
D.C. 20233, U.S.A.

considered here involves high fractions of miss-
ing information, it is important when creating
multiple imputations to account for uncertain-
ty in estimating the parameters of the model
for nonresponse. We relate these results to the
theoretical results of Rubin and Schenker
(1986) in simpler situations.

Key words: Bayesian inference; logistic re-
gression; missing data; nonresponse; public-
use data; sample surveys.

ods of analysis and (2) the creator of the impu-
tations typically knows more about the reasons
for nonresponse than the typical user of the
data set. However, when standard complete-
data methods are applied to a data set com-
pleted by imputation, the uncertainty due to
using imputed rather than true values for non-
respondents is ignored. The result is infer-
ences that are too sharp. In particular, interval
estimates are too short, leading to less than
nominal coverage, and p-values are too sig-
nificant, leading to too many rejections of null
hypotheses.

Rubin (1978) proposed multiple imputation
as a method of handling nonresponse that
allows assessment of uncertainty due to impu-
tation. With multiple imputation, each miss-
ing datum is replaced with two or more values
representing a distribution of likely values.
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This creates two or more completed data sets,
each of which can be analyzed using the same
complete-data method. These analyses can be
combined to reflect both within-imputation
and between-imputation variability as de-
scribed in Section 2. Multiple imputations can
also be created under several different models
for nonresponse, thereby displaying the sensi-
tivity of inferences to changes in the non-
response model. See Heitjan and Rubin
(1986), and Rubin (1986; 1987a, Ch. 6) for
examples of such sensitivity analyses.

Recent theoretical and empirical work on
multiple imputation is described in Herzog
and Rubin (1983), Rubin and Schenker (1986),
Schenker and Welsh (1986), Raghunathan
(1987), Rubin (1987a), and Weld (1987). An
important practical implication of this work is
that multiple imputation, even with only two
imputations per missing value, is decisively
superior to single imputation with regard to
validity of interval estimates and significance
levels. The disadvantages of simple ad hoc
methods other than single imputation, such as
complete-case analysis, which uses only units
with no missing values, are documented in
Little and Rubin (1987, Ch. 3).

This paper examines coverage properties of
interval estimates from multiply-imputed data
in a particular Census Bureau data set. The
data we use come from a project to calibrate
industry and occupation codes for public-use
samples across the 1970 and 1980 Decennial
Censuses. Having such data calibrated across
years is important for many studies, such as
longitudinal analyses of employment. The
1970 public-use files (of over a million records
each) use 1970 codes, and the 1980 public-use
files (of similar size) use 1980 codes. Since the
objective is to have 1980 codes on 1970. files,
the 1980 codes can be thought of as missing on
the 1970 files. There exists a special file of
approximately 100 000 1970 records with both
1970 and 1980 codes, and this file can be used
to predict 1980 codes for imputation on the
1970 public-use files.
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Following a general technical discussion of
multiple imputation in Section 2, Section 3
describes the coding calibration problem from
which the case study is drawn. The techniques
we study for multiply imputing agriculture
industry codes are given in Section 4. Section 5
describes the Monte Carlo design of the case
study. The results of the study are analyzed in
Section 6. A concluding discussion is given in
Section 7.

In summary, inferences for two rather dif-
ferent estimands are considered here, and the
multiple-imputation intervals perform well
for both. These important practical results are
anticipated by the detailed theoretical results
of Rubin and Schenker (1986) in simpler situ-
ations. Futhermore, other evaluations of the
multiply-imputed industry codes support the
validity of inferences based on these imputed
values. Specifically, illustrative work reported
in Treiman, Bielby, and Cheng (1987) sug-
gests that inferences based on public-use files
with multiply-imputed 1980 codes will be
appropriate and more precise than those
based on the double-coded sample with true
1980 codes. Work reported in Weld (1987)
also supports the validity of p-values derived
using multiply-imputed industry codes.

2. Multiple Imputation

Let X denote the covariates in a survey, which
are fully observed for all units, and let Y =
(Yous» Yomis) be the desired values of the out-
come variables, where Y, is observed and
Y i is missing due to nonresponse. Suppose
inferences about some population quantity Q
are desired. A straightforward application of
Bayes’s Theorem shows that the posterior
density of O can be written as

h(Q l Xr Yobs) =

[8(Q1X,Y) f(Ymis| X, Yors) dY i, (2.1)

where fis the posterior density of the missing
values and g is the complete-data posterior
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density of Q. Expression (2.1) states that the
posterior density of Q is the complete-data
posterior density of Q averaged over the pos-
terior density of Y.

Multiple imputations are simulated draws
from the posterior distribution of the missing
data, f(Y i | X, Yous). Hence, multiple imputa-
tion can be viewed as a simulation device that
allows the investigator to approximate the
posterior distribution of the quantity of inter-
est by following (2.1).

Suppose that Q is scalar and that if there
were no nonresponse, inference for Q would
be based on the normal reference distribution

Q'Q -~ N(O’ U)’

where Q and U are standard complete-data
statistics giving the estimate of Q and the vari-
ance of Q-Q, respectively. In the presence of
nonresponse with m sets of imputations of the
missing values, Y., there are m completed
data sets and hence m values of the complete-
data statistics Q and U, say Q;and U, = 1,...,m.

Rubin and Schenker (1986) and Rubin
(1987a) recommended the following ¢ approx-
imation for drawing inferences for Q based on
a multiply-imputed data set:

-0 ~ T, (2.2)

is the estimate of Q based on the m imputa-
tions, and

T=U+1+m"B
estimates the total variance of Q-Q;

J
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is the average within-imputation variance of

0-0 and

B= lZ(Q,-- 0)?/(m-1)

is the between-imputation variance of Q-Q.
The degrees of freedom of the ¢ distribution in
(2.2) are given by

v={1+U/[(1+m")B*} (m-1).

Thus a nominal 1 - a interval estimate for Q
based on (2.2) is given by

0+ t(1-a/2,v) T2, (2.3)

where t(1-a/2, v) is the 1 - 0/2 quantile of the
t, distribution.

When single imputation (m = 1) is used, im-
puted values are treated as observed values,
and thus there is no estimate of between-
imputation variability. The implication is that
in practice with m = 1, B is set equal to zero
and #(1-0/2, v) in (2.3) is replaced by the 1 - a/2
quantile of the standard normal distribution,
which would be appropriate if the imputed
values were truly observed values. Hence,
interval estimates based on a single-imputa-
tion version of a multiple-imputation proce-
dure are always shorter in expectation than
the multiple-imputation version, and thus
theoretically have lower coverage. Our con-
cern here is with the propriety of the multiple-
imputation procedures to be applied on se-
veral Census Bureau public-use files.

3. The Industry and Occupation Coding
Problem

Every decade, the responses in the United
States census concerning industry and occupa-
tion are grouped into industry and occupation
categories. The industry and occupation clas-
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sification schemes change somewhat from
census to census because new jobs emerge,
old jobs disappear, and new information is
obtained on certain jobs. Drastic changes,
however, were made for the 1980 census, es-
pecially for occupation classifications. Al-
though the changes in classification schemes
allow a more accurate representation of em-
ployment information in each census, they
create difficulties in analyzing employment
data over time, since the industry and occupa-
tion codes are not directly comparable across
decades. This is a serious problem because
longitudinal analyses of employment data
yield information on topics such as job mobili-
ty and the effects of affirmative-action pro-
grams, which are of interest to social scien-
tists, labor economists, and the government.
The Social Science Research Council and the
Census Bureau jointly sponsored the Subcom-
mittee on Comparability of Occupation Mea-
surement (SCOM) to study the comparability
problem. A detailed discussion of the problem
is given in the SCOM’s (1983) report to the
SpONSOrs.

Public-use samples containing data on indi-
viduals are currently available for the 1900,
1940, 1950, 1960, and 1970 censuses. A 1980
public-use sample is now being created, and
the creation of a public-use sample for 1910 is
under consideration. The SCOM (1983) has
recommended that the public-use samples be
modified so that their industry and occupation
codes are comparable. The 1980 classification
system has been chosen as the standard be-
cause it is regarded as more broadly used and
superior to earlier systems, and because it was
thought that the 1980 system would be closer
to future systems.

The SCOM (1983) has suggested two possi-
ble methods for achieving comparabiliiy. The
first method is to assign 1980 codes to each
public-use sample by directly coding the ver-
bal responses of the units in the sample con-
cerning industry and occupation (the “alpha-
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betics”) using the 1980 coding scheme. The
second method is to directly assign 1980 codes
toonly a subsample of each public-use sample
prior to 1980, use the double-coded subsample
(the “respondents”) to estimate models for
predicting 1980 codes from the old codes and
covariates, and finally use the models to mul-
tiply impute 1980 codes to the units not in-
cluded in the subsample (the “nonrespon-
dents”).

Directly assigning 1980 codes to each pub-
lic-use sample has the obvious advantage of
greater accuracy (assuming no coding errors).
The SCOM (1983) has estimated, however,
that directly coding the samples would be
much more expensive than multiply imputing
1980 codes, especially for the 1960 and 1970
public-use samples, because the alphabetics
are not included in the existing samples and
would be very costly to retrieve; the 1900,
1940, and 1950 public-use samples contain
alphabetics.

It was recommended by the SCOM (1983)
that the two methods of achieving compara-
bility just described be evaluated. Since a
double-coded sample for 1970 of size 127 125
units already exists at the Census Bureau, a
coding calibration project to multiply impute
1980 codes to a 1970 public-use sample with
approximately 1.2 million units was under-
taken with funding from the National Science
Foundation and support from the Census
Bureau (Treiman and Rubin (1983)).

Rather than being drawn from the public-
use sample, the available double-coded sam-
ple is a probability sample of the population
taken independently of the public-use sample.
The coding calibration project differs from
both the case discussed in Section 2 and the
cases discussed in the literature in that anal-
yses of the multiply-imputed data typically
will be performed using only the nonrespon-
dents’ data (i.e., the public-use sample) rather
than both the respondents’ and nonrespon-
dents’ data. A possible implication of this dif-
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ference is discussed in Section 7.

The coding calibration problem differs from
standard nonresponse problems in two other
major ways. First, the nonresponse in the
coding calibration problem was created inten-
tionally by probability sampling, so the reason
for nonresponse is known. Second, since the
double-coded sample is only about one-tenth
as large as the public-use sample, the response
rate in the coding calibration problem is much
lower than in standard surveys. There are, how-
ever, many covariates that are observed for all
units in the double-coded and public-use sam-
ples. Since these covariates contain informa-
tion about population quantities, the simple
fraction of missing outcome values is not an
accurate indication of the amount of informa-
tion lost due to nonresponse for many esti-
mands of interest. Li (1985, Section 4.5) and
Rubin (1987a, Sections 3.2 and 3.3) have ad-
dressed the general problem of determining
the amount of information about a population
quantity that is lost when there is nonre-
sponse.

4. Multiply Imputing 1980 Agriculture
Industry Codes Using Bayesian Logistic
Regression

4.1. Data set for case study

The agriculture data set for our case study was
extracted from the 1970 double-coded sam-
ple, and contains 3 654 units. All of the units
have the 1970 industry code for “agricultural
production”; the 1980 industry codes are
either for “agricultural production, crops” or
“agricultural production, livestock.” In addi-
tion to industry and occupation codes, the
data set contains the covariates age, sex, rela-
tionship to head of household, race, educa-
tional level, employment status, class of work-
er (for example, government or self-em-
ployed), hours worked per week, weeks worked
per year, earnings, region of the country, and
metropolitan versus non-metropolitan area.
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We chose the agriculture industry because it
has many units and also because one 1970
industry splits into two large 1980 industries;
the split between crops and livestock is 57%
versus 43%.

4.2.  Model used for imputation

In the actual Census Bureau problem, multi-
ple imputations of 1980 industry codes (A=
crops, B=livestock) are created for units in
the 1970 public-use sample with agricultural
production as their 1970 classification. These
are created in the following steps, where for
convenience, we let S; denote the double-coded
sample and S, denote the public-use sample.

First, using the S| data, model the probabili-
ty of having code A versus code B by a Bayesian
logistic regression with an intercept and coef-
ficients for the 15 predictor variables listed in
Table 1. These variables were chosen by sub-
stantive researchers, including Census Bureau
staff, as being important either predictively or
substantively. The prior distribution placed
on the logistic regression coefficient vector 3
is as follows (Rubin (1983), Rubin and Schenker
(1987)). Suppose B has p components and the
predictor variables form a contingency table
with C cells; for our study and the coding
calibration project, p = 16 and C = 2304. Then
p/C prior observations are added to each cell,
divided between 1980 codes A and B accord-
ing to the marginal frequency of these codes in
S1. The logistic regression is fitted to S; by
maximum likelihood after the prior observa-
tions have been added. Using this prior distri-
bution guarantees that the posterior distribu-
tion of P is unimodal and easy to maximize for
any sample size.

Splitting the prior observations in the same
ratio across all cells pulls each logistic regres-
sion coefficient, except the intercept, toward
zero from its maximum-likelihood estimate
with no prior observations added. Adding the
same number of prior observationsin each cell
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reflects the exchangeability of prior judge-
ments across the C cells concerning the true
splits. Both of these seem reasonable in the
context of thousands of routine applications.
It is shown in Rubin and Schenker (1987) that
the p/C prior assigns the same average prior
variance to the cell logits regardless of the
design and model, and that in special cases this
prior has desirable frequentist properties.

It is important to realize that the objective
of the logistic regression modelling is to allow
the representation of uncertainty in the pre-
diction of 1980 codes through the use of multi-
ple imputation. Thus, if sample sizes are small
and the predictors are weak, the results of
fitting the logistic regression model will in-
volve large standard errors, and consequen-
tially substantial variability in imputed industry
codes for the same units across sets of imputa-
tions. But this is as it must be: if interval esti-
mates are to be valid, uncertainty must be re-
flected. Although fitting 16 predictor vari-
ables using as few as 20 units, as described in
Section 5, may often be a hopeless task for the
purpose of finding good point estimates, it is
straightforward and necessary for the purpose
of providing multiple imputations that ade-
quately reflect inferential uncertainty.

4.3. Creation of imputations from logistic re-
gression output

Multiple imputations of 1980 industry codes
for S, are created as follows. To impute one
set of codes for S;: (a) a vector §* is drawn
from the posterior distribution of § obtained
by fitting the logistic regression (this is dis-
cussed further below); (b) for unit i in Sy
(i = 1,...,np), the unit’s covariate values and p*
are used to obtain a probability m; of the
unit having 1980 code A; and (c) for unit
i(i =1,..., ny), code A is imputed with proba-
bility ;t;and code B is imputed with probability
1 - m;. The desired number of imputations is
created by independently repeating steps (a)-
(c) m times. The actual coding calibration
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project is creating m = 5 imputations per miss-
ing datum.

The creation of m imputations requires
drawing m values of * from the posterior
distribution of §. A method of doing this ap-
proximately is to let B* ~N(B, H"), where p
is the posterior mode of § and H is the nega-
tive second derivative matrix of the posterior
distribution of § evaluated at B; B and H are
obtained from the standard maximum likeli-
hood computations used to fit the logistic
regression. Rubin (1983) has suggested a re-
finement of the N(B, H'!) approximation that
is used by the Census Bureau in difficult cases.
The idea is developed further in Tanner and
Wong (1987) and Rubin (1987b), but is not
studied here.

5. Description of the Case Study

For our case study, we consider the agricul-
ture data set to be the population of units in
the agriculture industry and repeatedly draw
double-coded and public-use samples, S, and
Sy, respectively. Let S; and S, be independent
random samples (with replacement) of sizes
n, and ny from the population with the co-
variates recorded, where the 1980 codes
(1=crops, 0=livestock) are known for S; but
missing for S.

In each of 100 independent Monte Carlo
trials, samples S; and Sy were drawn, a logistic
regression was fitted to S;, and then multiple
imputations were created for S,. From the 100
multiply-imputed data sets, interval estimates
were constructed for two estimands and evalu-
ated by calculating the proportion of times the
actual population quantities (that is, the esti-
mands calculated for the entire agriculture
data set) were included in the intervals.

The factors considered in the study will now
be described.

Estimand

Two estimands are considered: the proportion
of units in the population having 1980 industry
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code A (crops) and the proportion of black
males in the population that have code A. The
first was chosen to see how multiple-imputa-
tion intervals would perform in the simplest
possible inference problem. The second was
chosen as a more complicated estimand in-
volving covariates (sex and race). The true
values of the estimands are 0.57 = 2083/3654
and 0.84 = 245/291, respectively.

Multiple-imputation intervals were formed
on the logit scale and then inverted as follows.
For the first estimand, let

p; = (X; + 112)/(no +1)

be the jth complete-data estimate (see Section
2) of the population proportion having code
A, where X is the number of units in S, on the
jth imputation having code A. Multiple-im-
putation intervals on the logit scale are formed
using the method outlined in Section 2 with

0, = logit () = log[5/(1 - )]
and

U= [(no+ 1) p; (1-pp]™.

The intervals are transformed to the original
scale by the inverse mapping

p = logit’(Q) = exp (Q)/[1 + exp (Q)]-

The second estimand is treated analogously,
with n, replaced by the number of black males
in Sy, and Xj being the number of black males
in S, on the jth imputation having code A. For
justification of this simple logit-based ap-
proach, see Rubin and Schenker (1987).

Nominal level of interval

The nominal levels considered are 50% , 80%,
90%, and 95%.
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Method of drawing B* for imputations

Two methods of drawing B* are considered.
The first is to fix f* at f& across the m imputa-
tions, which does not account for uncertainty
due to estimating B. In this respect, it is
analogous to the “simple random imputation”
method described in Rubin and Schenker
(1986), and would be called “improper” by
Rubin (1987a). The second method con-
sidered is to draw fB* as iid from N([g, HY).
Since this method accounts for uncertainty
due to estimating P, it is analogous to the
“adjusted” methods of Rubin and Schenker
(1986), and would be called “proper” by
Rubin (1987a).

Number of imputations per missing value (m)

The values of m considered are 1, 2, and 5.
Recall from Section 2 that when m = 1, anor-
mal rather than ¢ reference distribution is
used.

Size of S,

The sample sizes n; of S; considered are 20 and
200. Values as small as n; = 20 are of interest
mainly because they occur often with occupa-
tion codes in the coding calibration project.
As mentioned earlier, such small sample sizes
create no technical problems for our Bayesian
logistic regression computer program.

Ratio of size of S, to size of S,

The values of n,/n considered are 1/5, 1/10,
and 1/20. These are appropriate since the 1970
double-coded sample is about one-tenth as
large as the 1970 public-use sample.

Summary of design

To summarize, the study can be described as a
2 X 4 X 2 x 3 X 2 x 3factorial design. The one
summary value for each cell is the coverage
rate of the interval estimate over repeated
samples (i.e., draws of §; and Sp). To correlate
responses across cells of the design, steps simi-
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lar to those described in Rubin and Schenker
(1986, Appendix B.1) were used.

6. Results of the Study

Tables 2 and 3 present the coverage rates of
the multiple-imputation intervals over 100
Monte Carlo trials tor the two inference prob-
lems. Although there is a great deal of Monte
Carlo variability when only 100 trials are used,
computing costs precluded performing enough
trials to reduce the standard errors. Never-
theless, many trends can be seen that are con-
sistent with the theoretical results of
Rubin and Schenker (1986) for simpler sit-
uations, and consequently, the results are
practically important.

Multiple imputation versus single imputation

We first compare single imputation with
multiple imputation. Table 4 displays the
coverage rates for m = 1 and m = 2 averaged
over the two estimands and the values of n,
and n,/ny. For m = 1, only the method of fix-
ing B* at ﬁ when creating imputations is con-
sidered since the best estimate of {3 should be
used when there is just one imputation. (Tables
2 and 3 show that when m = 1, the results for
B*~N(B, H') are worse than for f*= B.)
Clearly, the use of multiple imputation leads
to coverage rates that are substantially closer
to the nominal levels than for single imputa-
tion.

When m = 2, the improper imputation
method leads to coverage rates that are too
low, whereas the fully Bayesian proper im-
putation method yields much more accurate
results. The difference between the methods
is analogous to the difference found in Rubin
and Schenker (1986) between the simple ran-
dom method, which effectively fixes popula-
tion parameters at point estimates, and the
adjusted methods, which draw parameters
from approximate posterior distributions.
Rubin and Schenker (1986) showed that the
improvements due to using adjusted (proper)
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methods were important for low response
rates.

Two versus five imputations for proper im-
putation

Since the cost of analyzing a multiply-imputed
data set increases with the number of imputa-
tions m, it is relevant for practical situations to
see whether the advantages of multiple im-
putation can be achieved with just a few
imputations. For the simple problem studied
in Rubin and Schenker (1986), two or three
imputations were sufficient. The improve-
ments in coverage rates due to increasing m
were roughly linear in 1/(m-1). Table 5 com-
pares the average coverage rates for m = 2 and
m = 5 for our case study. For nominal levels of
90% and 95%, the use of five imputations
yields intervals with better coverage rates than
the use of m = 2. The average coverage rates
for m = 2, however, are all within 5% of the
nominal levels, and comparison with single
imputation (Table 4) shows that most of the
gains from multiple imputation are achieved
with just m = 2, especially for the lower nomi-
nal levels.

Differential performance of multiple imputa-
tion for the two estimands

Table 6 displays the average coverage rates
with proper multiple imputation for the two
estimands considered in this study. The aver-
age coverage rates for the simpler estimand
(the overall population proportion in one
industry versus the other) are higher than the
average coverage rates for the more compli-
cated estimand (the proportion of black males
in one industry versus the other). All of the
averages, however, are within 5% of the
nominal levels. Thus the proper multiple-impu-
tation procedures perform well for both esti-
mands, especially considering the very high
apparent nonresponse rates and the small
sample sizes.
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7. Discussion

Overall, the results in Section 6 are encourag-
ing, especially considering the complexity of
the problem. The results also reflect and sup-
port many of the conclusions drawn in Rubin
and Schenker (1986) for simpler situations.
Moreover, they are consistent with other eval-
uations of the utility of multiply-imputed in-
dustry codes (Treiman, Bielby, and Cheng
(1987); Weld (1987)).

The simple case study presented here, in
which one 1970 industry code maps into two
1980 industry codes, is relevant to the general
coding calibration problem for the following
reasons. First, since the occupation coding
problem is structurally very similar to the in-
dustry coding problem, the results for industry
codes should apply to occupation codes as
well. Second, although there are many 1970
codes in the coding calibration problem, a
separate model is estimated for each 1970
code. Finally, when there are more than two
1980 codes corresponding to a 1970 code, the
polytomous imputation is performed as a se-
quence of dichotomous imputations, as de-
scribed in Rubin (1983).

As mentioned at the end of Section 3 and as
reflected in the design of the case study, mul-
tiple-imputation analyses in the coding cali-
bration problem are based only on S, rather
than both §; and S,. Thus multiple-imputation
inferences here are based on the density

g(QlXO’ Ymis) f(YmiSIX’ Yobs)deis (71)

instead of (2.1), where X; denotes the ob-
served covariate values in S

Suppose that m = o« and the distributions
of covariates in S| and S, are approximate-
ly the same. Then g(Q|X, Yo, Yimis) and
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g(0O| Xy, Ynmis) should have approximately the
same centers. Since g(Q| X, Yop, Ymis) condi-
tions on more than does g(Q| Xy, Yuis), the
former should have a Idwer variance than the
latter. Thus multiple-imputation inferences
based on (7.1) (that is, on Sp) should be more
conservative than the proper multiple-impu-
tation inferences based on (2.1) (that is, on S
and ;). The difference should diminish as
n,/ny decreases, since the effect of §; on
g(0 | X, Yous, Ymis) decreases.

A simple example from Rubin and Schenker
(1986) will demonstrate the heuristic ideas
given above. Suppose there are no covariates
and an interval estimate of the population
mean is desired. Suppose further that the data
are normal, the “fully normal” method is
used, m = «, and n is large enough that all “¢
effects” can be ignored. It follows from Rubin
and Schenker (1986, Appendix A) that the
nominal 95% multiple-imputation interval
based on Y., and the imputed values of
Yinis 1S

Y, + 1.96(s2/n + 20 g1z, (7.2)
nn,

where Y, and s? are the sample mean and
variance of Y. On the other hand, when the
“complete-data” statistics are calculated only
from the imputed values of Y,;;, the multiple-
imputation interval is

Y, + 1.96(s}/ny + nOLnls%)”z. (7.3)

Interval (7.3) is clearly wider than interval
(7.2), and the two intervals have the same cen-
ters. As n,/nybecomes smaller, n, approaches
n, and (7.3) becomes closer to (7.2).
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Table 1. Predictor variables used in logistic regressions for imputing industry codes

Predictor variables

Values

Sex

Race

Sexrace

Agel

Age2

Age3

Sexage

Class of worker 1

Class of worker 2

Metro

Education

Hours worked per week

Weeks worked per year

Region1

Region2

-1
1

-1
1

if male
if female

if black
if white or other

Sex X Race

-1

-1
0
1

if16 <age <24
ifage =40
if25 <age <39

if16 < age <24
if25 <age <39orage =60
if40 < age <59

if16 <age <24
if25<age<59
ifage = 60

if female and 16 < age <39
or male and age = 40
otherwise

if private industry
if self-employed or without pay
if government

if private industry
if government
if self-employed or without pay

ifin metropolitan area
otherwise

if high school or less
if atleast one year in college

if hours/week < 34
otherwise

if weeks/year <39
otherwise

if northeast or east north central
if west or west north central
if south

if northeast or east north central
if south
if west or west north central
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Table 2. Coverage rates (in %) of intervals for the proportion of units in the population having
1980 industry code A (crops)

Nominal ~ p*=p B*~N@,H") B*=p B*~N(B, H")
level m m m . m
n,/ng 1 2 5 1 2 5 1 2 5 1 2 5
1, = 20 7, = 200
2 50% 27 40 29 18 56 55 27 37 39 20 53 64
80% 43 62 59 35 8 85 4 70 62 33 84 87
90% 53 71 71 41 83 94 56 75 74 40 8 94
95% 58 79 78 46 8 95 66 83 84 46 94 99
1 5% 2 25 21 16 51 51 9 29 29 18 53 63
80% 32 51 45 29 78 82 31 53 47 30 8 87
90% 39 58 56 32 8 90 41 65 57 3 91 94
95% 46 68 67 34 8 95 47 73 70 39 92 98
05 50% 15 22 18 10 50 50 10 19 18 17 57 61
80% 21 44 33 19 78 79 2 36 37 2 8 87
90% 31 53 40 22 84 88 30 45 44 24 89 94
95% 33 58 52 27 90 93 38 56 55 30 93 95

Table 3. Coverage rates (in %) of intervals for the proportion of black males in the population
having 1980 industry code A (crops)

Nominal ~ B*=f B*~N(B, H') pr=p B*~N(B, H)
level m m m m

ni/ngy 1 2 5 1 2 5 1 2 5 1 2 5

n; =20 n; =200

2 50% 18 36 40 22 51 54 31 39 39 12 56 59
80% 44 71 69 40 76 82 45 69 69 32 78 89
90% 56 84 86 50 83 93 54 80 77 46 91 94
95% 67 94 92 57 90 98 60 81 81 56 93 96

1 50% 18 34 29 16 43 53 22 31 28 13 55 62
80% 36 60 58 34 70 78 39 59 52 27 79 86
90% 48 71 66 41 81 84 42 63 62 32 86 93
95% 52 76 77 42 85 90 48 70 72 39 89 96

.05 50% 17 21 16 12 41 46 15 21 17 12 54 58
80% 26 44 43 26 68 75 25 41 36 17 77 84
90% 36 58 55 30 79 84 32 48 46 24 86 93

95% 39 64 63 34 85 89 39 56 58 27 88 93
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Table 4. Comparison of average coverage rates (in %) for single imputation (m=1) and im-
proper and proper multiple imputation (m=2)

Nominal level m=1 _ m=2 .
B*=p B*=p B*~N(B, H')

50% 20 28 54

80% 34 53 81

90% 43 63 88

95% 49 71 92

Table 5. Comparison of average coverage rates (in %) for m=2 and m=>5 with proper mul-
tiple imputation (8*~N(B, H"))

Nominal level m=2 m=5
50% 52 56
80% 78 83
90% 86 91
95% 90 95

Table 6. Average coverage rates (in %) by estimand for proper multiple imputation

Nominal level Estimand 1 Estimand 2
50% 55 53
80% 83 79
90% 90 87
95% 93 91

Note: Estimand 1 is the proportion of units in the population having 1980 industry code A (crops).
Estimand 2 is the proportion of black males in the population having code A.
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