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Inverse Autocorrelations and Moving-
Average Time Series Modelling

O. B. Oyetunji'

Abstract: Estimation of moving-average time
series models has been difficult because it
requires nonlinear optimization. Inverse
autocorrelations, introduced by Cleveland
(1972), offers a solution to this problem. We
propose that moving-average modelling should
use the techniques of the subset modelling
method in which all possible subsets are

1. Introduction

Suppose we have a zero-mean stationary time
series {X,}. A moving-average (MA) model of
order g, MA(q), is defined by

X, =& —-BiePoga—- '_ﬁqsl—q > (L.
where {¢,} is a white-noise process with finite

variance 2. The parameters are real constants
such that their characteristic polynomial

q .
B = 1—2() [3,21, Bo=1

has all its zeros outside the unit circle to ensure
invertibility. Let v, = E(X, X,4x) and g, =
Y«/Yo, k=0,1,... denote the autocovariance
and autocorrelation functions of { X,}, respec-
tively. Then :

q-k
0¥ (P + ;El BiBj+k)s

Ve = k=0,+1,..., *gq.
0 k| > q

(1.2)

evaluated. To illustrate this method we have
used two sets of data, a simulated time series
and Box and Jenkins (1970) Series A.

Key words: Autocorrelations; inverse auto-
correlations; moving average model; subset
model; BIC.

This means that the autocovariance (auto-
correlation) function cuts off atlagk = gq.

Many authors, Durbin (1959), Walker
(1961), Hannan (1969), to mention a few,
have proposed various efficient methods for
estimating the parameters of a moving-average
process. All such methods involve some form
of nonlinear optimization. They are therefore
difficult, cumbersome, and time-consuming
to apply.

The moving-average process given by (1.1)
is called a full-order model. We then define a
subset MA process, like that of (1.1) where
some of the f coefficients can be equal to zero,
but B, must be a nonzero number. We use the
notation (£)MA(g) to denote a subset MA
process with £ nonzero coefficients and
maximum lag q. Subset MA modelling has
been difficult because there are many
competing models. For a maximum specified
lag g, there are 279 possible models, and we
have already pointed out the difficulty of
fitting a single moving-average model.

! Department of Statistics, University of Ibadan,
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However, Cleveland (1972) has introduced
a new tool, inverse autocorrelations, which
makes it possible to estimate MA process
parameters by solving a set of prescribed
simultaneous linear equations, as one does in
autoregression. Subset modelling is another
technique made possible by the emergence of
fast electronic computers. McClave (1975)
proposed a method that selects a subset auto-
regressive model without evaluating all the
possible subsets from a maximum specified lag
L. McClave’s omission of viable and poten-
tially viable subsets led Haggan and Oyetunji
(1984) to propose a method of subset auto-
regression that evaluates all possible subsets.
They showed that their algorithm is as fast as
McClave’s for L.<15, and sometimes faster, in
identifying the best subset model. BIC, as
described by Akaike (1977) and defined by
formula 1.3, is the criterion used for identify-
ing the best subset model. BIC for a g-variate
model (a model with g nonzero coefficients) is
defined as

BIC(q) = (N-q)tnS; — (N-q)en{1-(q/N)}

+ qen{q™ (03-52)+qenN. (1.3)

Here, N is the number of observations in the -

series, of is the data variance and G2 is the
residual variance after fitting the g-variate
model. BIC was defined specially for selection
of subset models and Oyetunji (1979) has
shown that among existing selection criteria,
BIC’s allround performance in selecting a
subset surpasses all other criteria. For more
details on order determination see Priestley
(1981), Sections 5.4.5,7.8, and 9.4.

It has been shown by Cleveland (1972) and
Chatfield (1979) that the inverse auto-
correlation function behaves for moving-
average processes in exactly the same way as
the autocorrelation function behaves for auto-
regressive processes. In this paper, we use the
method of subset selection proposed by
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Haggan and Oyetunji (1984) to replace auto-
correlations with inverse autocorrelations for
the purpose of demonstrating that moving-
average modelling can be as straightforward
as autoregressive modelling.

In the search for the best subset moving-
average model, using the method of evaluating
all possible subsets from a specified maximum
lag L, all full-order models up to lag L are
evaluated. The selected subset model is as
good as, if not better than the model we would
have selected if we had considered full-order
models only. Through combining modelling
methods, we have arrived at a moving-
average modelling technique that uses a form
of subset selection in which all possible subsets
are considered. Although we talk about
subset selection, we also include full-order
models. For example, one of our simulated
series (used to describe the proposed method)
is a full-order moving-average model, even
though we identify it through subset selection.

We have already pointed out that Haggan
and Oyetunji’'s method of evaluating all
possible subsets is as fast as McClave’s method
for L<15, although it explodes when L>15
since there are 2% possible subsets to evaluate.
However, a specified maximum lag of 15 is
large enough for most situations, and in par-
ticular, it is large enough to accommodate any
seasonal variation in monthly data.

2. Inverse Autocorrelations

Suppose we have a stochastic process {X,}
with spectral density function f(w), auto-
covariance function y(k) and autocorrelation
function p(k), k = 0,1,... . Then

I

v(k) = [ ¢ flw) do,

-

and

p(k) = y(k)Iv(0).
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Let
fi(w) = 1flw). (2.1

Cleveland (1972) defined the inverse auto-
covariance function of { X} as

vi(k) = [ " e fi(w) do, (2.2)
and
pi(k) = yi(k)vi(0), (2.3)

is the inverse autocorrelation function.

Exploiting the duality between moving
average and autoregressive processes, Cleve-
land shows that by using inverse autocorrela-
tions, fitting a moving-average process is
reduced to solving a set of prescribed simulta-
neous linear equations. However, estimating
an inverse autocorrelation function is not as
straightforward as estimating an autocorrela-
tion function. We first have to estimate the
spectral density function f(w).

Although the idea of inverse autocorrela-
tions is intuitively appealing, it did not gain
immediate popularity. Chatfield (1979)
suggested that a reason could be that Cleve-
land used a frequency-domain definition and
that this form of expression made the idea of
inverse autocorrelations difficult to grasp.
Chatfield has, on the other hand, used a time-
domain definition. However, recently there
has been renewed interest in inverse auto-
correlations. McClave (1978), Chatfield
(1979), Hosking (1980), Bhansali (1980,
1983), and Battaglia (1983), to mention a few,
have discussed estimation, asymptotic proper-
ties and use of inverse autocorrelations.

3. Estimation of Inverse Autocorrelations

Cleveland suggested two methods of estimat-
ing the inverse autocorrelation function; both
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methods stem from spectral density estimation
techniques. The first method of estimating the
spectral density function is to fit an auto-
regressive model using a high enough order to
give a good fit. The problem with this method
is that we have to impose a model on the
series. The second method, which we have
adopted in this paper, is to smooth the peri-
odogram, I(w), given by

N — .
10) = ] = (X X) e

1 N-1
= 55 [c(0)+2 = c(k)coswk],
k=1

(3.1)

where c(k) denotes the sample estimate of the
autocovariance of lag k. Although the peri-
odogram, I(w), is asymptotically unbiased for
the spectral density function, f(w), its variance
does not decrease as N increases. It is therefore
necessary to smooth the periodogram, that is,
apply some weighting function to /(w). There
are a number of weight functions, usually
referred to as windows, that are commonly
used. The weight function used here is the
Daniell window and we estimate the inverse
autocorrelations as follows. Let

2
w; = —N—,] =0,1,...,N-1.
Calculate

1 N-1 .
l(w) = 7 [c(0)+2k§1c(k) coswjk] ,

and obtain an estimate of the spectral density by

fo) = k5 T Iep, G2

k=-m

where m is a suitably chosen positive integer.
We then estimate the inverse autocovariances
by
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ci(k) = Ni:) [if(w) ], (3.3)
2

and estimates of inverse autocorrelations are
then obtained by

ri(k) = ci(k)/ci(0) . 3.4)

The main problem with this method is that
there is no accurate way of choosing m.
Hitherto, the choice of m has been purely a
subjective process, most commonly done by
plotting the smoothed periodogram for differ-
ent values of m and choosing that m which
gives the smoothest picture, without losing
any characteristic feature of the spectrum.
Bhausali (1980) has given a theoretical analysis
of autoregressive and window estimates of
inverse autocorrelation functions.

McClave (1978) has suggested another
method of estimating the inverse autocorrela-
tions in the frequency domain which first
requires the fitting of a MA(q) process using
one of the traditional methods. This method is
therefore cumbersome and the advantage of
computational savings is lost. Also, we need
to impose an MA(g) model on the series
before estimating its inverse autocorrelations.

Chatfield (1979) defined inverse autocorre-
lations in the time domain and gave a time-
domain method of estimation. Although this
method has some limitations, it has great
appeal because of its ease. We discuss this
method in Section 6.

4. Evaluating All Possible Subset Models

We have proposed a subset approach to
moving-average modelling. In our approach,
we use a method of evaluating all possible
subset models that is given in Haggan and
Oyetunji (1984), and use the BIC criterion for
selecting the best model.

In Haggan and Oyetunji (1984), all possible
subscts arc cvaluated. For ecach possible
subsct model, both the residual variance and
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the corresponding BIC are calculated. At
each stage, only the model with the smallest
BIC is noted together with the lags in that
model. By the end of the iteration, the model
with minimum BIC has been identified together
with the lags in that model. Finally, coefficients
of the lags in the model with minimum BIC are
estimated by solving the corresponding Yule-
Walker equations. Because more than one
model may have similar values of BIC around
the minimum, the method described above
was modified so that three models with the
smallest values of BIC are identified and
estimated. For real data, the final model is
selected by applying diagnostic checking (Box
and Jenkins (1970)). Another possible
diagnostic check that may be applied is to
compare the parametric spectrum of the fitted
models with the nonparametric spectrum of
the raw data.

In this paper, we replace c(k) by ci(k) in the
usual Yule-Walker equations to obtain the
MA analogue, which we write in matrix form
as

Ci,=-Ti, B, 4.1
where
ci(1)
Ci,= ca)|
| ci(q) |

I

=>

I
=
]
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The augmented matrix to which Haggan and
Oyetunji’s algorithm is applied is then given
by

From (4.1), estimates of the f’s in a selected
subset model are obtained by solving

Q% _ . ox—] .
p* = -Ti,*" Ci,*

where B*, Ii,* and Ci,* are respectively [3, I,
and Ci, with some elements constrained to
zero (see Haggan and Oyetunji (1984)). An
estimate of the residual variance of the fitted
model is then

q .
~2 _ 0 2
o= 0()/(1+ z '3]) )
j=1
where o} is the data variance and some of the
corresponding f,’s are zero.

S5. Simulated Data

To demonstrate the feasibility of the method
described above, we simulated two models:

Model 1: X, = ¢,— .6¢,_, —.79¢,,+.504¢, 4
Model 2: X, = €,—.5¢,4

where {g} is a normal white-noise process
with unit variance. It should be noted that
even though Model 1 is a full-order process,
we identify it through subset modelling. We
also point out that Model 2 is exactly the same
as Model 2 in McClave (1978).

For each model, we generated 20 indepen-
dent series, each series containing N = 200
observations. We then applied the method
summarized in Section 4 to each series. For
each series, we noted whether the correct
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model was chosen as the best, second-best, or
third-best model (“best” in terms of minimum
BIC). The results are summarized below.

Best 2nd 3rd Total
best best
Model 1 17 1 2 20
Model 2 19 0 1 20

For Model 2, the result in McClave (1978)
shows that his method identified the correct
model 14 times out of 20 when N = 200. When
N = 1000, he identified the correct model 20
times out of 20. Here, we have not bothered to
generate series with N = 1000 because it is
highly unlikely one would come across such a
long series in practice. McClave’s method
suffers from its inability to identify more than
the best model. Our method is easily adapted
to identify more than one model around the
minimum BIC, with the final model selected
through diagnostic checks. For simulated
data, however, diagnostic checking is not
necessary since we know the exact model.

6. Time Domain Approach

Chatfield (1979) gave the time domain defini-
tion of the inverse autocorrelation function as
follows. Let the autocovariance generating

function for a time series {X,} be defined by
r(z)=3
k_

. v(k)Z, (6.1)

where {y(k)} is the autocovariance function.
The inverse autocovariance generating func-
tion I'/(z2) is then defined by

[(z2)TI(z) = 1. (6.2)

The coefficient of z* in the expansion of I'/(z)
is called the inverse autocovariance of. lag k
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and denoted by vi(k). The inverse autocorre-
lation of lag k is then defined by
pi(k) = vi(k)vi(0), k=0,1,... .
Chatfield then used the idea of an inverse
process to describe inverse autocorrelations.

If a time series { X,} satisfies an autoregressive
process of order p, AR(p), given by

X,:(l]X,_l + (lzX,_z + ...+ apX,

o+ E,

(6.3)

where {g} is a white-noise process with
variance o7, the corresponding inverse process
is the MA(p) given by

X, = &0 & —...~O,E, . (6.4)
The inverse autocorrelation function of the
time series {X,} which satisfies the AR(p) of

(6.3) is then the autocorrelation function of
the MA(p) given by (6.4). That is,

p—k 14
(—-Olk + = aj a]+k)/(1+ > 03),
=1 j=1

pilk) = k==*1,...,%p,
0 |k| >p
(6.5)
and
vi(0) = (1+ '2[3)1(1?) /ot. (6.6)
j=

Thus, Chatfield’s time domain method of
estimation entails fitting an AR(p) to the time
series {X,} using AIC according to Akaike
(1974). Let &y, Gy,...,0,,07 denote estimates of
parameters and the residual variance of the
fitted model. Estimates of inverse autocorre-
lations of {X,} arc then obtained by substitut-
ing &;,0,,...,G,,67 in (6.5) and (6.6).
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We applied this method to the 197 observa-
tions of Series A (Chemical Process Concen-
tration Readings) given in Box and Jenkins
(1970), p. 525. Box and Jenkins fitted an
MA(1) to the first differences, given by

Y' =g + .708,_] N

where Y, = X, — X,_;. Also, McClave (1978),
using inverse autocorrelations, fitted the
subset moving-average model to the first
differences, given by

Y, = e~.647¢,_—.167¢,4.

First, we fitted an AR to the first differences.
The AR selected by AIC is the AR(6) given by

Y, + .60306Y,, + .39070Y,, + .35546Y
+ 31388Y, + 31217V, 5 + 21272V,

=g, &2=.09635.

We then substituted the estimated coeffi-
cients and 62 in (6.5) and (6.6) to obtain the
sample inverse autocorrelations, up to lag 6,
forY,.

These estimates of inverse autocorrelations
were then used in the subset selection algorithm
of Haggan and Oyetunji. The best model, in
terms of minimum BIC, is the MA(1) given by

Y, = ~.665¢, ,, BIC = 474.17, (6.7)

while the second-best model is

Y, = e~.646¢, ,—.057¢, ., BIC = 477.87.
(6.8)

Thus, the best model coincides with Box and
Jenkins MA(1), while the second-best model
coincides with McClave’s subset MA model.
However, it should be pointed out that in
arriving at his subset model, McClave did not
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evaluate full-order models. The final model is
selected through diagnostic checking. For
example, the spectrum of (6.7) and the
spectrum of (6.8) may be compared with the
nonparametric spectrum of the raw data.

7. Summary and Conclusion

Our results from simulated data show conclu-
sively that once the inverse autocorrelations
have been estimated, the method of Haggan
and Oyetunji (1984) can easily be adapted for
subset moving-average selection. In our
simulation of Model 2, we identified the
correct model 19 times out 20 as the best
model and once as the third-best model,
whereas McClave’s method identified it 14
times out of 20. Our method also has the
advantage that it can be adapted to select a
number of models having similar values of
BIC around the minimum, with the final
model being selected through diagnostic
checks. In the search for the best subset model
all the full-order models are also evaluated, so
that if the correct model is a full-order model,
it will be so identified through this subset
selection method.

Bhansali (1983) has also pointed out that,
compared to existing methods of fitting
moving-average models, like those of Walker
(1961), Hannan (1969) and Box and Jenkins
(1970), the method of inverse autocorrela-
tions has a number of advantages. It demands
less computational effort and guarantees
invertibility.

The inverse autocorrelation function is now
receiving the prominence it deserves because
it has made MA modelling easy. Not only this,
it is proving to be more useful in model identi-
fication than the traditional partial auto-
correlation function. Although both partial
autocorrelations and inverse autocorrelations
can be used to determine the order of AR to
fit, Cleveland (1972) has shown that inverse
autocorrelations will also indicate which lags
have coefficients that are equal to zero. Cleve-
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land pointed out that the inverse autocorrela-
tions of the original 197 observations of Series
A, Box and Jenkins (1970), suggested the
model

Xr + alXt—l + azx_z + (17X,_7 + u = g&.

After applying the subset autoregression
method of Haggan and Oyetunji (1984) to
Series A, the best model fitted was

X~.38X,-.22X, . 18X, ,-3.66 = ¢, ,
5% = .095

which agrees with Cleveland’s suggestion.
Box and Jenkins fitted

X—92X, = 1.45+¢~.58¢,,, 6% = .097.

In Section 6 we have shown that it is feasible
to estimate inverse autocorrelations using
Chatfield’s time-domain method. The method
is much easier and much faster than frequen-
cy-domain methods. However, when using
Chatfield’s method, the number of inverse
autocorrelations that can be estimated is limit-
ed to the order of AR fitted. Although this
time-domain estimation looks promising,
there is still a lot of work to be done. As Chat-
field himself pointed out, the properties of
time-domain estimation still have to be inves-
tigated.

8. Note

In practice, energy data have been fitted by
moving-average processes. For example,
Brubacher and Tunnicliffe-Wilson (1976)
have fitted a complex moving-average process
to the differenced series of hourly total
electricity demand in the province of Ontario,
Canada. Application of the subset approach
described in this paper would yield a simpler
moving-average process.

Abraham and Ledolter (1984) have suggest-
ed that it may not be worthwhile estimating
parameters in moving-average processes
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using ri(k) since maximum likelihood esti-
mates are now readily available. Using simu-
lated AR (2) data, they suggested that inverse
autocorrelations may lead to underestimation
of the order of an autoregressive process espe-
cially for small sample sizes. In this paper we
have used neither partial autocorrelation nor
inverse autocorrelation for order determina-
tion. We used AIC and BIC. However, using
the inverse of Abraham and Ledolter’s argu-
ment, one can suggest that partial auto-
correlations may lead to overestimation of
order. Maximum likelihood estimates are
readily available but they are time consuming.
We have shown that by using inverse auto-
correlations, fast and efficient algorithms can
be developed for fitting moving-average
processes.
parameters are already given in Bhansali
(1980, 1983).

Properties of such estimated
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Computing Methods for Variance Estimation
in Complex Surveys

D. R. Bellhouse!

Abstract: A description is given of a computer
program which calculates estimates of the
variance — covariance matrix for estimates of
means, totals and proportions at any stage of a
multistage sampling design. The computer
program uses tree traversal algorithms in
which the sampling design structure is made

1. Introduction

Several computer programs have been devel-
oped to estimate standard errors of popula-
tion estimates in sample surveys. Francis
(1981) has given a summary of eleven of these
programs. In some of the programs, for
example CLUSTERS or SUPERCARP
which are both described in Francis (1981),
estimated standard errors or variances may be
obtained for some specific sampling designs.
In other programs, for example HES VAR X-
TAB, described in Francis (1981), or sub-
programs in OSIRIS IV, described in Vinter
(1980), the estimated variances for complex
surveys are obtained by balanced repeated
replication techniques. Thus, a survey
researcher, when designing a survey in
conjunction with these programs, is faced with
one of two choices: choose a design which fits
into one of the programs to obtain exact

! Department of Statistical & Actuarial Sciences,
University of Western Ontario, London, Ontario,
Canada.

equivalent to an unbalanced tree. Extensions
to post-stratification and variance estimation
for complex statistics are also discussed.

Key words: Multistage sampling; variance
estimation; tree structures.

variance estimates, or choose a more general
design and obtain approximate variance
estimates. The computational technique
described in this paper is a generalization of
the researcher’s first choice. It provides a
method to compute exact variance estimates
for general complex sampling designs based
on the associated finite population sampling
theory.

The computer program which implements
these computational techniques is currently
under development. To use this program, it is
necessary only to provide the following
information: the name of the sampling design
and estimation procedure to be used at each
stage, the size variable if a probability
proportional to size sampling design has been
used, the sample and population sizes, and the
sample data in the appropriate order. The
original method was described by Bellhouse
(1980). A summary of this method is provided
as well as extensions to post-stratification, to
estimation of regression and other complex
statistics, and to collapsed strata.



324

2. Variance-Covariance Estimation in Gen-
eral Multistage Designs

2.1. Sampling Theory Background

Consider a single-stage cluster sample of size n
with sampled cluster totals x;, ..., x, and
Vi, ..., Y, fOr two variables x and y. A linear
estimator of the population total Y, of the
variable y say, is Y = él w;y; where w;,
i=1,...,n,are weights either fixed in advance
or determined from population and sampled
auxiliary variables. The estimated covariance
between X and Y may be described in general
terms as cov()? ,Y) = g(x, ¥s), a function
of the sampled cluster totafst where x, =
(x1, --o» %), s = (V1 .-, y,) and s denotes the
sample. The estimated variance, var(f’) =
8(ys> Ys), is usually a quadratic form in y,. Rao
and Vijayan (1977) have obtained the neces-
sary form of the nonnegative quadratic unbi-
ased estimate of the variance, var(f/). The
covariance can be obtained by the standard
technique of finding the variance of D=X-Y.

Most of the standard unistage sampling
estimators are linear in y. Their variances and
covariances can be obtained from sampling
texts such as Cochran (1977) or derived from
the result of Rao and Vijayan (1977). The first
step in the development of the computer
program was to write FORTRAN subroutines
which obtained estimates of means or totals
and variance-covariance estimates for various
unistage sampling designs and estimators.
These subroutines include: simple random
sampling using the sample mean or ratio
estimator; sampling with probability propor-
tional to size (pps) usihg the Horvitz-Thomp-
son estimator with Sampford’s (1967) design
or the randomized pps systematic sampling
design with joint inclusion probabilities given
by Hidiroglou and Gray (1975); and cluster
sampling using simple random sampling of
clusters with either the unbiased estimator or
the ratio estimator, or using probability
proportional to the size of the cluster. The
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subroutine for unistage ratio estimation may
be used for calculating the separate ratio
estimator and its variance estimate. Theoreti-
cally, any pps sampling design could be used in
this program in conjunction with the Horvitz-
Thompson estimator. It is necessary only for
the program user to write a subroutine which
calculates the joint inclusion probabilities for
the given sampling design.

Two-stage sampling variances and covari-
ances may be obtained using the unistage sub-
routines. Raj (1966) and Rao (1976) have
obtained general formulations of the variance
of ¥ where the estimate Y is based on a two-
stage sample. Bellhouse (1980) has given the
associated covariances for each method. Both
methods are of the form

~ ~ n .
COV(X7 Y) = g(,)\e,s’ Xs) +i§] ViGCi, (1)
based on estimates
A n
X = 21 w; XA,‘ 9 (2)
i=
and
n Y
Y=X2 wy,

where g(%,, y,) is a copy of g(&, y;) with x;
replaced by X, and y, replaced by )?S.NThe coef-
ficients w; and v,-,~i =1, ..., n,~are known
constants, and ¢, is the estimated covariance
between x; and y; within the sampled primary
i,i=1, ..., n. Stratified sampling is obtained
upon setting g(x,, y;) = 0in (1) andn = Nin
the remaining term of (1) where N is the popu-
lation size of primaries or the total number of
strata.

This general formulation can be used
recursively to obtain estimates and variance-
covariance estimates for any multistage
design. Consider three-stage sampling; the
extension to four or more stages is straight-
forward. In this situation, a sample of primary
units is obtained, then samples of secondary
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units within each primary, and finally samples
of tertiary units within each secondary. Begin
at the final stage of sampling. Using the cluster
sampling subroutines on the tertiary units,
obtain estimates of the secondary totals or
means and the associated variance-covariance
estimates. Then go to the next stage up. Using
formulae (1) and (2) with the estimates x,, 25
and ¢; calculated from the previous stage,
obtain estimates of the primary totals or
means and the associated within primary
variance-covariance estimates. Again, go to
the next stage and repeat the same procedure.
In this instance in formulae (1) and (2) X, and
y, are the estimated primary totals and ¢,
i~= 1, ..., n, are the estimated covariances
within primaries.

One way to computerize this general
estimation procedure is to impose a tree
structure on the sampling design. In the
traversal of the tree, all the appropriate
calculations are made.

2.2.  Tree Structures and Multistage Designs

The terminology used here for tree structures
is that of Knuth (1968). For a k-stage sampling
design a k-level tree is constructed; and for a
k-stage sampling design with stratification
a(k+1)-level tree is constructed. The tree will
be unbalanced if there are unequal sample
sizes at any stage of sampling other than the
final. The nodes at the ith level in the tree
contain the relevant information about the ith
stage of sampling. The number of nodes at the
ith level of the tree corresponds to the number
of sampling units at the (i-1)th stage of
sampling. Measurements on the sampled units
at the final stage of sampling are stored in a
separate data file appropriately ordered.

The method is illustrated by a simple
example. Consider Data Set 2 given by
Kaplan et al. (1979) to test the accuracy of the
calculations performed by a number of sample
survey package programs. The design used
was stratified two-stage sampling with three
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strata. Within each stratum, a two-stage
sample of three primaries was chosen with five
units within each primary. The tree structure
which corresponds to this sampling design is
given in Fig. 1. Below the tree in Fig. 1 is the
data file appropriately ordered. The vertical
lines below the data values indicate the
boundaries of the subsamples at the final stage
of sampling. The tree in Fig. 1 is a balanced
tree of three levels containing thirteen nodes
labelled A, B; (i=1,2,3)and C; (i = 1, 2, 3;
j=1,2,3). Node A is the root of the tree and
nodes C;; are terminal nodes.

The general tree construction algorithm
used here has the following pattern. At any
level in the tree, work from left to right. For
each node in the current level, specify the
number of nodes emanating from it to the next
level. New storage locations for these lower
level nodes and pointers to them are con-
structed. Then move to the next lower level.
To construct the tree in Fig. 1, the number 3 is
given to node A resulting in the creation of
three storage locations for B, B,, and Bj.
Pointers to these storage locations are stored
in A. The three branches from A to B;, B,,
and B; correspond to the three strata in the
design. The next step in the tree construction
is to assign the number 3 to node B,. Three
new storage locations C;;, C, and C;; are
created and pointers to these locations are
stored in B,. The three branches in this sub-
tree correspond to the three primary units
chosen in stratum 1. Next, the number 3 is
given to B, creating C,;, Cy,, and C,; with the
appropriate pointers in B,. Finally, the
number 3 is given to B; creating Cs;, C;,, and
Cy;. At each step of the tree construction,
additional information concerning the
sampling design and desired estimator are
given. At the root, node A, it is necessary to
specify that the branches are strata. In each
node B,(i = 1, 2, 3) the information given is
that the design is simple random sampling of
three primary units from a total of fifteen with
the sample mean as the estimator. Finally, at
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TREE REPRESENTATION OF KAPLAN et al. (1979) TEST DATA SET 2

LEVEL 1 ROOT OF THE TREE

LEVEL 2

LEVEL 3

the third level of the tree, the terminal nodes,
C;,i=1,2,3;j=1,2, 3 contain information
about the “last stage of sampling,” the sub-
sampling of the primaries within the strata. In
particular, the information given in each node
is that the design is simple random sampling of
five out of ten secondaries with the sample
mean as the estimator. Finally, the data file
that appears in Fig. 1 isin a specific order. The
first five items belong to node C,, i.e. they are
the measurements on the five secondaries
within the first primary in the first stratum.
The next five items belong to node C,,, the
following five to C;; and so on. Note that the
data file is not part of the tree structure.

The type of traversal used in the program is
endorder: the left-most subtree is traversed,
then the second to left-most, and so on until
the right-most subtree is traversed, and then
the root of the subtree is visited. The algorithm
used is a variation of one in Knuth (1968, pp.
317-319 and 560). At the time of construction
of the tree, only the forward links exist. A pass
could be made down the tree but not up. The
backward links are created at the traversal
stage. When a new node is reached in the

3 STRATA

3 SUBSAMPLES
PER
STRATUM

DATA

traversal of the tree, a back pointer is given to
its root. With endorder traversal, the nodes in
Fig. 1 would be visited in the order C;,C,,C,3
B C51CpCysB2C31 CinCisB3A.

Assume that the population total is the item
of interest. The calculations are performed as
follows. Since the tree traversal is endorder,
then the first node visited is C,;. The sample
size of five indicates that five data points must
be read from the data file, in this case the
measurements 1,2, 3,4, 5. Using the informa-
tion about the design and the estimate, a sub-
routine is called to calculate the estimate Y =
30 and v(f’) = 25. These values are stored in
node B,. The next node visited is C,, and the
next five data items 2, 3, 4, 5, 6, are obtained
from the file. The estimate ¥ = 40 and v(Y) =
25 are calculated from these data and stored in
B,. Then C; is visited, data points 3, 4,5, 6,7
are read from the file and ¥ = 50 and v(f’) =
25 are stored in node B,. Then node B, is
visited. From the lower level of the tree or the
lower stage in the design all the necessary data
has been obtained. The estimate of the total
for this primary is ¥ = 15(30 + 40 + 50)/3 =
600 and the variance estimate
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v(Y) = 15(15-3)[(30-40)? + (40-40)* +
(5040)’)/[(3) (2)] + 15(25 + 25 + 25)/3 =
6375. The values ¥ = 600 and v(Y) = 6375 are
stored in node A. The next nodes visited are
C,i, sz and C,;, in that order, from which
values Y = 30, 40 and 50 respectively and v(Y)
= 25, 25 and 25 respectively are calculated and
stored in B,. Then B, is visited and the calcula-
tions Y = 600 and v()}) = 6375 are made and
stored in A. Then nodes Cs;, C;; and Cg3, in
that order, are visited and Y = 30, 40 and 50
respectively and v(f’) = 25, 25 and 25 respec-
tively are stored in node B;. Then B is visited
and the calculation Y = 600 and v(Y) = 6375
are stored in A. Finally, node A is visited and
Y = 600 + 600 + 600 = 1800 and v(Y) = 6375
+ 6375 + 6375 = 19125 are calculated. The
standard error of the estimate of the mean
(19125)"7/450 = .31 agrees with the Kaplan et
al. (1979) value.

The previous example is very simple and
not indicative of typical survey data. Although
the calculations for the preceeding example
took only 3 seconds of CPU time on a PRIME
400 minicomputer, it remains to be seen
whether the computing time would be exces-
sive for larger and more complex surveys.
Therefore the author obtained a larger data
set which used a complex design. The data are
from a survey of North American Indian
children carried out in Canada during 1981—
82. Six hundred responses with five variables
each were analyzed. The Indians were divided
into six strata by region of dwelling within
Canada. Within a stratum, two, three or four
enumeration areas (a Statistics Canada
Census geographical area) were chosen by
probability proportional to the size of the
enumeration area. Sampford’s (1967) design
was assumed in the calculation of the joint
inclusion probabilities. Within a chosen
enumeration area, a number of families were
chosen by simple random sampling and each
child in a family was interviewed. The
program produced both the estimates and
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estimated variance-covariance matrix. The
calculations took 17 seconds of CPU time.
The program also calculated and printed the
estimates and variance-covariance estimates
within each stratum so that interstratum
comparisons could be made.

3. Post-Stratification

The method of calculating post-stratified
variance estimates is based on the theory of
Williams (1962). Suppose L post-strata are
constructed. Let y denote the measurement
on a sampling unit in the data file. Construct L
new variables by setting y, = y if the sampling
unit is in the Ath post-stratum, 0 otherwise,
h =1, ..., L. Make one pass through the tree
structure which defines the sampling design.
During this pass, calculate an estimate of the
population mean for each of the L data sets
defined by the variables y,, h = 1, ..., L. The
resulting estimate Y, is the estimate of the
mean in the post-stratum A, h =1,...,L. The
post-stratified estimate is )‘ W,,Y,,,
where W,, h = 1, ..., L are known 'stratum
weights provided in advance. Now transform
the original data points y by setting x = y — A?,I
if the sampling unit is the Ath post-stratum,
h =1, ..., L. Then make a second pass
through the tree structure. On this pass, calcu-
late the estimated variance of X , the estimated
total based on the data x. The resulting esti-
mate, var(X) will be var(Y,), the post-
stratified variance estimate of the estimated
total f/,, = N?,, for the data y, where N is the
total population size. The estimated variance
of ?I,, var(?,,) = var(f/,,)/Nz.

This method requires two passes through
the data and the tree structure. However, only
one set of operations by the program user is
necessary: provide the stratum weights and
the key words and numbers which describe the
sampling design, the sample sizes, and other
relevant information to perform the calcula-
tion.
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4. Variance Estimates for the Simple Linear
Regression Coefficient

The population regression coefficient may be
expressed as

N —
. jzlyj(xj_X)
B=——

N

3 (x-X)°

j=1

where N is the population size and the sub-

script j refers to an individual observation.
This may be estimated by

A o
2z Wiz

j€s
where s denotes the sample, unistage or multi-
stage, w; are the weights fixed in advance
depending on the design, and where z;; =

Yz(xj— X), 2= (x;— X)* and

X = = wxi/ 2 w;. Let the transformed
J€s j€s -
variable
t/ = Z]j— Bsz . (4)

Three passes through the data and tree
structire are necessary to calculate the
estimated variance of B. On the first pass,
Ex Wix; and% w;, respectively, the estimated
total for the x’s and the estimated total for
data which all have value 1, are calculated.
After the second pass, B is calculated from
(3). On this pass, both x and y are read from
the data file and new variables z; and z, are
derived. A one-pass algorithm could be
derived to replace the first two passes. This
would be analogous to the calculator and
original formulae for sums of squares of
deviations from a mean. As in this latter case,
some numerical accuracy could be lost in the
one-pass formulae. On the third pass through
the tree structure and data file, calculate the
estimated variance of T, the estimated total
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based on the variable ¢t from (4). Then
var( f)/( Z, w;z5) is the required variance esti-
mate, where var(7) is the variance estimator
based on the derived variable ¢.

The program could also be adapted to
compute variance estimates for other non-
linear statistics provided that the estimates
can be expressed as functions of estimated
totals. For example, both the separate and
combined ratio estimators and their variance
estimates can be obtained in one pass through
the data and tree structure. For the combined

ratio estimator, say Rc, estimates Y, )_:',
var(f’), var( ?) and cov();(, 7) can be obtained
in one pass. Then R. = Y/X and var(R,) =

(var(Y) - 2R, cov(X,Y) + R? var(X)}/X2. For
the separate ratio estimator of the total,
estimates of the subtotals and their estimated
variances at the last stage of sampling are
obtained by ratio estimation using the
appropriate unistage subroutine. The tree
traversal proceeds in the usual manner using
these estimates of totals and variance
estimates. Rao (1982) has given a review of
variance estimation techniques for ratios,
multiple regression and correlation coeffi-
cients based on the Taylor linearization
method.

5. Estimation with One Unit per Stratum

When stratification has been carried out to the
extent that there is only one unit per stratum,
the method given in Cochran (1977) or the
method of Hansen, Hurwitz and Madow
(1953) utilizing an auxiliary variable may be
used in the program to obtain variance
estimates. Only one pass through the tree
structure and data file is necessary. During
this pass, only estimates of means or totals are
obtained at each stage. The final node visited
in the tree by endorder traversal is the root of
the tree. When this node is reached, estimates
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of the stratum totals will have been calculated
and stored in this node. With the size of the
groups and the auxiliary variable, if present,
specified beforehand, the variance estimates
are obtained using formulae (5A.56) or
(5A.57) in Cochran (1977).
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