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Diagnostics for linear regression models have largely been developed to handle nonsurvey
data. The models and the sampling plans used for finite populations often entail stratification,
clustering, and survey weights. In this article we adapt some influence diagnostics that have
been formulated for ordinary or weighted least squares for use with unclustered survey data.
The statistics considered here include DFBETAS, DFFITS, and Cook’s D. The differences
in the performance of ordinary least squares and survey-weighted diagnostics are compared
in an empirical study where the values of weights, response variables, and covariates vary
substantially.
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1. Introduction

Diagnostics for identifying influential points are staples of standard regression texts like

Cook and Weisberg (1982), Neter et al. (1996) and Weisberg (2005). These diagnostics

have been developed for linear regression models fitted with nonsurvey data. The

diagnostic tools provided by current, popular software packages are generally based on

ordinary or weighted least squares (OLS or WLS) regression and do not account for

stratification, clustering, and survey weights that are features of data sets collected in

complex sample surveys. The OLS/WLS diagnostics can mislead users either because

survey weights are ignored, or the variances of model parameter estimates are estimated

incorrectly by the standard procedures. Hence, the goal of this article is to adapt and

extend some of the standard regression diagnostics to the survey setting, and, where

necessary, develop new ones.

A fundamental question is whether a few unusual points will be troublesome in a survey

data set where the number of observations may be in the hundreds or thousands. In fact,

examples from real surveys show that there is a need for influence diagnostics since a

small number of the sampled units with extreme values can play a crucial role in

estimators and their variances. For instance, in 1986, the Joint Economic Committee of the
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U.S. Congress released a study indicating a sharp increase in the percentage of wealth held

by the most affluent families in America. The richest 0.5% of families was estimated to

hold 35% of the wealth in 1983, whereas in 1963 this proportion was 25%. The finding was

proved to be wrong because a respondent with a very large weight was recorded to have

$200 million in wealth attributed to him when the correct number was $2 million (Ericksen

1988). The estimated share of wealth held by the richest 0.5% of families dropped to 27%

after the figure was corrected.

As in other statistical disciplines, outliers have been a well-known problem in survey

sampling (e.g., see Lee 1995). Usually outliers feature extreme values that may be

substantially different from the bulk of the data. Chambers (1986) characterized outliers

into two basic types: nonrepresentative and representative. The former means the value for

a sample unit is incorrect or the value is unique to a particular population unit, whereas the

latter refers to cases in which the values are correct and there are others like them in the

nonsample part of the population. There are diverse reasons for survey data containing

influential observations, such as editing error, observation error, or simply a skewed

variable. As Smith (1987) pointed out, “individual values can be influential in

randomization inference either when they are included in the sample or when they are not

in the sample,” and “diagnostics are useful in the former case.” A few nonsample,

nonrepresentative outliers, for example, can have a large effect on the error of an estimated

total but cannot be identified by diagnostics. Our analyses focus on discovering the sample

points that affect estimators of linear regression model parameters.

Another feature of survey data is that extreme values of response variables or covariates

and influential values may not necessarily refer to the same observations due to sizes of

sample weights. The distinction between the two concepts has been noted by some survey

researchers (see Gambino 1987; Srinath 1987).

The premise in this research is that an analyst will be looking for a linear regression

model that fits reasonably well for the bulk of the finite population. We have in mind two

general goals. First, the influence diagnostics should allow the analyst to identify points

that may not follow that model and have an influence on the size of estimated model

parameters, their estimated standard errors, or both due to outlying values of dependent or

independent variables. Second, the diagnostics should identify points that are influential

because of the size of the survey weights. Weights may be extreme because of the way the

sample was selected or because of subsequent nonresponse or calibration adjustments.

Conventional model-based influence diagnostics mainly use the technique of row

deletion, determining if the fitted regression function is dramatically changed when one or

multiple observations are discarded. The statistics which are widely adopted include

DFBETAS, DFFITS, and Cook’s Distance, among others (e.g., see Neter et al. 1996).

We review some of these in Section 2.

In developing diagnostics for survey data, a basic question is which theory should be

used for motivation – design-based or model-based. The standard statistics listed above do

not have immediate application to randomization inference for sample surveys. As Brewer

and Särndal (1983) noted, the idea of robustness to departures from an assumed model

does not fit naturally into a purely design-based framework, because models are not used

directly in inference. However, the consideration of a model is needed to motivate the use

of diagnostic statistics in finite population inference. The goal of inference will be to
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develop procedures that permit “good” estimates of parameters for the core model, that is,

one that fits for most of a finite population. A byproduct of this thinking is that nonsample

points that do not follow the core model are not a concern in contrast to the problem of

estimating finite population totals where such representative outliers must be considered.

By omitting influential points, ideally, less biased and more stable estimates of underlying

model parameters will result.

A key point to bear in mind is that the measures that are in the literature for nonsurvey

regressions and the ones we present mainly have heuristic justifications only. There is

limited distribution theory to support the setting of cutoff values for statistics that gauge

whether a point is influential or not. Nonetheless, the measures in this article give some

practical, exploratory tools for identifying points for further examination. After reviewing

some standard diagnostics in Section 2, we sketch in Section 3 the method of pseudo-

maximum likelihood, which is used for estimating linear model parameters from survey

data. Section 4 adapts several diagnostics for use with complex survey data. An empirical

study in Section 5 compares and contrasts the information conveyed by OLS and survey-

weighted diagnostics. Section 6 is a conclusion.

2. Review of Traditional Techniques

The conventional diagnostic techniques are applied in the context of the regression model

Yi ¼ xTi bþ 1i; 1i , ð0;s2viÞ; i ¼ 1; : : : ; n ð1Þ

where Yi is a response variable for unit i, x i is a p-vector of fixed covariates, b is a fixed

but unknown parameter, the 1i’s are independent random variables with mean 0 and

variance s2vi. Of course, there are more elaborate random and mixed effect models

that may be appropriate in some applications, but we will not consider those here. In

matrix-vector notation, Model (1) is Y ¼ Xbþ 1, 1 , ð0;s2VÞ with Y ¼ ðY1; : : : ; YnÞ
T ,

X ¼ ðx1; : : : ; xnÞ
T , 1 ¼ ð11; : : : ; 1nÞ

T , and V ¼ diagðviÞ is an n £ n diagonal matrix.

The WLS estimator of b is b ¼ ðXTV21XÞ21XTV21Y. When V ¼ I, the n £ n identity

matrix, this reduces to the OLS estimator, b ¼ ðXTXÞ21XTY. We review some OLS

diagnostics in the remainder of Section 2.

2.1. Leverages and Residuals

In conventional model diagnostics, the residuals, e ¼ Y2 Xb, and the hat matrix,

H ¼ XðXTXÞ21XT , are the measures used to identify outlying Y and X values,

respectively. The diagonal element hii ¼ xTi ðX
TXÞ21xi of the hat matrix is called the

leverage of the ith case. A leverage value is usually considered as large if it is more than

twice its mean, p/n. The residuals, ei ¼ Yi 2 xTi b, are often rescaled relative to their

standard errors. The ratio of ei to sei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ð1 2 hiiÞ

p
, where s2 ¼

Pn
i¼1e

2
i =ðn2 pÞ is the

mean squared error (MSE), is called the internally studentized residual and denoted by ri.

Replacing s 2 with s 2 (i ), the mean squared error when the ith case is omitted in fitting the

regression function, we obtain an externally studentized residual

r*
i ¼

ei

sði Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 hii

p
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which follows the t distribution with n 2 p 2 1 degrees of freedom assuming that Model

(1) holds with vi ¼ 1 and with the additional assumption that the errors are normal.

2.2. Influence on Regression Coefficients: DFBETA and DFBETAS

DFBETA, the change in parameter estimates after deleting the ith observation, can

be written as DFBETA ; b2 bði Þ ¼ A21xiei=ð1 2 hiiÞ, where A ¼ XTX. If we let

C ¼ ðXTXÞ21XT ¼ ðcjiÞp£n, then the jth element of the DFBETA vector is bj 2 bjði Þ ¼

cjiei=1 2 hii (Belsley, Kuh, and Welsch 1980; referred to as BKW subsequently). If the

X’s are uniformly bounded, then cji ¼ Oðn21Þ. BKW suggest that the changes in the

estimated regression coefficients are often most usefully assessed relative to the model

variance of b. A scaled measure of the change can be defined as the following:

DFBETASij ¼
bj 2 bjði Þ

sði Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXTXÞ21

jj

q ¼
cjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
c2
jk

q r*
iffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 2 hii
p

where ðXTXÞ
21

jj is the ( jj )th element of ðXTXÞ21. The denominator of DFBETASij is

analogous to the estimated standard error of b with the sample standard error s replaced by

the delete-one version s(i ). The DFBETAS statistic is the product of a quantity of order

n 21/2, a t distributed random variable (the externally standardized residual r*
i ), and a

quantity, ð1 2 hiiÞ
21=2, that approaches 1 (assuming hii ! 0). BKW propose a cutoff point

of 2=
ffiffiffi
n

p
to identify influential cases. Thus, if all the observations in the sample follow an

underlying normal model, the X’s are bounded, and the leverages are small, roughly 95%

of the observations will have a DFBETAS statistic less than 2=
ffiffiffi
n

p
in absolute value. In

some samples, especially small or moderate size ones, this statement is less accurate since

hii may not be negligible and the term involving cji may not be near n 21/2. DFBETAS is

somewhat cumbersome to work with because an analyst must examine pn values. For each

observation i, there are p DFBETAS – one for each parameter.

2.3. Influence on Fitted Values: DFFIT and DFFITS

DFFIT is a statistic that summarizes the change in predicted values when an observation

is deleted, with the advantage that it does not depend on the particular coordinate system

used to form the regression model. DFFITS is constructed by rescaling DFFIT by the

estimated standard deviation of the predicted value, with the sample standard error

s replaced by the delete-one version s(i ). DFFITS can be expressed as the product of

a t distributed random variable and a function of the leverage:

DFFITSi ;
Ŷi 2 Ŷiði Þ

sði Þ
ffiffiffiffiffi
hii

p ¼
xTi b2 bði Þð Þ

sði Þ
ffiffiffiffiffi
hii

p ¼
hii

1 2 hii

� �1=2

r*
i

A large value of DFFITS indicates that the observation is very influential in its

neighborhood of the X space. A general cutoff to consider is 2; a size-adjusted cutoff

recommended by BKW is 2
ffiffiffiffiffiffiffiffi
p=n

p
, where p/n is the mean leverage.
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2.4. Cook’s Distance

Cook’s distance provides an overall measure of the combined impact of an observation on

all of the estimated regression coefficients b (e.g., see Cook 1977 and Weisberg 2005). It is

motivated by considering the confidence region of b, which at level 100ð1 2 aÞ% is given

by those values b* satisfying

ðb* 2 bÞTXTXðb* 2 bÞ=ps2 # Fð1 2 a; p; n2 pÞ

Using the same structure, Cook’s distance measure Di was proposed as

Di ¼ ðbði Þ2 bÞTXTXðbði Þ2 bÞ=ps2

This is a measure of the distance from b(i ) to b. If b(i ) and b are relatively far from each

other, this means that unit i has a substantial effect on the full sample estimate. Large

values of Di indicate observations that are influential on joint inferences about all the

parameters in the linear model. Although there is no formal distributional theory for Di, the

standard procedure, originally suggested by Cook, is to compare Di to the percentile values

of the Fð1 2 a; p; n2 pÞ distribution to make a judgment on influence.

Cook’s D can also be written in terms of the residual and leverage for unit i:

Di ¼
e2
i hii

ps 2ð1 2 hiiÞ
2
¼

r2
i

p

hii

1 2 hii

Atkinson (1982) suggested replacing s 2 by the deletion estimate s 2(i ), scaling the

statistic by the average leverage p/n, and then taking the square root to give a residual like

quantity. The resulting modified Cook statistic is

D*
i ¼

n2 p

p

� �1=2
hii

ð1 2 hiiÞ
2

e2
i

s2ði Þ

� �1=2

¼
n2 p

p

hii

1 2 hii

� �1=2

r*
i

�� ��
where r*

i is the externally studentized residual defined earlier. If n is large, a heuristic

cutoff for the modified Cook’s distance is 2 because r*
i has a t distribution.

3. Linear Regression Estimation With Complex Survey Data

One method of estimating parameters in linear regression using complex survey data is the

pseudo maximum likelihood (PML) approach, outlined by Skinner et al. (1989), following

ideas of Binder (1983). The first step of this approach is to write down and maximize the

likelihood when all finite population units are observed. Suppose that the underlying

structural model is the fixed-effects linear model given by (1). The pseudo maximum

likelihood estimator (PMLE) of b is b̂ ¼ ðXTWV21XÞ21XTWV21Y.

Model (1) may be appropriate for a population in which single-stage sampling is used,

e.g., hospitals or establishments from a business frame, or persons from an organizational

membership list. In populations where there is natural clustering, like students within

schools or households in neighborhoods, a model that accounts for intracluster correlation

among different units may be more realistic.

The regression estimator b̂, which incorporates the sample weights W, is approximately

design unbiased for the finite population parameter B ¼ ðXT
NV

21
N XNÞ

21XT
NV

21
N YN , where
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YN 5 ðY1; : : : ; YNÞ
T , VN 5 diagðv1; : : : ; vNÞ, and XT

N 5 ðx1; : : : ; xNÞ assuming that

the weights (wi’s) are constructed to produce design-unbiased estimates of finite

population totals. This estimator is also unbiased for the superpopulation slope b in model

(1), regardless of whether V is specified correctly or not. When the population is large,

the finite population parameter B should be close to the model parameter b if the model

is correctly specified, and therefore a design-based estimator of B should also estimate b.

If we assume V ¼ I, the PMLE reduces to b̂ ¼ ðXTWXÞ21XTWY, which is the case

we study in the remainder of this article. This estimator will be referred to as a survey

weighted (SW) estimator in the following discussion and is the one usually computed by

software packages that handle survey data.

Researchers who advocate model-based approaches may argue that the sample design

should have no effect in regression estimation as long as the design is ignorable and the

observations in the population and sample really follow the model. In that case, an OLS

estimator or WLS estimator that uses onlyV21 (notW) can be used to infer about the model

parameters. However, with survey data a theoretically derived model rarely holds for all

observations. First, the model may not be appropriate for every subgroup in the population;

second, some relevant explanatory variables may not be measured in the survey; third, the

true relations among the variables may not be exactly linear. In addition, informative

nonresponse can distort the model relationship observed in the sample compared to that in

the population because of the dependence of response on variables of interest.

Using sampling weights in a regression can provide a limited type of robustness to

model misspecification. From a model-based perspective, Rubin (1985), Smith (1988),

and Little (1991) argue that the sampling weights are useful as summaries of covariates

which describe the sampling mechanism. Pfeffermann and Holmes (1985), DuMouchel

and Duncan (1983), and Kott (1991) claim that the estimators using sampling weights are

less likely to be affected if some independent variables are not included in the model.

Thus, even if one is doing model-based analysis, using weights may provide some

protection against bias due to omitting certain regressors.

Another advantage of using the weighted estimators is the ability to say we are

estimating a population quantity with the price of generally larger estimated variances than

for OLS. If the working model is good, we expect that the point estimators b̂ and b should

be similar. However, if the model is misspecified, survey-weighted and OLS estimates can

be far apart, as illustrated in Korn and Graubard (1995). Use of the weights also seems, at

first glance, to be consistent with our goal of finding a model that fits for most of the

population. With that reasoning, a unit with a large weight would represent a large portion

of the population and using the weight would reflect that. Although this intuitive

explanation of the meaning of a weight is sometimes reasonable, this is not always true.

A large weight may be the result of an extreme nonresponse or calibration adjustment that

reduces neither bias nor variance. It might also be a mistake, as in the example of the

misplaced decimal point in the example from Ericksen (1988).

Here we address cases where analysts will use survey weights to estimate regression

models. The diagnostics to be developed account for the effects of these weights with

some awareness of the possibility that large weights can be a source of influence. The

diagnostics should allow such cases to be identified so that an analyst can decide whether

to include them or not.
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4. Adaptations of Standard Techniques to Survey Regressions

Although survey weights are used in PMLE’s, implying that an analyst may be interested

in design-based properties, explicitly appealing to models is necessary to motivate

diagnostics. In this section, we examine residuals and extensions of DFBETAS, DFFITS,

and Cook’s D to survey data, relying on models to justify the forms of the diagnostics and

cutoffs for identifying influential points.

4.1. Variance Estimators

To construct several of the diagnostics, an estimator of the variance of the SW regression

parameter estimator is required. We use vðb̂Þ and vðb̂jÞ to denote a general estimator that

is appropriate from a design-based or model-based point of view. To calculate the

diagnostics, any of several options can be used for vðb̂Þ and vðb̂jÞ. When first-stage units

are selected with replacement, the sandwich estimator (Binder 1983) or replication

estimators like the jackknife can be constructed that are consistent and approximately

design-unbiased for single-stage or multistage sampling. These estimators are also

consistent and approximately model-unbiased under model (1) (e.g., see Li 2007). There

are also purely model-based estimators of the model variance of the PMLE b̂. For

example, an estimator of the model-variance under Model (1) is

vMðb̂Þ ¼ ŝ2A21
Xn
i¼1

w2
i xix

T
i

 !
A21 ¼ ŝ2A21XTW2XA21 ð2Þ

where A ¼ XTWX and

ŝ2 ¼
X
i[s

wie
2
i =ðN̂2 pÞ ð3Þ

with N̂ ¼
P

i[s wi and ei ¼ Yi ¼ xTi b̂. In the preceding formulas, s denotes the set of

sample units, rather than a sample variance as in Section 2. The estimator ŝ2 is

approximately design-unbiased for
PN

i¼1e
2
Ni
=N with eNi

¼ Yi 2 xTi B when p p N. The

estimator ŝ2 is also approximately model-unbiased for s2 and reduces to the usual OLS

estimator when wi ; 1.

The model-based estimator above is useful because it explicitly shows the estimates

of model parameters. With some simplifications, described later, (2) is helpful in setting

heuristic cutoffs that can be used with the diagnostics. There are variance estimators that

are more robust to departures from Model (1) (e.g., see Valliant et al. 2000) but are not

convenient for setting cutoffs.

4.2. Leverages

The hat matrix associated with the PMLE b̂ is H ¼ XA21XTW. The leverages are the

diagonal of the hat matrix and are equal to hii ¼ xTi A
21xiwi. Li and Valliant (2009) cover

their properties in detail; we sketch them here since leverages will be part of the empirical

study in Section 5. Leverages depend on covariates and weights but are not affected by

variation in Y. A leverage can be large, and, as a result, influential on predictions, when an

xi is considerably different from the weighted average, �xw ¼
P

i[s wixi=
P

i[s wi, or when

the weight wi is much different from their sample average, �w ¼
P

s wi=n.
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4.3. Residual Analysis

Standardizing residuals is helpful so that their variance is approximately 1. In the OLS

case, a residual is scaled either by
ffiffiffiffiffiffiffiffiffiffi
MSE

p
or by its estimated standard error. Under Model

(1), the residual for unit i based on the PMLE is ei ¼ Yi 2 xTi b̂ and its model variance

is EM e2
i

� �
¼ s2 ð1 2 hiiÞ

2 þ
P

i 0–i h
2
ii 0

� �
. Since hii 0 ¼ Oðn21Þ, (e.g., see Li and Valliant

2009), the term in the brackets has the form 1 þ o(1), and EM e2
i

� �
8 s2. We can

standardize the residual for unit i as ei=ŝ and compare it to percentiles from the

distribution of a standard normal random variable. An ad hoc alternative would be to use a

t-distribution with n 2 p degrees of freedom as the reference distribution for small or

moderate size samples. If ei is not normal, the Gauss inequality (Pukelsheim 1994) is

useful for setting a cutoff value:

Gauss inequality: If a distribution has a single mode at m0, then P{jX 2 m0j . r} #

4t2=9r 2 for all r $
ffiffiffiffiffiffiffiffi
4=3

p
t where t2 ¼ E½ðX 2 m0Þ

2�.

According to Model (1) the residual has a symmetric distribution with its mode and mean

at zero. Setting t2 ¼ s2 ¼ var ðXÞ, the Gauss inequality with r ¼ 2s implies that the

absolute value of a residual has about 90% probability to be less than twice its standard

deviation and with r ¼ 3s about 95% probability to be less than three times its standard

deviation. If we rescale the residuals by a consistent estimate of s, we can use either 2 as a

loose cutoff or 3 as a strict one to identify outlying residuals. These cutoffs are arbitrary

and are only intended as a way of deciding which points should be examined more closely.

Depending on an analyst’s preference, larger cutoffs could be used which would result in

fewer points being scrutinized.

Appealing to a model is necessary when analyzing residuals because it is not feasible

to define the distribution of residuals from the design-based point of view, even asymp-

totically. For example, in single-stage sampling, ei ¼ Yið1 2 hiiÞ þ
i 0–i[s

P
hii 0Yi 0 . Although

the second term,
i 0–i[s

P
hii 0Yi 0 , is a linear combination of the Yi 0’s, the first, which is specific to

unit i, is not. Therefore, a large sample central limit result for repeated sampling does not

apply to ei, the residual for a specific unit. However, if we approach the analysis with a

working model in mind, plots of residuals are helpful in highlighting data points suspected

of unduly affecting the fit of regression. For instance, plots of observed Y’s or residuals

against predicted values are still useful.

4.4. DFBETAS

Taking the sampling weights W into consideration, DFBETAi ¼ b̂2 b̂ði Þ ¼

A21xieiwi=ð1 2 hiiÞ. This equality uses the same calculation needed for the jackknife

variance estimator (see e.g., Valliant et al. 2000, Section 5.4.2). Although the formula for

the DFBETA statistic looks very much like the one in the OLS case, there are differences

in both numerator and denominator because sample weights are involved in the leverages

and residuals. However, the formulas have exactly the same form as the one for WLS

with weights inversely proportional to model variances. To create a complex sample

version of DFBETAS, we need to divide DFBETA by an estimate of the standard error

of b̂ that accounts for unequal weighting, stratification, and other design complexities.
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Using DFBETAij ¼ ðA21xieiwiÞj=ð1 2 hiiÞ ¼ cjiei=ð1 2 hiiÞ and a variance estimator,

vðb̂jÞ, for b̂j, a scaled statistic DFBETAS can be constructed as in the OLS case.

We propose a specification of DFBETAS statistic as

DFBETASij ¼
cjiei=ð1 2 hiiÞffiffiffiffiffiffiffiffiffiffi

vðb̂jÞ

q
The purely model-based estimator in (2), vMðb̂jÞ ¼ ŝ2½A21XTW2XA21�jj ¼

ŝ2
Pn

i¼1 c
2
ji where c2

ji is the jjth element of A21w2
i xix

T
i A

21, is convenient for motivating

cutoff values:

DFBETASij ¼
cjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i 0¼1
c2
ji 0

q �
ei

ŝ
:

1

1 2 hii
ð4Þ

Using the order conditions cjk ¼ Oðn21Þ and hii ¼ Oðn21Þ, we approximate the

DFBETAS statistic as the product of two terms, DFBETASij 8 Oðn21=2Þ�Nð0; 1Þ. The first

term, with an order of n 21/2, can be approximated by n 21/2 when the sampled units have

similar X values and weights. An observation i may be identified as influential on the

estimation of b̂j if jDFBETASijj $ z=
ffiffiffi
n

p
for z ¼ 2 or 3. An ad hoc alternative would

be to use a cutoff of t0:025ðn2 pÞ=
ffiffiffi
n

p
where t0:025ðn2 pÞ is the 97.5 percentile of the

t-distribution with n 2 p degrees of freedom.

4.5. DFFITS

Multiplying the DFBETA statistic by the xTi vector, we obtain the measure of change in

the ith fitted value due to the deletion of the ith observation, DFFITi ¼ Ŷi 2 Ŷiði Þ ¼

xTi ðb̂2 b̂ði ÞÞ ¼ hiiei=ð1 2 hiiÞ. In general, the scaled version is defined as

DFFITSi ¼
hiiei=ð1 2 hiiÞffiffiffiffiffiffiffiffiffiffi

vðb̂jÞ

q
where vðb̂jÞ is appropriate to the design and/or model. The model variance is again

convenient for motivating cutoffs.

The model variance of Ŷi is VMðŶiÞ ¼ s2ðHHT Þii ¼ s2
P

i 0 h
2
ii 0 , which is estimated by

vMðŶiÞ ¼ ŝ2
P

i 0 h
2
ii 0 . In OLS,

P
i 0 h

2
ii 0 ¼ hii because HHT ¼ H when A ¼ XTX, but this

simplification does not occur when H contains the survey weights. Under single-stage

sampling and Model (1), DFFITi is divided by the square root of vMðŶiÞ and rearranged as

follows:

DFFITSi ¼
hii

1 2 hii

ei

ŝ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i 0¼1
h2
ii 0

q
When the sample weights do not have a large variation, we can use the rough

approximation
P

i 0 h
2
ii 0 < hii. Because the mean of the leverages is p/n (see Valliant et al.

2000, Lemma 5.3.1), we set the cutoff value to be z
ffiffiffiffiffiffiffiffi
p=n

p
(z ¼ 2 or 3) for using DFFITS

to determine the influential observations.
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4.6. Distance Measure (Extended and Modified Cook’s Distance)

A measure of distance from b̂ði Þ to b̂ for survey data can be constructed similar to a Wald

Statistic, depending on the regression model of interest and the sampling design for the

survey data. We propose a statistic based on the standard Cook’s D and name it the

extended Cook’s Distance in our study. The statistic is

EDi ¼ ðb̂2 b̂ði ÞÞT ½vðb̂Þ�21ðb̂2 b̂ði ÞÞ ð5Þ

If b̂ði Þ were replaced by an arbitrary value b0, (5) would have the form of a confidence

ellipsoid. The new statistic EDi can be compared to a chi-square distribution. If EDi were

exactly equal to the ð1 2 aÞ £ 100% quantile of the chi-square distribution with p degrees

of freedom, then the deletion of the ith case would move the estimate of b to the edge of a

100ð1 2 aÞ% confidence ellipsoid based on the complete data. A large value of this

quadratic form indicates that the ith observation is likely to be influential in determining

joint inferences about all the parameters in the regression model. Another formulation

of the extended Cook’s Distance can be derived from the Wald F statistic (Korn and

Graubard 1990) as

ED 0
i ¼

n2 pþ 1

np
ðb̂2 b̂ði ÞÞT ½vðb̂Þ�21ðb̂2 b̂ði ÞÞ

and its value can be compared with quantiles from an F distribution. How well the

distribution of ED 0
i can be approximated by an F depends on the nearness of the

distribution of the residuals to normality.

Like the Cook’s Distance, the proposed extended Cook’s Distance statistic is related

to the sample size in order of magnitude. If the weights are O(N/n), then A ¼ OðNÞ

elementwise, and b̂2 b̂ði Þ ¼ A21xieiwi=ð1 2 hiiÞ ¼ Oðn21Þ. Thus, EDi ¼ Oðn21Þ and,

when n is large, very few observations can be identified to be influential even if small tail

percentiles of F and chi-square statistics are adopted as cutoffs. Following Atkinson

(1982), we modify the proposed extended Cook’s Distance to solve this problem. Suppose

the working model is (1). Then, using the model-based variance estimator in (2),

EDi ¼ ðb̂2 b̂ði ÞÞT vMðb̂Þ
� �21

ðb̂2 b̂ði ÞÞ

¼
e

ŝ

	 
2 1

ð1 2 hiiÞ
2
wix

T
i A

21 A21XTW2XA21
� �21

A21xiwi

¼
e

ŝ

	 
2 1

ð1 2 hiiÞ
2
wix

T
i XTW2X
� �21

xiwi

ð6Þ

Under some reasonable conditions

wix
T
i ½X

TW2X�21xiwi ¼ Oðn21Þ

and, if the weights are not too variable, this quantity has a mean of approximately p/n.

Hence, we suggest that an analyst take the square root of the extended Cook’s D statistic

and rescale the root by ð p=nÞ21=2. The statistic MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nEDi=p

p
, called the modified
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Cook’s D, can be judged in terms of a standard normal distribution, implying that we can

use 2 or 3 as the cutoff value.

5. Empirical Illustrations

This section illustrates the performance of the proposed statistics in Section 4. We will use

the 1998 Survey of Mental Health Organizations (SMHO) which contains a variety of

variables that are suitable for linear regression analysis. The 1998 SMHO collected data on

approximately 1,530 specialty mental health care organizations and general hospitals that

provide mental health care services, with an objective to develop national and state level

estimates for total expenditure, full-time equivalent staff, bed count, and total caseload by

type of organization. The sample for this survey was based on a stratified single-stage

design with probability proportional to size (PPS) sampling and is described in more detail

in Li and Valliant (2009) and Manderscheid and Henderson (2002). The measure of size

(MOS) used in sampling was the number of “episodes,” defined as the number of

patients/clients of an organization at the beginning of 1998 plus the number of new

patients/clients added during calendar year 1998. The varying sizes of the mental health

care organizations result in the values of collected variables in the sample having wide

ranges, which may cause some observations to have relatively large influence on the

parameter estimates of a linear regression.

The model of interest is to regress the total expenditure of a health organization on the

number of beds set up and staffed for use and the number of additions of patients or clients

during the reporting year. The total expenditure was defined as the sum of salary and

contract personnel expenses, other contract and operating expenses, and depreciation

expenses, and then divided by 1,000. The number of beds was the total number of hospital

beds and residential beds. Scatterplots of expenditures versus beds and additions are

shown in Figure 1. This figure will be described in more detail later in connection with the

DFBETAS analysis. Note that there is one extreme value in the upper right of each panel.

This case has an extremely large total expenditure ($519,863.3 in thousands of U.S.

dollars), number of beds (2,405), and number of additions (79,808), but a small sample

weight of 2.22. We omit it from several of the subsequent plots to avoid distorting their

scales. It is detected as influential by all OLS and SW diagnostics.

For this illustration, we ignored the stratification in the original sampling design and

treated the sample as selected using single-stage sampling with varying selection

probabilities. Of course, the diagnostics given earlier will accommodate stratification

through the use of appropriate variance formulae. A total of 875 observations was used in

the regression due to missing values in the independent and dependent variables.

Table 1 gives a summary of the quantile values of the variables involved in the

regression, including the survey weights. The total expenditure has a maximum of

519,863.3, which is almost 30,000 times the minimum, 16.6. The number of beds and the

number of additions also have significant differences between their maxima and minima.

Sample weights range from 1 to 158.86. The weights we use in analysis include a

nonresponse adjustment which was done separately by design stratum. In some cases,

units that were selected with certainty in the initial sample did not respond and some of the
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responding certainties had their weights adjusted to be larger than 1. A total of 157

organizations had a weight of 1 after the nonresponse adjustment.

In the SW regressions that follow, variances and standard errors were estimated using

the sandwich estimator of Binder (1983), which is the type of linearization estimator

included in most software packages that handle survey data. We have included the units

with weights of 1 in standard error estimation rather than excluding them, as would be the

approach for handling certainties in purely design-based estimation. Including the

certainties is consistent with the idea that a superpopulation model is being estimated and

that slope coefficients would still have a variance even if a census were done. A sketch of

the mathematical justification for doing this is model-dependent (not design-based) and is

given in the appendix of Li and Valliant (2009).

5.1. Parameter Estimation

The identification of single influential points will be compared under two different

settings. One is to assume the sample design can be ignored and that the data can be
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Fig. 1. Scatterplots of expenditures vs. beds and adds. In the top row, dark points are ones with OLS

DFBETAS . 3=
ffiffiffi
n

p
. In the bottom row, dark points are ones with SW DFBETAS . 3=

ffiffiffi
n

p

Table 1. Quantiles of Variables in SMHO Regression

Quantiles

Variables 0% 25% 50% 75% 100%

Expenditure (1,000’s) 16.6 2,932.5 6,240.5 11,842.6 519,863.3
# of beds 0 6.5 36 93 2,405
# of additions 0 558.5 1,410 2,406 79,808
Weights 1 1.42 2.48 7.76 158.86
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analyzed by conventional OLS regression estimators. The other is to account for the

single-stage sampling design with varying survey weights and incorporate these weights

into PML estimation. Which approach is preferable is a recurring question among analysts

and is discussed at length in the collections edited by Skinner et al. (1989) and Chambers

and Skinner (2003). Rather than recommending one approach over the other for this

example, we will consider the possibility of there being two analysts, one who, after

careful thought, chooses to use OLS and another who elects to use SW least squares.

We illustrate how the parameter estimates and points identified as being influential can

be different in OLS and SW regression.

The estimated coefficients and their standard errors are reported in Table 2. The

intercept and slope coefficients all have discrepancies between the two methods, and

the estimated intercept even changes from negative to positive and from significant with

OLS to nonsignificant with SW. The relative size of the differences between the OLS and

SW estimates is much greater for the intercept than the slopes. Analysts are often more

focused on the latter. The t-statistics are also much smaller in the SW regression than

in OLS owing to the substantially larger SW standard errors. (An alternative, not shown

here, would be to use standard error (SE) estimates for the OLS parameter estimates that

are robust to heteroscedasticity; e.g., see Long and Ervin (2000). The estimated OLS

SE’s would be somewhat larger with those estimates).

5.2. Leverages and Residuals

Figure 2, in the left-hand panel, shows a scatterplot of leverages calculated using the two

methods with and without sample weights. The areas of the bubbles in this and later figures

are proportional to the sample weights. Outlying points, with leverages greater than twice

their mean, were identified to be the ones beyond the two reference lines. Twenty-seven

outlying observations were identified by the SW but not by the OLS diagnostics and are

represented by relatively large bubbles in area A. These points are associated with large

sample weights ranging from 7.44 to 158.86; whereas the 14 outlying observations

identified by OLS only, represented by small bubbles in area B, have small weights

ranging from 1 to 2.62. The bubbles in the upper right square, with moderate sizes, stand

for the points identified by both methods.

The points in the residual plot in the right-hand panel show the residuals scaled by the

estimated standard error ŝ of model (1), where ŝ was estimated by the OLS estimator

for the OLS scaled residuals and by the SW formula (3) for the SW scaled residuals. With

a few exceptions, the weighted and unweighted diagnostics identified similar extreme

Table 2. OLS and SW Parameter Estimates of SMHO Regression of Expenditures on Beds and Additions

Independent OLS estimation SW estimation

Variables Coefficient SE t Coefficient SE t

Intercept 21,201.73 526.19 22.28 514.08 1,157.71 0.44
# of beds 94.16 3.03 31.08 81.23 13.14 6.18
# of additions 2.31 0.13 18.50 1.84 0.76 2.43
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residuals. The residual analysis mainly filters out the observations with outlying Y values,

but not necessarily those with outlying weights.

Table 3 lists the coefficient estimates on the reduced samples excluding the detected

outlying observations. Qualitatively, the conclusion would be the same whether one uses

OLS or SW diagnostics – all three parameter estimates are significantly different from

zero. A more quantitative measure of difference is obtained by comparing predicted values

calculated after excluding units identified by the OLS and SW diagnostics. Figure 3

displays the resultant fitted values versus those from the full sample. The slope coefficients

decreased when the outliers were not used in the regressions, which accordingly resulted

in smaller fitted values.
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Fig. 2. Leverage and Residual Diagnostic Plots for SMHO Data. In the leverage plot on the left, area A includes

points identified as outlying by SW diagnostic only; area B includes points identified by OLS diagnostic only. In the

residual plot on the right, areas A and B include points identified by SW only; areas C and D include points identified

byOLSonly. A diagonal reference line is drawnat 45 degrees. Horizontal and vertical reference lines in the left-hand

panel are drawn at 2p/n; reference lines in the right-hand panel are at^3=
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(solid line) and^2=
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Table 3. OLS and SW Parameter Estimates after Deleting Observations with Large Leverages from SMHO

Regression

OLS estimation SW estimation

(i) Deleting units with leverages greater than 2p=n ¼ 0:007
No. of units deleted 48 61

Independent variables Coefficient SE t Coefficient SE t

Intercept 2,987.55 490.54 6.09 1,993.86 353.71 5.64
# of beds 69.27 4.347 15.94 75.82 6.75 11.23
# of additions 0.947 0.201 4.71 0.997 0.211 4.73

(ii) Deleting units with absolute standardized residuals greater than 3
No. of units deleted 17 37

Independent variables Coefficient SE t Coefficient SE t

Intercept 645.83 311.63 2.07 1,674.66 386.27 4.34
# of beds 84.48 1.98 42.67 76.19 5.28 14.43
# of additions 1.531 0.103 14.86 0.932 0.217 4.29
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5.3. DFBETAS

The scatterplots in Figure 1 show the points in bold in the first row having OLS DFBETAS

greater than 3=
ffiffiffi
n

p
; the bold points in the second row are ones with SW DFBETAS greater

than 3=
ffiffiffi
n

p
. In the second row the sizes of points are proportional to the survey weights.

The diagnostic results for the DFBETAS statistics for number of beds and number of

additions are also graphically presented in Figure 4. The figure clearly shows, especially in

the partially enlarged graphs at the second row, that points identified only by the OLS

method have small weights symbolized by the bubbles of small sizes. The SW DFBETAS

singled out a few points associated with moderate sampling weights, most of which were

also identified by OLS.

Table 4 reports the estimated coefficients and their standard errors when the outliers

identified by DFBETAS (both DFBETAS for beds and DFBETAS for additions are

beyond the cutoff) were removed from the sample. OLS flags many more cases – 57

compared to 9 – than does SW. After deleting the 57 cases, the OLS intercept reverses

sign from 21,201.73 to 2,044.54. The slope for beds changes somewhat but the slope

for adds goes from 2.31 to 0.96 (compare Tables 2 and 4). On excluding the

observations with large SW DFBETAS for either number of beds or adds, the slope for
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Fig. 3. Fitted Values Plots After Applying Leverage and Residual Diagnostics to SMHO Data. The first row

plots the fitted values from the regression after deleting observations with leverages greater than 2p/n versus

those from the regression on full sample for both OLS and SW. The second row is based on deleting units with

standardized residuals greater than 3. Points in grey are ones not identified by the diagnostics; points in black are

ones identified as influential. A 45 degree line is drawn in each panel
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beds changes very little but the standard error drops from 13.14 to 4.49 (compare

Tables 2 and 4). The slope for adds drops from 1.84 to 1.27 and the standard error

reduces from 0.76 to 0.28.

The OLS diagnostics identified many more points as being influential than the SW

diagnostics did. We also analyzed predictions but do not show the details here. Dropping

points flagged as influential by DFBETAS leads to systematic reductions in predicted

values for OLS predictions when these points are omitted. The SW analysis omits fewer

points and has less of an effect on predictions. Thus, if an analyst takes the position that the

sample design is ignorable, does not use weights, and applies OLS diagnostics,

substantially different predictions will be obtained in this case.
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Fig. 4. DFBETAS Plots for SMHO Data. Areas A and B include points identified only by the SW diagnostics
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presented in the second row. Solid reference lines are drawn at ^3=
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p
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Table 4. OLS and SW Parameter Estimates after Deleting Observations with DFBETAS for beds and

adds . 3=
ffiffiffi
n

p

OLS estimation SW estimation

No. units deleted 57 9

Independent variables Coefficient SE t Coefficient SE t

Intercept 2,044.54 353.01 5.79 1,485.03 425.83 3.49
# of beds 82.36 2.61 31.55 81.72 4.49 18.19
# of additions 0.96 0.15 6.42 1.27 0.28 4.59
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5.4. DFFITS and Modified Cook’s Distance

Both DFFITS and modified Cook’s Distance statistics summarize the effect of deleting a

specific unit on the overall parameter estimation. Figure 5 plots the OLS and SW versions

of DFFITS and the modified Cook’s D versus each other. Tables 5 and 6 show the

parameter estimates after deleting the points identified as influential by the two methods.

There were nine units identified as influential by SW DFFITS; of these three were flagged

only by SW. The range of the weights for cases identified by SW but not by the OLS

diagnostics was 37.8 to 158.86. Forty-five cases were identified as influential by OLS

DFFITS; of these 39 were found by OLS not SW. Their weights were relatively small,

ranging from 1, which is the smallest weight in the sample, to 5.5. The SW modified

Cook’s Distance identified 10 cases (of which four were not flagged by OLS), with weights

from 11.38 to 158.86. The OLS Cook’s Distance detected 44 points, of which 38 points

were not found by SW. The 38 cases also had weights that ranged from 1 to 5.5. No cases

with large weights were identified by the OLS Cook’s Distance.

There was only one observation identified by the OLS modified Cook’s Distance but not

by the OLS DFFITS. As a result, the parameter estimates based on the samples without
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the identified outliers are very similar for these two cases (compare Tables 5 and 6).

The estimated slopes dropped moderately compared to the ones from the full sample in

Table 2. For the SW diagnostics, the two statistics also have comparable performance.

Since fewer outliers were picked from the sample by the SW DFFITS and the SW

modified Cook’s Distance, the SW estimates from the reduced samples changed less than

the OLS ones. Comparing to Table 2, we see that the standard errors again decrease

substantially after deleting cases, particularly for SW.

6. Conclusion

The conventional OLS influence diagnostics require modification to be used for complex

sample data to accommodate survey weights and variances. We take the point of view that

the goal of model-fitting is to identify a model that fits for the bulk of the points in a finite

population. Thus, the goal of using diagnostics is to detect points that do not follow that

core model. Some points in a sample can be influential in the sense that the parameter

estimates may change noticeably if they are dropped from the fitting. With survey data the

influence may be due to extreme values of the response variable, the covariates, or the

survey weights.

As for many of the conventional diagnostics, little formal distribution theory is

available, and heuristic arguments must be used to identify points that are influential in

model fitting. The cutoff values for the adapted statistics presented here were determined

and justified in terms of model distributions and various order of magnitude arguments.

Table 5. OLS and SW Parameter Estimates after Deleting Observations with Large DFFITS. 39 units were

identified by OLS only, 3 units by SW only

OLS estimation SW estimation

No. units deleted 45 9

Independent variables Coefficient SE t Coefficient SE t

Intercept 1,617.67 335.38 4.82 1,028.71 360.46 2.85
# of beds 81.45 2.44 33.38 82.94 5.72 14.50
# of additions 1.20 0.12 9.77 1.40 0.27 5.27

Table 6. OLS and SW Parameter Estimates after Deleting Observations with Large Modified Cook’s Distance.

38 units were identified by OLS only, 4 units by SW only

OLS estimation SW estimation

No. units deleted 44 10

Independent variables Coefficient SE t Coefficient SE t

Intercept 1,660.45 335.54 4.95 932.43 345.86 2.70
# of beds 80.92 2.44 33.16 82.83 5.72 14.48
# of additions 1.19 0.12 9.66 1.43 0.26 5.43
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Based on the comparison of the OLS and the SW influence analysis on a sample of mental

health organizations, we conclude that the SW diagnostics, including leverages, residuals,

DFBETAS, DFFITS, and a modified Cook’s Distance, can identify a different set of points

than the OLS diagnostics as being influential. Different diagnostic statistics identify

different sets because they focus on measuring different kinds of changes in the regression

estimation after a point is deleted from the sample. Even in a large sample, dropping a few

influential points can have a substantial effect on estimates, particularly standard errors,

in survey weighted regressions.

Note that there can be situations where points with large weights, residuals, or X values

would be important in identifying whether a model is correctly specified. For example, if Y

were quadratically related to an x and units with large X’s were deleted because of large

weights or large residuals, the ability could be lost to recognize that the model should be

quadratic. An analyst must make a decision on whether to include or exclude a point based

on what he/she knows about the substantive problem and the way that the survey data were

collected and processed. In general, diagnostics should be treated as exploratory tools that

should be applied with care.

Areas for additional research are the identification of groups of influential points and the

adaptation of diagnostics to situations where models involving clustering are appropriate.

The diagnostics presented here depend on variance estimates for regression parameters

that assume no clustering. Modifications of the statistics and the arguments justifying

heuristic cutoffs are needed to account for clustering. We plan to report results on these

topics in future research.
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