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Linear Weighting of Sample Survey Data

Jelke G. Bethlehem and Wouter J. Keller!

Abstract: To improve the quality of estimates
in sample surveys some kind of weighting is
often carried out. Post-stratification is a
popular weighting method. Two major prob-
lems can make applications of post-stratifica-
tion difficult: empty strata and lack of adequate
population information. This paper presents
a general method for weighting, in which
weights are obtained from a linear model
which relates the target variables of the sur-
vey to auxiliary variables. Post-stratification

1. Introduction

A sample survey is an instrument for making
inferences about a finite population using
observations on only some of the elements in
the population. If sufficient population infor-
mation is available, estimates of population
parameters can be improved by assigning
weights to the observed elements. Estimates
" are obtained by simple summation of the
weighted observations. Bailar et al. (1978)
describe weighting as a frequently used
adjustment method to correct for potential
bias caused by nonresponse. Platek and Gray
(1980) and Lindstrém et al. (1979) present
weighting as an important method to correct
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is a special case of this method. Because of
the generality of the method, different
weighting schemes can be applied which take
advantage of the available population as
much as possible and at the same time avoid
the mentioned problems. The theory is illu-
strated with an example.

Key words: Weighting; post-stratification;
regression estimator.

for this bias. Little (1982) discusses the use of
models including weighting for correcting for
nonresponse. Even in the case of complete
response it may still be worthwhile to per-
form some kind of weighting. Post-stratifica-
tion (see e.g. Holt and Smith (1979)) is a well-
known and much used weighting method. It
increases precision when strata are homo-
geneous with respect to the target variable,
and reduces bias when strata are homo-
geneous with respect to target variables or
response probabilities.

This paper presents a general framework
for weighting based on estimators constructed
from linear models. It will be shown that
classical weighting can be derived from the
linear model theory.

In the application of post-stratification two
important problems may arise. The first is
the problem of empty strata. If the stratifica-
tion is obtained by crossing a number of
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variables, the resulting number of strata may
be so large that one or more strata have no
observations. In the empty strata no estimates
can be computed and proper estimation of
population parameters is not possible. This
problem can be solved by collapsing strata.
This can be a tedious and time consuming
process, especially for large sample surveys.
Another way to solve the problem is not to
use all available variables for the construc-
tion of the strata. Since each variable may
play an important role in the reduction of
bias and precision, this solution is also not
very satisfactory.

The second stratification problem con-
cerns the availability of population informa-
tion; applying post-stratification requires
that the stratum sizes are known. Although it
may be desirable to use a large number of
variables for the construction of strata, strati-
fication cannot be carried out if the popula-
tion sizes of the strata are not available, even
if the stratification will not result in empty
strata. .

With the proposed method, one can avoid
the above mentioned post-stratification
problems, and still use all the variables that
are important for weighting purposes. The
idea is best illustrated by an example. Suppose
that in a sample survey five variables are
available for weighting: sex (two categories),
age (ten categories), marital status (four
categories), region (eleven categories), and
degree of urbanization (six categories). An
ordinary post-stratification using these vari-
ables would resultin 2X10x4x11x6 =15 280
strata. The number of strata may be reduced
by collapsing strata or by leaving out one or
more variables. Alternatively, one might use
our method to carry out a number of post-
stratifications simultaneously. It is, e.g.,
possible to post-stratify by sex, age and mari-
tal status (80 strata) and at the same time by
region and degree of urbanization (66 stra-
ta). Duc to the decreased number of strata in
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each post-stratification, the problem of
empty strata will appear less frequently. Of
course the amount of population information
used is less than that used in full post-stratifi-
cation. But information on all the variables is
still taken into account.

The same type of solution is possible when
the population sizes of all 5 280 strata are not
available. If, e.g., the distribution by sex, age
and marital status is available at only the
regional level (and not by degree of urbaniza-
tion) and the age distribution is available by
region and degree of urbanization, it is
possible to carry out both post-stratification
by sex, age, marital status and region, and by
age, region and degree of urbanization.

Our method shows some resemblance with
raking ratio estimation. In raking ratio esti-
mation the resulting weights are the product
of the weight coefficients. Our method,
however, produces weights which are sums
of weight coefficients. Computation of
raking ratio weights uses an iterative process,
whereas our weights are obtained by least
squares techniques which require matrix
inversion only. Furthermore, the theory
behind our method is so straightforward that
simple approximations of the variance of
estimators can be obtained.

In this paper, inference is based on prob-
ability sampling where randomization is
introduced through the sampling design: the
randomization or design-based approach.
Hansen et al. (1983) emphasize that for
large enough samples the validity of design-
based inference does not depend on assump-
tions concerning the distribution of character-
istics in the population. Still, information
about the population can be used to improve
the efficiency of the estimates. The decrease
in the variance is determined by the extent to
which the auxiliary information is associated
with the target variable.

In Sections 2 and 3 we introduce the basic
notation. Section 4 presents the regression
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estimator. In Section 5 we apply the theory to
simple random sampling. Section 6 shows
that post-stratification is a special case of the
theory. Section 7 offers a solution for the
post-stratification problems. An application
of the theory is given in Section 8. Section 9
gives some suggestions for models for weight-
ing which are not included in the theory.
More details on the theory can be found in
Bethlehem and Keller (1982, 1983).

2. Population and Sample

Let the target population U consist of Niden-
tifiable elements, which may be labeled
1,2, ,..., k, ..., N. Associated with each ele-
ment k is an (unknown) g-vector y, of values
of g quantitative target variables and a p-vec-
tor x; of values of p auxiliary variables. Let
Y=(y1, ¥, ---» yn)' denote the N X g-matrix of
values of the target variables for all elements
and let X=(xy, x,,...,xx5)’ be the NX p-matrix
of values of the auxiliary variables for all ele-
ments.

We assume the objective of the sample sur-
vey to be estimation of the g-vector of popu-
lation means

y =YY" uN, 2.1)
where 1 is the N-vector consisting of ones.
The p-vector of population means for the p
auxiliary variables is denoted by

£=X"UN. 2.2)

We restrict ourselves to sampling without
replacement. A sample from the finite popu-
lation U can be denoted an NXN-diagonal
matrix 7. The k-th diagonal element of T
assumes the value 1 if the corresponding ele-
ment k is in the sample, and it assumes the
value 0 if this is not the case. The sample size,
i.e. the sum of the diagonal elements of T, is

143

denoted by n. The expected value of T is
equal to
E(T) =I1, (2.3)
where IT is the N X N-diagonal matrix of the
first-order inclusion probabilities 5, 7t5,..., 7Ty.
Observe that in this notation the Horvitz-

Thompson (1952) estimator for the vector y
of population means can be written as

Yur = Y'IT'TUN. (2.4)
The variance is equal to
V(Fur) =Y’ AY/N?, (2.5)

where element A; of NX N-matrix equal to

A = (- T m;, (2.6)
and m; is the second-order inclusion proba-
bility of elements i and j, with wt;=m;. This s,
in matrix notation, the well-known ex-
pression for the variance of the Horvitz-
Thompson estimator, see e.g. Raj (1968, p.
54). '

3. The Regression Model

If the auxiliary variables are correlated with
the target variables, an estimator that is more
precise than the Horvitz-Thompson estima-
tor can be constructed. This relationship
implies that for a suitably chosen p X g-matrix
B of regression coefficients, the elements in
the NXg-matrix of residuals

E=Y-XB 3.1
vary less than the values of target variables
themselves. Observe that all quantities in
(3.1) are fixed numbers. There are no
random variables. Applying the ordinary
least squares method results in

B=(X'X)"'X'Y. (3.2)
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An estimator for B, based on sample data, is
defined as

B = (X'II'TX) ' X'II'TY. (3.3)

The estimator B is not unbiased, but it can be
shown that the bias is of the order n™'?, where
n is the sample size. So B is approximately
unbiased for large samples. We will call B an
asymptotically design unbiased (ADU) esti-
mator. ADU-estimators are discussed by
Sarndal (1980) and Wright (1983). For the
estimator in (3.3), the matrix of cross-pro-
ducts is weighted by the inverse first order
inclusion probabilities. Sarndal (1980)
discusses in great detail weighting of cross-
product matrices.

4. The Regression Estimator

It is not our first objective to estimate B.
What we need is an estimator for the popula-
tion mean y. We define the regression esti-
mator of y by

5.=B'X'UN = B'%. (4.1)

Since B is an ADU-estimator of B, XB is an
ADU-estimator of XB. But (4.1) isan ADU-
estimator of y only if B'¥=y, and that is the
case only if there exists a p-vector c of fixed
numbers such that Xc=1, see e.g. Bethlehem
(1985a). The condition Xc=\ can also be
found in Siarndal (1980) and Isaki and Fuller
(1982). Wright (1983) gives more general
conditions for asymptotic design unbiased-
ness.

Under the condition Xc=u the regression
estimator can be written in the somewhat dif-
ferent form

Yr=Yur + B’ ( — %), (4.2)
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where Xy is the p-vector of Horvitz-Thompson
estimates for x. We will call estimator (4.2),
or its equivalent (4.1) the regression estima-
tor. This estimator is also given by a number
of other authors, see e.g. Robinson and
Siarndal (1980) and Isaki and Fuller (1982).
However, those authors study the distribu-
tional properties of the estimator under
superpopulation models (the model-based
approach), in contrast to the design-based
approach in this paper. Under superpopula-
tion assumptions, validity of inference
depends on the correctness of the specified
model. Siarndal (1982) discusses regression
estimation of linear functions under a general
design-based approach.

In the case of simple random sampling and
use of only one auxiliary variable, the estima-
tor in (4.2) reduces to the simple regression
estimator as, €.g., given in Cochran (1977).
The estimator presented in (4.2) can be con-
sidered a generalized version of this simple
regression estimator. The estimator is gener-
alized in two ways: more than one auxiliary
variable can be used and any design using
sampling without replacement may be ap-
plied.

The regression estimator is not an un-
biased estimator. However, it can be shown
that its bias is of the order 1/n. The variance-
covariance of the estimator can be approxi-
mated by

V(yr) = E'AEIN?. (4.3)

This result is obtained by writing the regres-
sion estimator as

R=V + éur +d, (4.4)

<

where dis a random variable of order n!, and
where

éyr = E'TI'TUN, (4.5)
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is the Horvitz-Thompson estimator of the
vector of residual means é. Since é equals
zero, it will be clear that (4.4) is an ADU-
estimator of y. The variance of (4.4) is
approximately equal to the variance of the
ordinary Horvitz-Thompson estimator (4.5),
and thus (4.3) is obtained by substituting £
for Y in (2.5). Expressions for variances of
residuals are also given by Sarndal (1982,
1985), and Sarndal and Wright (1984).

In fact, application of regression estima-
tion comes down to making inferences about
the residuals E instead of making inferences
about Y. It is now clear that choosing auxil-
iary variables that result in small residuals
improves the estimates of population para-
meters. So, standard errors are based on the
residuals. This is also the case in simple
unweighted or weighted regression analysis.
There are differences, however. Simple
unweighted regression assumes that the
observations are independent with identical
variances. Neither condition is satisfied when
complex sampling designs are used. In
weighted analysis, coefficients are computed
after weighting the observations with the
square root of the covariance matrix of the
disturbances. In our approach, first-order
inclusion probabilities are used. In terms of
design-based inference the weighted least
squares estimator will not be consistent.

Weights are a part of the proposed regres-
sion estimator. Introducing the N-vector of
weights

w=I"TX(X'TI'TX) %, (4.6)
and recalling that the regression estimator
can be written as

A

yr = YIT'TX(X'TI'TX)'x. 4.7
It is obvious that
Jr=Y'w (4.8)

Notice that the weights do not depend on the
target variable, but only on the auxiliary vari-
ables. So, for the computation of weights
only auxiliary variables are required. How-
ever, the quality of the resulting estimator is
determined by the strenght of the relation-
ship between the target variables and the
auxiliary variables. If we use the weights to
estimate the means of the auxiliary variables
we get

X'w=XTNTX(X'TI'TX) s =%. (4.9)
The weights balance the sample so that the
sample distribution of the auxiliary variables
agrees with the population distribution of
these variables.

It is theoretically possible that negative
weights can be obtained. Such weights may
produce negative estimates of population
means that are already known to be positive.
In practice this will hardly ever happen as
long as the sampling design is specified
correctly, the linear model has sufficient
explanatory power, and the sample is large
enough to allow parameter estimation.

There are useful applications for the vari-
ance-covariance matrix (4.3). Since the ma-
trix takes into account both the (possibly
complex) sampling design and the weighting
scheme, it provides the appropriate informa-
tion for further analysis of the vector of
population estimates, e.g., by multivariate
methods. See, for example, Landis and
Lepkowski (1983), where qualitative data
from complex samples are analyzed using
loglinear models. The variance-covariance
matrix used there, however, takes into
account only the sampling design and not the
applied weighting scheme.

S. Simple Random Sampling

The first illustration of the theory developed
in Section 4 uses simple random sampling
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and only one target variable. Introducing y;
as the n-vector of sampled values of the
target variable and X as the nXp-matrix of
auxiliary variables corresponding to sampled
elements, the regression estimator reduces to

)%R = ys + B' ()ZS-)Z), (51)
¥, is the mean of the elements in yy, x, is the p-
vector of sample means of the auxiliary
variables, and

B= (X, X)Xy, (5-2)
In (5.1) we again recognize the simple regres-
sion estimator, where X, x; and 3 are vectors

instead of scalars. Working out the variance
(4.3) in this case gives

VG = (r-XB) (-XB) (N-1), (5.3)

where f=n/N is the sampling fraction. This
result confirms the approximation given by
Cochran (1977), in the case of the simple
regression estimator.

6. One-Way Stratification

The use of the regression estimator is not
restricted to quantitative auxiliary variables.
In Sections 6, 7, and 8 we will explore the
case of qualitative auxiliary variables. In this
section we will consider the use of one such
auxiliary variable (p=1), and one target
variable (g=1).

When a qualitative variable is included in a
linear model, the variable B is replaced by as
many dummy variables as it has categories.
Suppose our auxiliary variable has L catego-
ries. Thus the population is divided into L
non-overlapping sub-populations (strata).
For each category there is a dummy variable
which assumes the value 1 if the particular
element belongs to that stratum, otherwise it
assumes the value 0. For every element, only
one dummy variable assumes the value 1; all
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other values are 0. Consequently the matrix
X consists of N rows, each row contains
exactly one 1. The columns of X sum up to
the sub-population totals N;, N,,...,N;,
where Ni+N,+...+N;=N.

From this population a simple random
sample without replacement of size n is selec-
ted. We can retain the notation used in Sec-
tion 5. The columns of X will sum up to the
(random) sample totals n,, n,,...,n; in the
strata, where n;+n,+...+n;=n. The vector
of population means of the auxiliary vari-
ables is equal to x=(N;, N,,...,N,;)’' /N and
the corresponding vector of sample means is
equal to X,;=(ny, ny,...,n;) /n.

Due to the special structure of the matrix X
the matrix X' X is a diagonal matrix with di-
agonal elements equal to ny, n,,...,n; . Substi-
tuting the diagonal matrix into (5.2) results in

N

B =", 52,5, (6.1)

where y; is the sample mean of the target vari-
able in stratum h (h=1,2,...,L). Substitut-
ing (6.1) into (5.1) gives as the regression
estimator, in this case,

L

YR = hgl N IN = yps, (6.2)
where the subscript PS denotes the tradition-
al post-stratification estimator. So post-
stratification is a special case of the regres-
sion estimator. Since only one qualitative
variable is used, we will call this case one-way
stratification. Section 7 will deal with multi-
way stratification.

The post-stratification estimator (6.2) is
only defined if there is at least one observa-
tion available in every stratum. The same
applies for the regression estimator. If there
are no observations in one or more strata,
then some of the diagonal elements of X' X,
are zero, in which case X' X, is singular. We
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can make X;'X; non-singular by collapsing
strata, or we can apply the technique of
incomplete multi-way stratification which is
treated in the next section.
Application of (5.3) gives an approxi-
mated variance equal to
£ L N1

A . 1—
V(yps) = 7 z N_1
h=1 -

sz, (6.3)

in which S7 is the variance (with denominator
N,~1) in sub-population A. This is a some-
what different expression than the approxi-
mation given by e.g., Cochran (1977, p. 135).
The difference is caused mainly by omitting
terms of the order n2 and N7'in (6.3).

Note that we have computed the uncondi-
tional variance, i.e., the average over all
possible samples. In the literature on post-
stratification, a main issue is whether the
conditional or unconditional variance should
be used. Holt and Smith (1979) argue that the
unconditional variance should be used when
comparing sampling strategies before the
sample is drawn, and for inference after the
sample is drawn, the conditional variance is
appropriate. We chose the unconditional
variance because this variance emerges in a
natural way from the theory of general
regression estimation. Only for the case of
ordinary post-stratification is there a simple
interpretation of the conditional variance,
i.e., the variance conditional on the realized
sample sizes in the strata. If quantitative
auxiliary variables are used in the regression
model, the meaning of the conditional vari-
ance is not clear. Recently Hidiroglou and
Sarndal (1986) have developed conditional
variances for an estimator similar to the one
in (4.2) in the case of simple random sam-
pling without replacement. They found that
confidence intervals based on conditional
variances are smaller than confidence inter-
vals based on unconditional variances. So, in
spite of the general form of the unconditional

variance (4.3), it might be better to use the
conditional variance if the design lends itself
to simple formulation and interpretation.

7. Multi-Way Stratification

Post-stratification is not restricted to using
one qualitative auxiliary variable. The theory
is equally applicable for a number of qualita-
tive auxiliary variables. Suppose we have
m qualitative variables with p,, p,....pn
categories. Now every combination of values
of the auxiliary variables forms a stratum,
the total number of strata being equal to
P=p1Xp,X...Xp,,. If the m qualitative auxili-
ary variables are replaced by p dummy vari-
ables, then the theory given in Section 6 can
be applied.

If the theory of linear models is applied to
qualitative independent variables, it is usu-
ally called the analysis of variance. For this
reason we use a terminology that has its roots
in the analysis of variance. The auxiliary
variables correspond to factors and the strata
to cells. Stratification in which strata are con-
structed by crossing all the auxiliary variables
corresponds to an analysis of variance in
which the model contains the highest-order
interaction. For this reason we call this type
of post-stratification complete multi-way
stratification. Complete multi-way stratifica-
tion is not always practicable because of the
problems of empty strata and lack of sufficient
population information. However, regres-
sion estimation permits new weighting
methods that are not a part of ordinary post-

stratification.
In incomplete multi-way stratification a

number of subsets of auxiliary variables are
selected. For every subset, a complete multi-
way stratification is constructed (based on
less variables than the original complete
multi-way stratification). By proper specifi-
cation of the design matrix X, these complete
multi-way sub-stratifications can be carried
out simultaneously. If the highest-order
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interactions are removed from the model and
replaced by lower-order interactions, then in
many cases the problems mentioned dis-
appear.

To describe an incomplete multi-way stra-
tification it is convenient to use a simple nota-
tional language. Crossing auxiliary variables
is denoted by the operator “X.” So, complete
multi-way stratification by sex, age, marital
status, region and degree of urbanization is
denoted by

SEX x AGE x MARITAL STATUS x
REGION x DEGREE OF URBANIZA-
TION.

Combining several stratifications into one
incomplete stratification is denoted by the
operator “+.” Thus, an incomplete multi-
way stratification which uses the population
distribution by sex, age and marital status on
the one hand and the distribution by region
and degree of urbanization on the other hand
is denoted by

(SEX x AGE x MARITAL STATUS) +
(REGION x DEGREE OF URBANIZA-
TION).

The rows of the matrix X will in this last
example not contain one 1, but two 1s. One
set of dummy variables indicates the combi-
nation of sex, age and marital status, and
another set of dummy variables denotes the
combination of region by degree of urbaniza-
tion. A consequence of these stratification
designs is that the matrix X' X is singular.
However, this singularity can easily be
removed by deleting redundant columns
from X.

Stratification comes down to estimation of
the parameter vector 3. The number of para-
meters to be estimated is smaller in an
incomplete stratification than in a complete
stratification. So, incomplete stratification
decreases estimation problems. For instance,
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if sex has two categories, age ten categories,
marital status four categories, region eleven
categories and degree of urbanization six
categories, then

SEX x AGE x MARITAL STATUS X
REGION x DEGREE OF URBANIZA-
TION

requires the estimation of 5 280 parameters,
whereas

(SEX X AGE x MARITAL STATUS) +
(REGION x DEGREE OF URBANIZA-
TION)

requires the estimation of, at most, 146 para-
meters. On the other hand the incomplete
stratification model might not fit as well as
the complete stratification model.

However, we believe that in practice, the
incomplete stratification model is based on
enough parameters that it serves almost as
well as the complete stratification model.

8. An Example

In an example we illustrate the possible out-
comes of the application of different weight-'
ing schemes. Using data from the Dutch
Housing Demand Survey, 1977/°78, the aver-
age household income in a large town is esti-
mated. Three auxiliary variables are available
for weighting purposes: SEX (sex in two
categories), AGE (age in six categories) and
MAR (marital status in two categories). In
the case of traditional post-stratification
seven weighting schemes are possible: SEX,
AGE, MAR, SEX X AGE, SEX x MAR,
AGE X MAR and SEX X AGE x MAR.
Using the theory of linear models eleven
more weighting schemes are possible. Table
1 gives for all possible weighting schemes,
which may make use of at most these three
variables, the estimates of the average inco-
me, the estimate of its standard error and the
approximate 95% confidence interval.
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Tablel. Estimation of the Average Household Income in the Dutch Housing Demand Survey
197711978
Weighting scheme Number Estimate  Standard  95% confidence
of para- error interval
meters Lower Upper
bound bound
None 1 23494 182 23137 23852
SEX 2 23613 179 23263 23963
AGE 6 23990 170 23657 24323
MAR 2 23624 161 23308 23940
SEXxAGE 12 24012 167 23684 24340
SEX+AGE 7 24065 168 23736 24349
SEXXMAR 4 23809 160 23496 24123
SEX+MAR 3 23675 160 23361 23990
AGExMAR 12 23987 153 23687 24287
AGE+MAR 7 24071 154 23769 24374
SEX+AGE+MAR 8 24104 154 23802 24405
(SEXXMAR)+AGE 9 24172 153 23871 24472
(SEXXAGE)+MAR 13 24078 153 23777 24379
(AGEXMAR)+SEX 13 24004 152 23705 24302
(SEXXAGE)+(SEXXMAR) 14 24149 153 23849 24449
(AGEXMAR)+(SEXXMAR) 14 24076 152 23778 24374
(SEXXAGE)+(AGExXMAR) 18 23985 152 23687 24283
(SEXxXAGE)+(AGEXMAR)
+(SEXxXMAR) 19 24054 152 23757 24352
SEXXAGEXMAR 24 24048 152 23751 24345

Two important trends can be observed in
the table: (1) using more auxiliary informa-
tion increases the precision of the estimates
(the standard error reduces from 182 to 152),
and (2) the estimate tends to shift as more
information is used (the average income
increases). Further analysis showed that the
sample contained too few unmarried young
people and this group is known to have relati-
vely low incomes. However, this is more
than compensated for by an even greater
over-representation of old unmarried people
(who have very low income). Weighting by

AGE and MAR gives a higher income esti-
mate. The confidence intervals of the two
extreme cases (no weighting and complete
multi-way stratification) are nearly non-
overlapping. If the strata are homogencous
with respect to the target variable or the
response probabilities then this can indicate
that weighting is efficient; it reduces bias and
increases precision.

Furthermore it is clear from the table that
omitting the highest order interaction has
little impact. Differences are small in the
group of weighting schemes that uses all
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three variables. The model SEX+AGE+
MAR (eight parameters) performs almost as
well as the model SEXXAGEXMAR (24
parameters). We can draw the rough conclu-
sion that any weighting scheme will do, as
long as it contains the variables AGE and
MAR. This particular weighting scheme
requires knowledge of only the distribution
by age and the distribution by marital status.

From the example it is clear that our
method of weighting, based on linear
models, offers a better alternative when a
preferred weighting scheme cannot be car-
ried out in a conventional way. Incomplete
multi-way stratification is therefore expected
to produce more accurate estimates than the
ordinary post-stratifications.

9. Other Models

The optimal value of the coefficients in for-
mula (3.3) is determined by ordinary least
squares. If the residuals depend on the values
of the auxiliary variables, the estimator can
be improved by minimizing the sum of
squares of residuals in

E* = V2E = VI?y - VI2XB, (10.1)
where V is the user supplied NXN-matrix
specifying the relationship between residuals
and auxiliary variables. The justification for
the use of V has been discussed by Sérndal
(1980). Application of ordinary least squares
to (10.1) gives

B=X'V'X)y'x'v'y. (10.2)
The theory of the regression estimator can be

developed in the same way as the theory in
the previous sections, where now

B = (X'V'II''TX)' X'V'IT'TY. (10.3)

The ratio estimator is a special case of the
regression estimator corresponding to
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(10.3). We get this ratio estimator by using
one target variable and one auxiliary vari-
able. We assume that the order of magnitude
of the residuals is proportional to the square
root of the value of the auxiliary variable.
The approximated variance and estimated
variance agree with the results given in
Cochran (1977) and other textbooks.

Another approach to weighting based on
linear models is given by Bethlehem and
Keller (1982). If practical problems affect the
values of the inclusion probabilities, it might
be better to estimate the true inclusion prob-
abilities on the basis of the sample. To do this
we estimate a model that relates the inclusion
probabilities to the available auxiliary infor-
mation. An estimator of the population
mean is now obtained by replacing the true,
but unknown, inclusion probabilities in the
usual Horvitz-Thompson estimator with the
estimated inclusion probabilities.

The approaches discussed in this paper are
based on the use of linear models. There is,
however, no reason to restrict weighting to
linear models. In fact, since weights should
be non-negative, a multiplicative model
might be more appropriate. Examples of the
use of such models can be found in, e.g.,
Chapman (1976) and Bailar et al. (1978). In
the literature on sampling theory this method
is usually called raking estimation, but in
other statistical literature the method based
on the multiplicative model is also called
RAS-technique and iterative proportional
fitting. Just as the concept of post-stratifica-
tion can be extended to linear models for
weighting, the concept of raking can be
extended to loglinear models for weighting.

A disadvantage of the raking estimator is
that no simple formula for its variance is
available. This is mainly due to the iterative
way the estimator is constructed. Until
recently there were only some partial results
by Brackstone and Rao (1979) and Konijn
(1973, 1981). They gave approximations to
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the variance in the case of incomplete multi-
way weighting using two auxiliary variables
under simple random sampling, and stopping
the iteration process after two steps. Recently,
Bankier (1986) presented a new method for
producing estimators in multiple frame sur-
veys, and applied his method to the raking
estimator. He suggests avoiding the discourag-

ing complex variance formula by using a’

technique of repeated numerical lineariza-
tion of the quantities appearing in the vari-
ance.

10. Summary and Conclusions

In this paper we proposed a general method
for the computation of weighting schemes.
The method is based on applications of the
theory of linear models to describe the rela-
tionship between the target and the auxiliary
variables. The approach is design-based and
not model-dependent, i.e., we do not assume
the existence of a superpopulation. The cru-
cial hypothesis in our model is that there
exists a relationship between target variables
and auxiliary variables such that the variance
of the target variables in the population is
substantially larger than the conditional vari-
ance given the values of the auxiliary variables.
If this is the case, we can improve the effici-
ency of our estimates by using the auxiliary
information.

We show that the use of a linear model to
estimate the target variables amounts to
assigning weights to the observed values of
the target variables. The magnitude of these
weights depends only on the sample values of
the auxiliary variables and their population
distributions. Therefore, knowledge of the
appropriate information on the auxiliary
variables enables us to assign these weights to
the observed elements, independent of the
choice of the target variables. However, the
choice of the auxiliary variables is guided by
their relationship to the target variables.

The auxiliary variables could be quantita-
tive or qualitative. In the case of one quanti-
tative auxiliary variable, our procedure
results in the simple regression estimator. In
the case of one qualitative auxiliary variable,
our weighting method is equivalent to the
traditional post-stratification procedure. By
including more qualitative auxiliary variables,
new methods of stratification become possible.
The most interesting one is, in our opinion,
the incomplete multi-way stratification. This
corresponds to a model where, in ANOVA
terms, higher order interactions between the
auxiliary variables are removed. In other
words, the weights are obtained by fitting the
sample distribution to only certain marginals
of the population distribution of the auxiliary
variables. This offers possibilities for solving
the problem of empty strata in a traditional
post-stratification by using only lower-order
marginal distributions instead of all interac-
tions. Our experience suggests that leaving
out higher-order interactions seldom
changes the values of the estimates or of the
variances substantially. Our procedure also
provides ways to deal with situations where
the population distribution of certain interac-
tions is unknown. By allowing the selection
of the interaction terms to be carried out
automatically, given the available auxiliary
information and a lower bound for strata
filling, the usual practice of collapsing strata
by hand can be avoided.

Since our weighting method is based on the
theory of linear models, the weights can be
expressed by an explicit formula that in-
volves some simple matrix manipulations.
Additionally, we can provide an explicit for-
mula for the (approximate) variance-covari-
ance matrix of the estimators of the means of
the target variables, taking into account both
the (possibly complex) sample design and the
(complete or incomplete) stratification used.
Computation of the weights and the vari-
ance-covariance matrix for a given set of tar-
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get variables can be done automatically,
saving time and cost in the processing of sam-
ple survey data.

The Netherlands Central Bureau of Statis-
tics has implemented the theory of weighting
based on linear models in the computer pro-
gram LINWEIGHT. A version which runs
on an IBM-PC/XT or compatible is available,
see Bethlehem (1985b).
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