
Journal of Of®cial Statistics, Vol. 14, No. 3, 1998, pp. 255±266

Linking of Classi®cations by Linear Mappings

Beat Hulliger1

1. Introduction

A statistical classi®cation or nomenclature is a systematic set of mutually disjoint cate-

gories, called items. The names of the categories are unique and are called codes. The

description of the content of a category is contained in a title and possibly in explanatory

notes. The application of a classi®cation to the units of a population, i.e., the determination

of the category into which a unit falls, is called coding. Every unit of the population should

be classi®able.

Often classi®cations are hierarchical, i.e., the items of a ®rst level are subdivided into

items of a second level and so on until a basic level is reached. A well known example

of such a tree-like classi®cation is the regional subdivision of a country into provinces,

districts and communes.

A classi®cation de®nes which elements of a population are similar enough to be counted

as the same (Kotz, Johnson, and Read 1982, Vol. 2, p. 1) and therefore classi®cations are at

the basis of statistics. Hierarchical classi®cations are used extensively to aggregate data.

Standard classi®cations are a key element to make statistical information comparable

over time and space.

However, classi®cations must be revised from time to time either because the popula-

tion changes or because the use of the classi®cation changes. Revisions may concern the

titles or explanatory notes only or they may concern the structure of a classi®cation. Here

we treat only structural changes. In hierarchical classi®cations structural changes may

concern only one level of a classi®cation or they may involve two or more levels.

Statistical classi®cations must be revised from time to time. In order to compare different time
points the links between the versions of a classi®cation must be established. Correspondence
tables describe these links. This article formulates the links as linear mappings and the corre-
spondence tables as matrices. The evolution of a classi®cation or the linking of a chain of
several classi®cations may then be described by matrix products. The aggregation to higher
levels of a classi®cation is again a linear mapping and therefore any correspondence table
between any two levels of two classi®cations may be derived by a product of basic matrices.
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There are four types of ``one-level'' changes:

1. Birth of an item.

2. Death of an item.

3. Split of one item into many items.

4. Fusion of many items into one item.

Of course combinations of these four changes may occur. Splits and fusions may be mixed

such that changes from many items to many items result. A birth of an item means that

there is no item in the old version of a classi®cation which from a theoretical point of

view can be seen as a predecessor. In practice, any population unit which is classi®ed

into a newborn item of the new version should be classi®able under the old version,

too. Thus neither births nor deaths of items can be observed.

For example Hoffmann and Scott (1990) report on the changes of the International Stan-

dard Classi®cation of Occupations (ISCO) from the 1968 to the 1988 version; 157 of the

basic level items of ISCO-68 were not changed, 31 fused into 14 new items, 96 split

into 174 new items and there were 32 births in ISCO-88. Thus there were 32 new items

in ISCO-88 where no reference to an item of ISCO-68 could be assigned.

A change may affect two contiguous levels of a classi®cation. Thus an item may be pro-

moted to an upper level or be relegated to a lower level. For example the city of ZuÈrich was

promoted to form an own district. Or, which is usually more frequent, an item may change

its parent item. For example the communes of the district of Laufen changed from the

canton of Berne to the canton of Basel-Land. All other changes may be interpreted as

combinations of one- and two-level changes.

In practice a complete record of all structural changes is necessary to establish time

series for periods extending over several versions of a classi®cation. The record of one

revision is usually called a correspondence table (see e.g., EDI Expert Group 6 1996 or

Lestang 1983). The more complex and frequent revisions occur the more dif®cult becomes

the coherent recording and tracking of revisions.

This article shows how simple matrix algebra may be used to keep track of the revisions

of a classi®cation. It is shown that it is only necessary to keep track of the ``one-level''

changes at the basic level of a nomenclature while the ``one-level'' changes of aggregate

levels can be derived by matrix algebra from the changes at the basic level and from the

aggregations of the different versions.

In Section 2 the aggregation of items to their parent items is described as a linear map-

ping. The evolution of the items of a level, usually described by a correspondence table, is

a linear mapping again. For example when a split occurs an item is mapped to its succes-

sors. The matrix of this mapping and its suitable standardisation are described in Section 3.

In Section 4 the derivation of weighted correspondence matrices from observations is

explained. In Section 5 the correspondence table resulting from several revisions is

derived as a matrix product. The extension to correspondence tables of higher levels

and to whole nets of classi®cations is shown in Sections 6 and 8. An application to

the cantons of Switzerland is presented in Section 7. Section 8 concludes with some

limitations of the approach and indications for future research.
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2. Aggregation

A hierarchical relation between a lower and an upper level of a classi®cation may be

described as a linear mapping. Suppose there are n lower level items which are grouped

into a upper level items. Suppose that the items of each level are ordered and each item

has its order number within its level.

To each lower level item with order number i�i � 1;¼; n� belongs an n ´ 1 identi®ca-

tion vector yi which has all entries 0 except the i-th entry which is 1. The set of vectors

fy1;¼; yng forms the basis of a vector space Y. Similarly, to each upper level item

j� j � 1;¼; a� belongs an a ´ 1 identi®cation vector uj. The set of vectors fu1;¼; uag

forms the basis of a vector space U. The n ´ a matrix A, with entries Aij � 1 if lower level

item i belongs to upper level item j and 0 otherwise, describes the grouping or aggregation

completely.

When AÁ, the transpose of A, is applied to an identi®cation vector of a lower level, yi

say, then the identi®cation vector of its parent item results. The matrix AÁ corresponds to a

linear mapping of the space Y to the space U, i.e., AÁ : Y ! U (The same notation is

used here for the matrix and the linear mapping that corresponds to it.) The mapping is

not one-to-one since the number of items is usually greatly reduced by an aggregation.

Conversely when A is applied to an identi®cation vector of the upper level, then the result

is the sum of the identi®cation vectors of the corresponding lower level items. For an intro-

duction to matrix algebra see e.g., Rao (1973). In the following examples the items are

denoted by their identi®cation vector.

Example 1. Suppose there are ®ve lower level items, the ®rst three items belong to a

®rst parent and the fourth and ®fth belong to a second parent. The aggregation matrix is

A �

1 0

1 0

1 0

0 1

0 1

266664
377775 �1�

The ®rst row of A means that y1 belongs to u1, but not to u2. Thus the ®rst column of A

has an entry of 1 for the lower level items that belong to u1. When AÁ is applied to the

identi®cation vector of item y4, one gets

AÁy4 �
1 1 1 0 0

0 0 0 1 1

� � 0

0

0

1

0

266664
377775 �

0

1

� �
� u2 �2�

which shows that y4 belongs to u2. Conversely

Au2 �

1 0

1 0

1 0

0 1

0 1

266664
377775 0

1

� �
�

0

0

0

1

1

266664
377775 � y4 � y5 �3�

which shows that u2 disaggregates into y4 and y5.
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Any further aggregation to b items v in a space V , say, may be described by a further

a ´ b aggregation matrix, say B. Then the direct aggregation from y to v is described by the

matrix product of transposes BÁAÁ. This holds because the composition of linear map-

pings is equivalent to the product of the corresponding matrices. In other words the linear

mappings AÁ : Y ! U and BÁ : U ! V may be combined to BÁAÁ : Y ! V .

3. Changes at One Level and Standardisation

The changes involving only one level of a classi®cation (cf. Section 1) may be described as

linear mappings, i.e., by matrices. Suppose the identi®cation vectors for Versions 1 and 2

are xi�i � 1;¼;m� and yj� j � 1;¼; n�, respectively. The m ´ n matrix C, with elements

Cij � 1 if item j is a successor of i and 0 otherwise, describes all possible changes. We

call C a correspondence matrix. Often a correspondence table between two versions of

a classi®cation or between two different classi®cations is written as a list with two col-

umns (e.g., Annex II of the Industrial Commodity Statistics Yearbook, 1994 (1996)).

Each row in such a list corresponds to one of the cells of the matrix C except that the cells

with a 0 entry are left out. Thus C is nothing else than a correspondence table in its full

extension.

The product CÁxi gives for any identi®cation vector xi for Version 1 the sum of the

identi®cation vectors of its successors in Version 2. In fact multiplying xi by CÁ amounts

to picking out of C the row which corresponds to xi. Of course CÁxi may have several

entries equal to 1 if item i has split or it may have all entries equal to 0 if item i has

died. Conversely Cyj gives the predecessors of item j. If Cyj has several entries equal to

1 then item j is the result of a fusion. If it has only 0's then item j is a birth. The matrix

CÁ corresponds to a linear mapping of the vector space X of Version 1, which is spanned

by the basis fx1;¼; xmg, to the vector space Y of Version 2, which is spanned by

fy1;¼; yng, i.e., CÁ : X ! Y and C : Y ! X .

It is convenient to standardise the column-sums of CÁ to 1, except if all entries in a col-

umn are 0. If a column of CÁ has several non-zero entries it describes a split and the entries

in the standardised column are the weights of the split. The choice of the weights in a split

depends on the particular analysis to be performed (cf. Section 4). A simple solution,

which is applied in the following examples, is to give equal weight to all the successors

of an item. We denote the column-sum standardisation of matrices with a star like in

C�. The column-sum standardised transpose of C is CÁ�. Note that the order of standardi-

sation and transposition is important, i.e., CÁ� Þ C�Á.

The four basic changes of Section 1 are now represented in C� as follows: A birth is a

column of 0's. A death is a row of 0's. A split is a row, where several entries are larger than

0. A fusion is a column where several entries are larger than 0 and since C� is column-sum

standardised the non-zero entries sum to 1. Usually the non-zero entries of a ``split-row''

are 1 except if part of the split is fused with another item (``many-to-many'' changes).

Items that do not change have exactly one 1 in their row and column, respectively, and

the remaining entries are 0.

Example 2. Let the old version of a classi®cation contain four items and the new Version 3.

Suppose the new third item is created from parts of the old ®rst and second items, that the
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other part of the old second item is fused with the old third item, and that the fourth old

item dies. The resulting correspondence matrix is

C �

1 0 1

0 1 1

0 1 0

0 0 0

2664
3775 �4�

The successors of x1 are

CÁ�x1 �

1=2 0 0 0

0 1=2 1 0

1=2 1=2 0 0

24 35 1

0

0

0

2664
3775 �

1=2

0

1=2

24 35 �
1

2
y1 �

1

2
y3 �5�

i.e., the successors of x1 are y1 and y3 and both receive 50% of x1. The successors of x3 are

CÁ�x3 �

0

1

0

24 35 �6�

i.e., the only successor of x3 is y2. The predecessors of y2 are

C�y2 �

1 0 1=2

0 1=2 1=2

0 1=2 0

0 0 0

2664
3775 0

1

0

24 35 �

0

1=2

1=2

0

2664
3775 �

1

2
x2 �

1

2
x3 �7�

both contributing 50% to y2. The predecessors of y3 are

C�
0

0

1

24 35 �

1=2

1=2

0

0

2664
3775 �

1

2
x1 �

1

2
x2 �8�

both contributing 50%.

An aggregation matrix is a special case of a correspondence matrix: there are only

fusions in an aggregation, as the word suggests. Therefore, aggregation matrices are

already row-sum standardised, i.e., AÁ�
� AÁ. However, when used to disaggregate, A

should be column-sum standardised and Equation (3) becomes

A�u2 �

1=3 0

1=3 0

1=3 0

0 1=2

0 1=2

266664
377775 0

1

� �
�

1

2
y4 �

1

2
y5 �9�

i.e., item y4 and y5 contribute 50% each to its parent item. The equal weights of A� may, of

course, not be appropriate. In Section 4 a weighted aggregation matrix is derived from the

observations of a variable, thus leading to possibly unequal weights.

4. Weighted Correspondence Matrices

A correspondence matrix may be established from the data of a census or a sample, i.e., from
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the units which are classi®ed by the considered classi®cations. For this purpose the data for

at least one reference period must be coded according to the two classi®cations which

should be linked (MacDonald 1995). Suppose that for a certain point in time there are three

variables available for a population of size N : c1, c2 and a. The two vectors c1 and c2 give

the position of the units of the population in two classi®cations, i.e., they are equivalent to

the codes of the two classi®cations assigned to the individual units. The vector a is a posi-

tive variable, measured for every unit, which shall be used to establish weights. For exam-

ple a may contain the number of employees of enterprises, c1 the codes of an old

classi®cation of economic activities and c2 the codes of a new classi®cation of economic

activities.

Let m be the number of items in Classi®cation 1 (cf. Section 3). Let C1 be the N ´ m

matrix with elements �C1�ki � 1 if c1k � i and 0 otherwise. Similarly de®ne C2. Then

C1 is the matrix which corresponds to a linear mapping of the units of the population

into the items of the ®rst classi®cation and C2 maps the units into the second classi®cation.

Both matrices may contain 0-columns corresponding to items that have not been observed.

The aggregates a1 of a for Classi®cation 1, which are simple subtotals over the units

belonging to the same items of this classi®cation, may also be obtained as a1 � CÁ
1 a,

while the aggregates for Classi®cation 2 may be obtained as a2 � CÁ
2 a. The correspon-

dence matrix between the two classi®cations weighted with the variable a is then

C12a � CÁ
1 diag�a�C2 �10�

where diag�a� is the N ´ N matrix with diagonal a and 0 elsewhere. For ak � 1,

�k � 1;¼;N� the weighted correspondence matrix C12a is just the contingency table of

the two classi®cations. Thus for general a we may obtain C12a easily as an a-weighted

contingency table.

The weighted correspondence matrix C12a allows the direct mapping from a1 to a2 and

back:

a1 � C�
12aa2 �11�

a2 � CÁ�
12aa1 �12�

Suppose we know the aggregates b1 of another variable b according to Classi®cation 1 but

we are not able to aggregate b according to Classi®cation 2. The correspondence matrix

CÁ�
12a may be applied to b1 to obtain an estimate Ãb2 of the aggregates according to Classi-

®cation 2, namely

Ãb2 � CÁ�
12ab1 �13�

The vector b may stem from another source than c1, c2 and a. The quality of the estimate
Ãb2 depends on the correlation between a and b. If CÁ�

12a contains 0-columns because no

observation was coded in the corresponding category of Classi®cation 1 then the sum

over Ãb2 may not correspond to the sum over b1. Nevertheless, this technique may help

to establish time series of aggregates when classi®cations change.

Higher level aggregates of a may be written as matrix products, too. For example let A1

denote an aggregation matrix for Classi®cation 1. Then

AÁ
1 a1 � AÁ

1 CÁ
1 a �14�

yields the aggregates of a according to a higher level of Classi®cation 1.
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A weighted aggregation matrix A1a may be derived from A1 and a variable a by

A1a � diag�CÁ
1 a�A1 �15�

The column-sum standardised matrix A�
1a may then be used for disaggregation.

5. Concatenation

Denote the correspondence matrix for the changes between Version 1 with m items and

Version 2 with n items by C12. A further change to Version 3 has its correspondence matrix

C23. Let zk�k � 1;¼; l� denote the identi®cation vectors for Version 3 and Z the space

spanned by fz1;¼; zlg. Then C23 has dimension n ´ l. The correspondence between Ver-

sion 1 and Version 3 is described by the matrix product of C12 and C23, i.e., by

C13 � C12C23 �16�

This holds because the composition of two linear mappings is expressed by the product of

their matrices: The mappings CÁ
12 : X ! Y and CÁ

23 : Y ! Z are combined to CÁ
23CÁ

12 :

X ! Z.

Using standardised correspondence matrices in (16) we obtain a standardised product

directly, because for every i�i � 1;¼;m�Xl

k�1

CÁ�
23 CÁ�

12

ÿ �
ki �

Xl

k�1

Xn

j�1

CÁ�
23

ÿ �
kj CÁ�

12

ÿ �
ji

" #
�
Xn

j�1

Xl

k�1

CÁ�
23

ÿ �
kj

" #
CÁ�

12

ÿ �
ji �17�

and since ål
k�1�C

Á�
23 �kj is 0 or 1 due to the column-sum standardisation of CÁ�

23 and

ån
j�1�C

Á�
12 �ji is 0 or 1 for the same reason, the expression becomes either 0 or 1.

Example 3. Suppose C12 is the correspondence matrix in (4) and

C23 �

1 0 0 0

0 0 0 1

0 1 1 0

24 35 �18�

i.e., y1 becomes z1, y2 becomes z4 and y3 splits into z2 and z3. Then

C�
13 � C�

12C�
23 �

1 0 1=2

0 1=2 1=2

0 1=2 0

0 0 0

2664
3775 1 0 0 0

0 0 0 1

0 1 1 0

24 35 �19�

�

1 1=2 1=2 0

0 1=2 1=2 1=2

0 0 0 1=2

0 0 0 0

2664
3775 �20�

Thus the changes from Version 1 to Version 3 are as follows: Two parts of the split of item

x1 are fused to z2 and z3; The parts of the split of item x2 are fused to z2, z3 and z4 and item

x3 is fused to z4, too. Item x4 dies. Note that the column-sums of C�
13 are automatically

standardised.

Suppose we have registered all revisions of a classi®cation and their correspondence
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matrices Ct, where t indicates the time of the revision. If we are interested in the correspon-

dence matrix Ct1;t2
between the versions of the nomenclature for time t1 and t2 then we just

have to calculate the product of the correspondence matrices Ct with t [ �t1; t2�:

Ct1;t2
�

Y
t[�t1;t2�

Ct

6. Changes Involving Two Levels

Changes of upper level items do not necessarily affect the lower level items as such but the

hierarchical links certainly change whenever a change in an upper level occurs. Suppose

the hierarchical links for Version 1 are described by the m ´ a aggregation matrix A1 and

for Version 2 by the n ´ b aggregation matrix A2 and the vector spaces of the lower levels

are X and Y while the vector spaces of the upper levels are U and V . Let C12 describe the

evolution of the lower level. Then

AÁ
2 CÁ�

12 xi �21�

describes the correct aggregation groups for Version 2 of an item with identi®cation vector

xi in Version 1. Thus the mappings CÁ�
12 : X ! Y and AÁ

2 : Y ! V are combined to

AÁ
2 CÁ�

12 : X ! V .

Conversely

AÁ
1 C�

12yj �22�

gives the aggregations according to Version 1 of the predecessors of item j, i.e.,

AÁ
1 C�

12 : Y ! U.

Example 4. Let

A1 �

1 0

1 0

1 0

0 1

0 1

266664
377775 C12 �

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

266664
377775 A2 �

1 0 0

1 0 0

0 1 0

0 0 1

2664
3775 �23�

There are ®ve basic items in Version 1 and four in Version 2. The ®rst two basic items fuse

and part of the fourth item is fused with the ®fth item. Now AÁ
2 CÁ�

12 x3 � �0; 1=2; 1=2�Á, i.e.,

the new aggregates of the old Item 3 are the second and third in the list of upper level items

of Version 2, and the contribution is 50% to each new aggregate. Conversely AÁ
1 C�

12y1 �

�1; 0�Á. Thus the old aggregation group of new basic Item 1 is the ®rst in the list of upper

level items of Version 1.

Promotion, relegation and change of the parent item are easily re¯ected by changes in

corresponding aggregation matrices. A condition is that the classi®cation is built in such a

way that every item which is not at the basic level has at least one lower level item as a

child.

It is possible to describe the direct change of any upper level items by the concatenation

of the hierarchical mappings with the correspondence mapping of the basic level. Let

C12 again be the correspondence matrix of the basic level and A1, A2 the corresponding
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aggregation matrices. The matrix product

DÁ
12 � AÁ

2 CÁ�
12 A�

1 �24�

describes the direct correspondence matrix between the upper levels in Versions 1 and 2.

In other words DÁ
12 : U ! V . Note that DÁ

12 is automatically column-sum standardised.

Whether the weights in DÁ
12, which stem from the lower levels, are appropriate must be

decided in view of the application of the correspondence matrix.

Example 5. With the matrices of the last example we get

DÁ
12 �

1 0

0 1=4

0 3=4

24 35 �25�

Thus the second upper level item of Version 1 is split into the second and third upper level

item of Version 2 with weights 25% and 75%, respectively.

7. Application to the Cantons of Switzerland

The division of Switzerland into cantons is a very stable nomenclature since the last cen-

tury. Nevertheless, on January 1, 1979 the canton of Jura (JU) was created as a split from

the canton of Berne (BE), and on January 1, 1994 the district of Laufen was split from the

canton of Berne and joined to the canton of Basel-Land (BL). Thus we have three versions

of the nomenclature of cantons. Version 1 is valid up to December 31, 1978, Version 2 is

valid from January 1, 1979 to December 31, 1993 and Version 3 is valid from January 1,

1994 onwards. Table 1 shows the number of permanent residents s per canton at the end of

the years 1970, 1978, 1993, and 1995.

At the beginning of 1979 64,800 of the residents of Berne established the new canton of

Jura and at the beginning of 1994 15,470 persons, i.e., the district of Laufen, changed from

Berne to Basel-Land. We use these ®gures for the weighting of the correspondence

matrices. The ®rst weighted correspondence matrix C12 has dimension 25 ´ 26 and con-

tains the number of resident persons of 1978 (in thousands) in the diagonal and zero else-

where, except for Row 2, corresponding to Berne, where the second entry is 908.3 and the

last entry is 64.8. The second weighted correspondence matrix C23 has dimension 26 ´ 26

and contains the number of resident persons of 1993 in the diagonal and zero elsewhere,

except for Row 2, where the second entry is 941,147 and the 13th entry, corresponding to

Basel-Land, is 15,470.

Suppose we would like to compare the number of resident persons according to the 1970

census with the number of resident persons at the end of 1995 for regions which are aggre-

gates of cantons (see column headed ``region'' in Table 1). We may use Formula (16) to

derive C13s, the correspondence matrix weighted by the number of resident persons s. Then

we apply (13) to get an estimate at cantonal level and (14) to obtain the appropriate aggre-

gates. In this simple example it is easy to see explicitly what happens. For example, to

derive Ãs95;1 from s95;3 we ®rst join the ®gure for Jura back to Berne (Region 2 gets

69,188 from Region 1). Then we calculate an estimate for the population of 1995 of the

district of Laufen based on its relative weight in Basel-Land on January 1, 1994
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Table 1. Number of permanent residents in cantons

cantona regionb s70 sc
78 s93 s95

ZH 3 1107,788 1,109.8 1162,083 1175,457
BE 2 983,296 973.1 956,617 941,952
LU 4 289,641 292.6 335,385 340,536
UR 4 34,091 33.7 35,727 35,876
SZ 4 92,072 95.1 118,528 122,409
OW 4 24,509 25.4 30,837 31,310
NW 4 25,634 27.7 35,393 36,466
GL 3 38,155 36.1 39,138 39,410
ZG 4 67,996 73.9 88,583 92,392
FR 1 180,309 183.2 218,704 224,552
SO 2 224,133 216.3 236,389 239,264
BS 3 234,945 208.3 197,403 195,759
BL 3 204,889 215.4 234,910 252,331
SH 3 72,854 69.0 73,588 74,035
AR 3 49,023 46.9 54,087 54,104
AI 3 13,124 12.8 14,680 14,750
SG 3 384,475 385.1 436,967 442,350
GR 5 162,086 159.2 181,957 185,063
AG 2 433,284 443.7 518,945 528,887
TG 3 182,835 181.1 217,129 223,372
TI 5 245,458 262.0 297,955 305,199
VD 1 511,851 516.9 596,736 605,677
VS 5 206,563 215.1 266,713 271,291
NE 1 169,173 158.6 163,884 165,258
GE 1 331,599 344.2 387,606 395,466
JU 1 NA NA 68,626 69,188

CH 6269,783 6,285.2 6968,570 7062,354

syy is the number of permanent residents at the end of year 19yy.
aThe cantons are given in the so-called historical order.
bThe regions are not an of®cial nomenclature.
cThe ®gures of 1978 are given in thousands.

Table 2. Number of permanent residents in regions

Region Version 1 Version 3

s70;1 Ãs95;1 s95;1 Ãs70;3 s95;3

1 1192,932 1390,953 1390,953 1258,411 1460,141
2 1640,713 1794,882 1795,556 1560,391 1710,103
3 2288,088 2455,977 2455,303 2302,931 2471,568
4 533,943 658,989 658,989 533,943 658,989
5 614,107 761,553 761,553 614,107 761,553

CH 6269,783 7062,354 7062,354 6269,783 7062,354

Columns with syy;c are counts, Ãsyy;c are estimates. The year is indicated by yy, the applied nomenclature by c.



(252,331 ´ 15,470/(15; 470 � 234; 910� � 15; 591� and we join this population back to

Berne (Region 2 gets 15,591 from Region 3).

Table 2 shows the results for Version 1 and Version 3 of the nomenclature of cantons.

While the regional aggregates of s70 and s95 according to their respective classi®cation

Versions 1 and 3, i.e., s70;1 and s95;3, cannot be compared directly, the comparisons based

on Version 1, i.e., s70;1 and Ãs95;1, and on Version 3, i.e., Ãs70;3 and s95;3, are valid because

they are not confounded with the change of the nomenclature. In this example we may

derive the true regional aggregates s95;1 because we know from other sources that the dis-

trict of Laufen had 16,265 resident persons in 1995. This would not be possible in a situa-

tion where the units (here the communes) cannot be reclassi®ed according to Version 1.

Table 2 shows that the difference between the estimate Ãs95;1 and the true aggregate s95;1

is noticeable but small for most purposes.

8. Extensions, Limits and Further Research

Two different classi®cations may be linked by a correspondence matrix in the same way as

two versions of the same classi®cation. Matrix products will show the correct correspon-

dence to other versions of the two classi®cations and to further related classi®cations. Thus

a whole net of classi®cations may be connected and matrix calculus may help to keep these

connections consistent. An example of such a set of (unweighted) correspondence tables

between commodity codes based on the Standard International Classi®cation of All Eco-

nomic Activities (ISIC Rev. 2), three versions of the Standard International Trade Classi-

®cation (SITC) and the Harmonized Commodity Description and Coding System (HS) is

described in Annex II of the Industrial Commodity Statistics Yearbook, 1994 (1996).

The concatenation of correspondence matrices has no memory, i.e., the transition from

the current version to the next version may depend only on the current and next versions

and not on past versions. This limitation shows up in the following example (SyvaÈnperaÈ

1995). Suppose two items a and b were fused into c, but after a while c splits again

into its former parts a and b. The product of the two correspondence matrices involved

yields not only a path from a to c to new a but also from a to c to new b, which of course

is undesirable. The problem is that the split from c to new a and b uses past information. A

possible solution to the problem is to create an intermediate aggregation level and to treat

the temporary fusion of a and b as an aggregation to an intermediate level item c. Thus the

fusion and split of a and b would be re¯ected only in the aggregation matrices while the

basic level correspondence matrices preserve the units.

Correspondence matrices are sparse matrices with many 0's. The implementation of this

matrix calculus for the linking of classi®cations should store the correspondence matrices

in an ef®cient way. It is clear that all changes have a reason and therefore more informa-

tion than just the changes must be recorded. At the same time attributes which give infor-

mation about the non-structural changes may have to be stored, too.

This article gives a theoretical framework for the evolution of classi®cations and for

weighted correspondence tables. However the establishment of weighted correspondence

tables is further complicated by misclassi®cations, differences between data-derived and

theoretical correspondence tables and possible time lags between the coding according to

different versions of a classi®cation. These problems and their effect on the quality of

estimates based on weighted correspondence tables must be studied further.
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