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Masking Microdata Using Micro-Aggregation

D. Defays and M.N. Anwar1

1. Introduction

Micro-aggregation is a technique for protecting individual data by aggregation (see Defays

and Nanopoulos 1993). In its most basic form the idea is in¯uenced by the work of Strud-

ler, Lock, and Scheuren on the Tax Model at the U.S. Internal Revenue Service. However,

in order to apply the method to a speci®c case we had to adapt and generalise it. The ori-

ginal idea could only be applied to a speci®c case, but in this article we show how it can

equally be applied, with suitable modi®cation, to other situations. A sample application is

presented in Section 4. The advantages and weaknesses of the different variants of the

generic method are discussed. We conclude by showing the links between this method

and the more traditional techniques such as data suppression, the recoding of variables

or their disturbance.

2. The Basic Method

The principle of the method is simple. In a statistical table, it is common practice to denote

as con®dential either cells with fewer than three units, or cells which are dominated by one

observation ± two in some countries ± which covers an extremely large part of this whole.

When applied to individual data this rule has immediate consequences: any observation

with a frequency of less than three is deemed con®dential. Data protection thus involves

the re-grouping of micro-data (using automatic classi®cation or value re-allocation tech-

niques) in aggregates of three (or more if the threshold of three is considered too risky),

while taking care that these aggregates are not dominated by a single observation. The

method of micro-aggregates involves a straightforward application of this principle. In

order to minimise data losses, it is proposed that the different unidimensional variables
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be aggregated separately, by sorting the values according to their ranks, and by an aggre-

gation in ®xed size groups of contiguous values. To illustrate, we take data on three vari-

ables from a survey on technological innovation in Europe analysed by Eurostat and

aggregate into groups of 3, 5, and 10 to show the likely structural changes under different

group sizes2.

As a ®rst step, the units are sorted in ascending (or descending) order of Variable 1 and

grouped k by k (where k in our case was 3, 5 and 10). The original Variable 1 value for

each unit is then replaced by the average for Variable 1 of the corresponding group. In

the next step, the units are again sorted, but by Variable 2 this time. Groups of k are formed

and the original Variable 2 values are replaced by the averages of the corresponding

groups. This procedure ± sorting, grouping, replacement with average values ± is repeated

for the third variable, and a new ®le is created consisting of surrogate observations equal in

number to the original ®le. The method acts more on outlying observations while leaving

the majority of the data structure intact; this property is both interesting and useful from a

statistical and con®dentiality viewpoint. The masking of extreme values is a prerequisite

of any method purporting to safeguard con®dentiality, yet a method which destroys data

structure also destroys the statistical properties of the data. The method proposed both

decreases the risk of disclosure and maintains relationships (see Section 5). A ``grid''

structure is imposed by the method which becomes more pronounced as k is increased.

This grid structure provides a guarantee of con®dentiality by creating observations with

identical values on a single given dimension (see Figure 1). The mesh of the grid becomes

®ner the more components there are, as illustrated in the ®gure below (case of numerical

variables treated separately and replaced by averages).
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2 The observations were ranked in ascending order in the example but the descending order can also be used.

Fig. 1. Structural changes in the data



This characteristic is very interesting; it demonstrates that the technique adjusts spon-

taneously to the distribution of variables and, where there is a high concentration, disturbs

the data very little (more is not necessary since many units have similar values), whereas

when the values are more dispersed, it superimposes a stronger noise on the original data.

However, as it can be seen from this ®gure, and as shown in Table 1, the variances of

the variables are affected by the micro-aggregation. Their reduction increases with k (see

Section 5.4). Note that the method leaves the means of the variables unchanged.

The survey to which we wanted to apply the method combined both quantitative and

qualitative data, key data on the enterprise which might permit indirect identi®cation

and more neutral subjective assessments, simple questions or questions with a more com-

plex structure. The method had ®rst to be generalised so that both quantitative and

non-quantitative variables could be considered. How, for example, should an assessment

of the type

``Crucial ± Of major signi®cance ± Of average signi®cance ± Of minor signi®cance ±

Of no signi®cance''

be dealt with? Again, how should a variable used to code a sector of activity be dealt with?

Similarly, speci®c problems were caused by some items, such as:

``Evaluate the effectiveness of the various methods outlined below in protecting your

product innovations:

± patents,

± industrial secrecy,

± product sophistication, etc.''
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Table 1. Summary statistics

Original Statistics
Variable Mean Std Dev Minimum Maximum
VAR 1 272 2,383 0 177,183
VAR 2 29,175 374,863 0 25,867,102
VAR 3 10,358 169,553 0 14,057,249

Modi®ed statistics (k � 3)
Variable Mean Std Dev Minimum Maximum
VAR 1 272 2,369 0 159,207
VAR 2 29,175 373,858 0 24,345,544
VAR 3 10,358 167,873 0 12,252,076

Modi®ed statistics (k � 5)
Variable Mean Std Dev Minimum Maximum
VAR 1 272 2,331 0 125,056
VAR 2 29,175 370,123 0 20,056,637
VAR 3 10,358 163,383 0 8,967,085

Modi®ed statistics (k � 10)
Variable Mean Std Dev Minimum Maximum
VAR 1 272 2,274 0 103,871
VAR 2 29,175 358,465 0 16,251,070
VAR 3 10,358 159,649 0 7,548,644



where each method has to be evaluated on an ordinal scale of ®ve levels. Dealing with

each of the headings in the item separately would basically mean disturbing only a very

small number of records, thereby providing poor protection of con®dentiality. Asymmetry

in the distribution of certain variables also presented problems: how was it possible to

avoid very large enterprises being easily identi®able following micro-aggregation?

The generic method presented in the following section is an attempt to solve some of

these problems.

3. A More Generic Version

Let �X1;X2; . . . ;Xi; . . . ;Xp� be a vector of p variables, for example employment, turnover,

investment. Let P denote a population of N units, for example the enterprises in a given

country. Let Lx denote a method which replaces the original set of X values for a given

population by a new set of values. Generally the new values are taken so as to respect

as far as possible the original distribution; for example, Lx could ensure correspondence

between a distribution and its average value or mode. Let H be a measure of the homoge-

neity of a group of units.

The de®nition of a micro-aggregation method involves a certain number of conventions

which are outlined below. In what follows, we will suppose that we have at the outset a

population P of N units on which a multivariate variable X has been de®ned.

3.1. Segmentation of the set of variables

The micro-aggregation method presented in Section 2 has been referred to as the ``micro-

aggregation method by individual ranking''. This term underlines the necessarily separate

treatment of the different individual variables which results in separate classi®cations and

aggregations of units of P, as illustrated in Section 2. But what is regarded as an individual

variable in this context? A set of p variables can be treated as a single multivariate vari-

able, resulting in a single grouping, or as separate p variables, resulting in p groupings.

More generally, X can be segmented into s variables, s varying from 1 to p:

X � �X1;X2; . . . ;Xi; . . . ;Xs�. With this notation, the Xi are thus multivariate or univariate

variables which we will call segments.

Each segment will be regarded as homogeneous, i.e., composed of the same type of vari-

ables. We will distinguish four types of variables: quantitative, ordinal, nominal-hierarch-

ical, and nominal-¯at. The two ®rst types are well-known and require no explanation. The

latter two are less well-known. A nominal variable is called hierarchical when the values it

takes belong to a set on which a total hierarchy has been de®ned (generally represented by

a tree), as in the well-known classi®cations of of®cial statistics. This hierarchical structur-

ing of values is frequent and permits certain operations, like taking a maximum. The nom-

inal-¯at variables are other qualitative variables.

3.2. Characterisation of groups

For each segment formed, units of population P will be regrouped and within each group,

the X values of the units will be replaced by a central value which sums up the values

included in the group, or by other values which will respect as far as possible the original
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distribution in the groups. Let Lx refer to the method selected to associate new values

(generally a central value) with X. There are different ways of attributing a central value

to a distribution, corresponding to different variants of the method. If X is a quantitative

variable, it can, for example, be associated with an average �Lx � E�X��, a median

�Lx � med�X��, a mode �Lx � mod�X��, or an interval of variation.

As suggested by a referee, one could also in the case of each unit add white noise (with a

suitable chosen variance) to the group averages, or replace each value of the group by a

rounded value chosen so that the overall mean and the variance are preserved.

If X is a nominal-hierarchical variable, it can be associated with a mode, or a maximum

(the order being de®ned by the hierarchy of values). In this case, each group will be asso-

ciated with the node of the tree directly above all the values observed in the group. In

effect, this involves changing the coding and, in the case of geographical coding for exam-

ple, moving from the commune to the district and even to the province or the country if the

values are very widely dispersed. When X is nominal, it can be summed up by a mode or a

set of values (another form of recoding). In the case of multivariate nominal variables,

it is possible to take either the multivariate mode or the modes for each of the variables

separately.

3.3. Constraints on size

Respect for con®dentiality involves avoiding conspicuous values by grouping them in suf-

®ciently large groups. The minimum size of such groups can depend on several factors: the

procedures or rules adopted in some countries, the degree of con®dentiality of a segment

of variables, or even the values taken by the variables in a group which may be so atypical

that larger aggregations above certain thresholds are desirable; thus, it is not unreasonable

to conclude that, for company statistics, small enterprises should be grouped three by three

whereas larger enterprises should be aggregated in larger groups.

In the following, C represents the size constraints imposed. We write C � fix 3 if the

size of all the groups is equal to three, or C � min 3 if the size of all the groups is to be

larger than or equal to three. Of course C can be a multiple constraint, e.g., consisting

of a size constraint and a dominance constraint.

3.4. Measures of group homogeneity

Groups are formed for each segment of variables by maximising the homogeneity of the

groups with respect to these variables. Homogeneity may be measured in different ways.

Let H denote the measure of homogeneity for a given segment of variables. Obviously,

different types of variables require different types of measurement. For the quantitative

variables, the Euclidean distance or the variance �H � var� will determine the formation

of groups, while for the ordinal variable this formation will be determined by the absolute

value of the difference in rank �H � abs�dif r�� or more general measurements of homo-

geneity, such as that based on a generalisation of the concept of entropy �H � ent� pro-

posed by Vogel et al. (1982).

In the case of nominal-hierarchical variables, the hierarchy of possible values

introduces a natural distance which is the induced ultra-metric distance (it being

assumed that the hierarchy is valued by its aggregation levels). With this arrangement,
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two components belonging to two communes of the same district, for instance, are closer

than two communes belonging to two different districts. In the case of the nominal-¯at

variables, a traditional entropy measurement or a chi square �H � chi2� can be used

(see, for example, Benzecri 1973).

3.5. Classi®cation techniques

When a measure of similarity or homogeneity has been ®xed for a segment of variables,

the problem of aggregation is largely reduced to a standard problem of automatic classi-

®cation (see Sneath 1973). Groups of maximum homogeneity have to be formed while

respecting constraints (see Hannani 1979). If the variable is quantitative and univariate

and if the constraint is to form groups of a ®xed size k, it is obvious that the groups are

formed by ranking the individuals and then grouping k by k. This will basically minimise

the within-group variance. If the variable is quantitative and multivariate the problem is

more complicated: when the distance used is Euclidean, it has been found that the opti-

mum groups are de®ned by hyper-planes in Rp (Defays and Nanopoulos 1993). Iterative

methods exist to approximate the optimum partition. The case of a univariate ordinal vari-

able is also straightforward, involving a ranking of values while trying to minimise rank

differences expressed in absolute values. This can also be applied for the multivariate case

by summing the rank differences over the variables. However, this may not take ade-

quately into account the semantic structure of the data. What happens if the multivariate

case is more complex and one would like to incorporate the semantic structure of the mul-

tivariate variable? If it is decided to denote the dissimilarity between values using a dis-

tance, such as the city block distance, based on ranks, the problem involves the regrouping

of similar units. To give an approximation of the optimal solution a more general use of the

ranking method used in the previous case is possible. As the objective is to regroup units

which are similar, it is suf®cient to de®ne a path of minimum length linking all the units,

then regroup them k by k along the path as above. This is unfortunately the well-known

and dif®cult salesman problem. However, when all the combinations of values are possi-

ble, there is a pragmatic approach, which is easy to implement and which makes it possible

to ®nd the path of minimum length. The values (in effect, the ranks) can be represented as

nodes of a grid with p dimensions: as illustrated in the following graph �p � 2�, it is simple

to de®ne a path on this grid, passing via adjacent peaks (distance one) and via all the peaks.

This has been referred to as the snake method. Alternatively entropy can be used as a
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measure of the homogeneity of groups, in which case the algorithms used should be itera-

tive (we will call it proxentropy): as with the snake method, they do not always guarantee

the best solution.

Our snake takes the route �1; 1�; . . . ; �1; 5�, �2; 5�; . . . ; �2; 1�; . . . as shown in the ®gure

above. Of course, the choice is somewhat arbitrary and other paths are possible.

Thus, by specifying the various components outlined above, namely segmentation,

characterisation of groups, size constraints and de®nition of the measure of group homo-

geneity, we get a speci®c method of micro-aggregation. The classi®cation techniques pro-

vide the solution or approximate solution to the problem thus speci®ed. A particular

micro-aggregation method will thus be presented as an s-couple (because s segments of

variables were de®ned).

�< X1; LX ;C;H >; < X2;LX ;C;H >; . . . ; < Xs;LX ;C;H >�

The ®gure below represents the recommended range of options for our s-couple, with the

arrows indicating the hierarchical nature of data values. A metric variable can be trans-

formed into an ordinal or nominal variable so that the ``snake'' or entropy can be used

as a measure of homogeneity. The exact mix chosen will depend on the quality of data

needed to allow data users to draw adequate conclusions, and the degree of data protection

required by data providers.
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4. A Sample Application

Table 2a presents an example of data adapted from a survey on technological innovation in

Europe currently being coordinated by Eurostat. These are three metric variables, an

ordinal question with two sub-questions, and two nominal variables which will be treated

together as one segment. The particular method we shall use for our example is, ``indivi-

dual ranking'' for the metric variables, ``individual ranking with snake'' for the ordinal

question and ``proxentropy'' for the nominal variables, with k, the number of observations

in each grouping, set at 3. The method can of course be varied according to the particular

circumstances of each data set and the required degree of perturbation. The method can

thus be described by the following:

�< X1;E�X1�fix 3; var >; < X2;E�X2�; fix 3; var >; < X3;E�X3�; fix 3; var >;

< �X4;X5�;med�X4� ÿ med�X5�; fix 3; abs�dif r� >;

< �X6;X7�;mod�X6� ÿ mod�X7�; fix 3; ent >�

Step 1 ± Metric variables

Each variable is taken to de®ne one segment, and k is set at three. Each variable is

independently ranked and for each grouping the original values are replaced by the arith-

metic mean of the three observations comprising the cluster (see the output Table 2b

below)

Step 2 ± Ordinal variables

Since we have two variables in our segment and ®ve classes, the snake method is applied.

After ranking the observations accordingly and placing them in groupings of 3, one

replaces the original values with an appropriate measure of central tendency such as the

one in our example, the median (see output Table 2b below).
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Table 2a. Original data on nine companies

What is more
important?

Company X1 X2 X3 X4 X5 X6 X7

1 12 1,000 2 1 1 N Y
2 21 1,500 6 1 2 N Y
3 39 2,000 5 2 5 Y Y
4 40 3,000 3 2 4 N N
5 42 1,000 4 2 4 N Y
6 47 2,000 10 3 3 N Y
7 53 1,500 11 4 3 N N
8 58 1,500 10 4 2 Y N
9 60 3,000 14 5 5 Y Y

METRIC ORDINAL NOMINAL



Step 3 ± Nominal variables

The last two nominal variables are treated as one segment. The group homogeneity is

measured by an entropy calculated as follows:

H � ÿ
XL

i�1

pi ld pi

 !�
ld L

where pi is the frequency of observations belonging to category i in the group, ld is the

logarithm to the base 2 and L is the number of different categories, that is to say the num-

ber of values taken by the multivariate variables �X6;X7� ÿ 4 in our example. Once all

groups have been identi®ed, one selects an appropriate measure of central tendency,

such as the mode, and the original values are replaced by surrogates.

5. Characteristics of the Method

The characteristics of the initial method have been outlined in detail in various documents.

Some additional information may be added in the light of the more general application

developed in this article.

5.1. Fine-tuning the degree of protection

The de®nition of segments on the X set of variables makes it possible to achieve a ®ne balance

between the demands of data protection on the one hand and data quality on the other. At the

extreme, consideration of only a single segment (with all the variables) provides an absolute

guarantee of con®dentiality if the minimum size of the groups is set at more than two and if

no observation dominates in the groups. In other words, irrespective of the variables which

are crossed, no table based on micro-aggregated data will contain con®dential data.

As we have already indicated, it is possible to consider imposing different constraints

according to the range of values involved in each segment. For example, above a certain

threshold (or in a given sub-region of an area) the data could be more aggregated. Enter-

prises with a turnover higher than a given threshold could be grouped 5 by 5 and not 3 by 3,

thereby strengthening the protection of marginal individuals in the population. Thus the

method can be ®ne-tuned by modifying the segments, by changing k, or by choosing a dif-

ferent replacement value.
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Table 2b. Surrogate data on nine companies following micro-aggregation

What is more
important?

Company X1 X2 X3 X4 X5 X6 X7

1 24 1,167 3 1 2 N Y
2 24 1,167 7 1 2 N Y
3 24 1,667 7 1 2 Y Y
4 43 2,667 3 2 4 N N
5 43 1,167 3 2 4 N Y
6 43 2,667 7 2 4 N N
7 57 1,667 12 4 3 N N
8 57 1,667 12 4 3 Y Y
9 57 2,667 12 4 3 Y Y



5.2. Protection obtained from the method

In principle the level of protection enjoyed by micro-aggregating is the same as for tabular

data. Indirect identi®cation of some outliers is possible but in most cases only perturbed

data is available to the intruder. If the micro-aggregation is applied to continuous data

(with replacement values equal to the mean of each k grouping) an intruder may be

able to deduce what group size (k) has been used by grouping records on the basis of equal

values of the variables. And since micro-aggregation does not alter the order of the con-

tributions to the group total, the top k contributors remain the same after micro-aggrega-

tion. If the k ÿ 1 of the top k contributors pool their data they can deduce the value of the

kth contributor. But this is also true for tabular data, and any predominance rules applying

to tabular data should also be applied to micro-aggregated data. Sensitive variables could

be aggregated above a certain threshold by choosing a higher value for k, or replacing it

with a size class interval.

5.3. Relationships between variables

An important characteristic of a method for protecting individual data is to preserve the

moments of the initial distributions. Indeed, some people reject techniques such as

``data swapping'' on the basis of such arguments. If the variant chosen is individual rank-

ing it is easy to show that the second order moments will, as a rule, be slightly disturbed by

the method (see Section 5.4. for a more theoretical approach). Qualitatively, this is easily

explained. Each individual variable is disturbed as little as possible since it is aggregated

with data which are as similar to it as possible. Thus, a unit characterised by a couple

�X1;X2� of high values, where X1 and X2 belong to different segments, will still be char-

acterised by high values following micro-aggregation, since the unit's relative position in

R2 changes little, as X1 and X2 are only slightly disturbed.

5.4. Reduction of variance

We have mentioned several times that micro-aggregation by individual ranking will

reduce the variances of the variables. To study the bias introduced, some further notations

are needed. We will concentrate in this section on the effect on one unidimensional vari-

able X. Let X�1�;X�2�; . . . ;X�N� be the values taken by X, arranged in increasing order. When

we apply the individual ranking method, the original values of X are replaced by micro-

aggregated values denoted Y :

X�i� is replaced by Yi �
Xk

j�1

X�lk�j�=k

if, for some integer l; i[ � lk; �l � 1�k�

This substitution can be seen as a perturbation of the original value X�i�

Yi � X�i� � ei

where

ei �
1

k

Xk

j�1

�X�lk�j� ÿ X�i��
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From the usual analysis of variance formula, decomposing the total sum of squares by the

sums of squares between and within groups, we have

var�X� � var�Y� � var�e�

where var denotes the variance across the N ®nite population values.

This shows that var�Y� # var�X�.

A study of the reduction of the variance of X necessitates a more in-depth analysis of the

error e.

This study is possible but fairly complex: in fact, the ei can be expressed as a linear

function of the spacings Dj � X�j� ÿ X�jÿ1� between contiguous X values.

It can be shown that

ei �
X�l�1�k

r�i�1

Xr

j�i�1

Dj ÿ
Xi

r�lk�2

Xi

j�r

Dj

" #�
k

As the distribution of the Di (when the N observations are considered as a random sample)

depends on the distribution of X and has been studied (see for instance Pyke 1965), this

formula makes it possible, in theory, to derive the bias introduced on the variance by

the method under different distributional assumptions.

Furthermore, as

jeij # X�l�1�k ÿ Xlk�1 #
X�l�1�k

j�lk�2

Dj

and since

var�e� �
1

N

XN

i�1

e2
1

upper bounds on the bias can be calculated.

Let us suppose for instance that X is uniform on (0, 1) and that the N values have been

observed on a random sample. Under this assumption the distribution of the Dis is well-

known; they all have the same distribution and

E�D2
i � �

2

�N � 1��N � 2�

This means that

E var�e� �
1

N

XN

i�1

E�e2
i � #

1

N

XN

i�1

E
Xk

j�2

Dj

 !2

#
1

N

XN

i�1

�k ÿ 1�2
2

�N � 1��N � 2�
(by applying the Cauchy-Schwartz inequality)

#
2�k ÿ 1�2

�N � 1��N � 2�
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This makes it possible to calculate, for different values of k, an upper bound on the relative

bias since

E var�e�

E var�X�
#

24�k ÿ 1�2�N ÿ 1�

N�N � 1��N � 2�

Some values are given in Table 3.

6. Summary and Discussion

The preceding sections have provided a theoretical framework for the use of micro-aggre-

gation techniques. In fact, the proposed generalisation encompasses some well-known

procedures for protecting the con®dentiality of individual data.

The simplest technique, involving the creation of classes of three individuals of mini-

mum variance, using the average as a replacement value, corresponds to the method

�< X;E�X�; fix 3; var >�. The individual ranking presented at the outset as a paradigm of

the method corresponds to �< X1;E�X1�; fix 3; var >, < X2;E�X2�; fix 3; var >; . . .,

< Xp;E�Xp�; fix 3; var >�.

Micro-aggregation is also one way to recode data or to replace them by missing values.

As stated in the paragraph on the characterisation of groups, values may be replaced by an

interval, by a set of recorded values, by a broader set presented as a higher aggregation

level in a hierarchy, or by a missing value.

Certain authors (cf. Bragard et al. 1988) have proposed that the initial population P be

replaced by a set of prototypes representative of the initial units. The method of micro-

aggregates is strongly in¯uenced by this idea in its initial design. The units in the

micro-aggregated data are real units but the values of these units are modi®ed (by LX meth-

ods) while taking account of the initial distributions, which are departed from as little as

possible (the homogeneity measurements H are maximised).

When applied to numerical variables, micro-aggregation can be seen as a disturbance

method. However, it does present some speci®city: generally, if X is the initial variable

and Y the disturbed variable, there is equality such that: Y � X � e, where e is a noise

orthogonal to the variable X. With micro-aggregation the noise e is orthogonal to Y .

The disturbance method thus amounts to extracting a given factor Y which is as close

as possible to the initial variable X (thus Y would be some kind of the ``true score,'' to

use measurement theory terminology).

It has been shown that the micro-aggregation method has several interesting features.

First, it is simple and ¯exible in its approach. Second, it offers a compromise between

data protection ± the transformed data can always be constructed so that the units do
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Table 3. Upper bound of the relative bias for a uni-

form distribution (%)

N k � 3 k � 5

50 3,5 14
100 1 3,7

1,000 0,01 0,04



not correspond to any of the units in the original dataset (if they are unique) ± and quality

of the information. It has also pointed to areas of additional research, namely: (1) devel-

oping a theoretical model to estimate the errors resulting from the use of micro-aggrega-

tion data, and the change in relationship between observations; (2) expanding the approach

to handle longitudinal data; (3) looking into the possibility of on-line access to micro-

aggregated data for researchers; and (4) development of micro-aggregation software.

Privacy has become a real concern in our modern societies, but so has the need to access

detailed statistical information. Micro-aggregation is only a ®rst step towards satisfying

both these con¯icting demands; unfortunately it is an empirical approach based on empiri-

cal rules which have proved useful, rather than on pure statistical theory, and much

more needs to be done both on the theoretical front and on development of more powerful

techniques.
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