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Maximizing and Minimizing Overlap When Selecting Any
Number of Units per Stratum Simultaneously for Two
Designs with Different Stratifications

Lawrence R. Ernst' and Steven P. Paben'

A number of procedures have been developed, beginning with the work of Keyfitz, for
maximizing or minimizing the overlap of sampling units for two stratified designs. Certain
overlap procedures have been developed for use when the two samples may be selected simul-
taneously. They generally produce a better overlap than procedures developed for sequential
selection applications or are computationally more efficient. We present here a simultaneous
overlap procedure developed from two previous overlap procedures of Ernst. One of these
procedures is applicable when the stratifications for the two designs may be different, but
is restricted to one unit per stratum designs. The other procedure has no restrictions on the
number of sample units per stratum, but requires that the designs have identical stratifications.
The new procedure does not have the restrictions of the previous procedures; that is, there are
no restrictions on the number of sample units per stratum, nor is there a requirement that the
two designs have identical stratifications. This procedure, like the two previous procedures,
produces an optimal overlap and requires the solution of a sequence of transportation
problems.

Key words: Stratified designs; transportation problems; optimal.

1. Introduction

Consider the following sampling problem. Sample units are to be selected simultaneously
for designs for two different surveys, denoted as D; and D,, for which the D, and D, stra-
tifications are generally different. Typically, the universes for the two designs are identi-
cal, although this is not assumed. The selection of sample units for each design is to be
without replacement, with probability proportional to a measure of size (PPS) that is gen-
erally different for the two designs. We wish to maximize the overlap of the sample units,
that is to select units so that:

There are a predetermined number of units, n;;, selected from D, stratum i and a pre-

determined number of units, n;,, selected from D, stratum j; that is, the sample size

for each stratum and design combination is fixed. (1.1)
Each unit in the universe is selected into each sample with its assigned
probability. (1.2)
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The expected number of units common to the two samples is maximized. (1.3)
In this article we demonstrate how a variation of the two-dimension controlled selection
procedure of Causey, Cox, and Ernst (1985) can be used to obtain samples that satisfy
these conditions and, with minor modifications, the conditions for the analogous problem
of minimizing the overlap of the sample units.

Many procedures have been developed for maximizing and minimizing the overlap of
sample units since Keyfitz’s (1951) pioneering work. The majority of these procedures
have been developed for the following somewhat different application. Units are selected
PPS, without replacement, for a survey with a stratified design. Later a new sample is to be
selected using a new size measure and generally a different stratification. To reduce costs
it may be desirable to maximize the expected number of units common to the two samples
while preserving prespecified selection probabilities for the units in the new design, either
selection probabilities for individual units or selection probabilities for the possible sets of
sample units in a new stratum. For example, when the units being overlapped are primary
sampling units (PSUs), which are geographic areas, an overlap maximization procedure
can reduce the costs associated with hiring a new interviewer; when the units are ultimate
sampling units, such a procedure can reduce the extra costs of an initiation interview.
Minimization of overlap, in contrast, is typically employed as a method of reducing
respondent burden.

In the redesign illustration just described, unlike the case of the present problem, the two
samples must be selected sequentially, since the designs are for different points in time. In
contrast, there are other applications for which samples are selected at the same point in time
for two surveys with different measures of size and possibly different stratifications.
Although overlap procedures developed for sequential selection can also be used in the
case of simultaneous selection, some overlap procedures have been developed specifically
to be used for simultaneous selection and generally produce a better overlap than procedures
developed for sequential selection or are computationally more efficient. Ernst (1999) dis-
cusses the various overlap procedures of both types including their limitations.

Ernst (1996, 1998) developed optimal, simultaneous procedures for two different situa-
tions. Ernst (1996) is only applicable to one unit per stratum designs, but the designs may
have different stratifications. In Ernst (1998) there are no restrictions on the number of
sample units per stratum, but the stratifications must be identical. These two procedures
are applicable to both the maximization and minimization problems. Unlike these two pro-
cedures, previous simultaneous procedures either fail to attain the optimal overlap or do
not guarantee a fixed sample size. Both procedures employ the algorithm in Causey,
Cox, and Ernst (1985) for solving the two-dimensional version of the controlled selection
problem developed by Goodman and Kish (1950). This algorithm involves solving a
sequence of transportation problems.

The procedure in this article combines the features of the Ernst (1996) and Ernst (1998)
procedures; that is, the procedure is an optimal, simultaneous procedure that has no restric-
tions on the number of units per stratum and is applicable when the two designs have dif-
ferent stratifications. The solution, although borrowing ideas from both of the earlier
papers, is mostly a generalization of the Ernst (1996) procedure. However, it is substan-
tially more complex than that procedure. In order to understand the need for this extra
complexity, we present in Section 2 an outline of the direct generalization of the Ernst
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(1996) procedure for the maximization problem to other than one unit per stratum designs
and demonstrate why this direct generalization can result in three problems that prevent it
from producing a solution without modifications. In Section 3 we present the main pro-
cedure for the maximization problem and explain how the modifications of the Ernst
(1996) procedure that it incorporates overcome the three problems of Section 2. The
proofs of some of the claims in Section 3 are deferred until the Appendix, Section 6.
Like both the Ernst (1996) and Ernst (1998) procedures, this new procedure requires
the solution of a sequence of transportation problems. In Section 4 we show how to modify
the procedure to solve the minimization problem. In Section 5 we report the results of a
simulation study that illustrates the use of the new procedure.

One drawback to the procedure is that pairs of units, unlike individual units, are not
selected into the D and D, samples with preassigned probabilities. Furthermore, although
joint selection probabilities can be calculated, they can be zero for some pairs of units,
which would preclude the computation of unbiased variance estimates. The Ernst
(1998) procedure has the same drawback and this issue is discussed there in further detail.

2. Problems with Directly Generalizing the Ernst (1996) Procedure

In this section we will: introduce some notation; reformulate (1.2) and (1.3) in terms of the
notation; illustrate by means of an example the direct generalization of Ernst (1996) to
cases where at least one of the designs is not one unit per stratum; and use this example
to demonstrate the three problems with this direct generalization that require the modifi-
cations presented in the next section.

Let M, N denote the number of D; and D, strata, respectively. If the universes for the
two designs are not identical then we artificially create identical universes as follows. If a
unit is in D, only, arbitrarily assign it to some D, stratum and set its D, selection probabil-
ity to zero. Units in D, only are treated analogously.

Fori=1,....M, j=1,...,N, let Dy, Dj, denote the set of units in D; stratum i and
D, stratum j, respectively; let ij = D;; N D;, and let ¢;; denote the number of units in D,’»‘j.
We denote the set of all units in the two designs by the set of ordered triples
T={Gjk:i=1,....M,j=1,....N, k=1,....1;}. For (i,j,k) €T, let w1, T;>
denote the D;, D, selection probabilities, respectively, for (i, j, k) and let

3
T = MIN{ T jep, Tijpa }s Thjka = Tijka — Tijpas @ = 1,2,and 7}y = I—Z Tt (2.1)
a=1
Let S}, S, denote the random sets consisting of the sample units for D, D,, respectively.
Let S, S5, S5, S; be the random sets denoting the set of units, respectively: in S; but not in
S,, in S, but not in §, in both samples, and in neither sample.
In terms of this notations (1.2) and (1.3) are equivalent to, respectively,

Pr((i,j,k) € So) = Tijker LK) ET, a=1,2 (2.2)
Pr((i,j, k) € S3) is maximal for each (i,j,k) € T (2.3)
To establish (2.2) and (2.3) it is sufficient to show that

Pr((i,j, k) € Sg = miyg), (L, k) ET, §=1,2,3 24)
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since (2.1) and (2.4) imply (2.2); while (2.4) with 8 = 3, together with the fact that
Pr((i,j, k) € S5) = 71';.,-,(3, (i,j,k) € T, for any selection procedure satisfying (2.2), imply
(2.3).

We use the following example to illustrate the direct generalization of the Ernst (1996)
procedure and to explain the three reasons that this generalization does not work without
modifications unless both designs are one unit per stratum. In this example: M = 3, N = 2;
n; =1, nj, = 2 for all i, j; the two designs have the same eight units, with #;; = t; = 2,
t;; = 1,for all other i,j; and the selection probabilities for the eight units are given in Table 1.

Table 1. Selection probabilities for example

(1], k)
(LLH (1,12 (12D 2L 221 (222 @GL) G2
T 10 4 8 4 4 2 2 6

In general we would begin the direct generalization of the Ernst (1996) procedure by
constructing an (M +2)X (N +2) array, A = (q;;), of expected values. For i=
L,....M,j=1,...,N, a; is the expected number of units in D}"jﬂ Shs Qint1y 18 the
expected number of units in D;; N S}; and ag+1); is the expected number of units in

Dj, N S;. Then, in order to satisfy (2.4), we must have

lij N L
/ /
a; = E Tijk3>  QiN+1) = E E Tijkls
k=1 j=1 k=1

M

a(MH)j:ZZW;ij i=1,...,M,j=1,...,N
i=1 k=1

Furthermore, a1y n+1) = 0 and the remaining cells are marginals. (We refer to an array,
such as A, in which the final row and final column are marginal values, as a tabular array.)
A for the example is presented below

6 4

2.5)

4 6
2 .6
8 4
2 2

2 142

The next step in the procedure is to obtain a solution to the controlled selection problem
corresponding to A using the procedure of Causey, Cox, and Ernst (1985). A controlled
rounding of a real-valued, tabular array A is an integer-valued, tabular array M with the
same dimensions as A that rounds every element a;; of A that is not an integer to either
the next integer above or the next integer below q;; and leaves integer elements of A
unchanged. (Our terminology differs here from that of Causey, Cox, and Ernst (1985),
which refers to such roundings as zero-restricted controlled roundings.) For example,
the three arrays My, M,, M3 below are all controlled roundings of A. Cox and Ernst
(1982) demonstrated that a controlled rounding of a tabular array always exists and can
be obtained by modeling the controlled rounding problem as a transportation problem.
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Aset, My = (m;;1), My = (m;5), ..., Mg = (m;;¢), of controlled roundings of A and asso-

ciated probabilities of selection, py, ..., p¢, satisfying
¢
S mipu=ay, i=1,... . M+2j=1,.,N+2 (2.6)
u=1

is known as a solution to the controlled selection problem A. For example, the arrays

010 |1 100 |1 010
100 |1 010 |1 100
M= 1 00|l M= 0101 My= 0 0 1
01 0|1 100 |1 110
2 2 220 l4 22 115

with associated probabilities .2,.6,.2, respectively, constitute a solution to (2.5).

A single array M, is selected from among M ,...,M, using the associated prob-
abilities. Then fori=1,...,.M,j=1,...,N: M ju is the number of units in D}“j to be
selected to be in Sj, with the selection among these ¢ ; units proportional to T k35
Mjn+1y, 1S the number of units in D;; to be selected to be in S, with the selection with
probability proportional to 7; k1> and mgpy4 ) j,, is the number of units in D), to be selected
to be in S5, with the selection with probability proportional to jk2- For this example, three
problems arise in the selection process because the D, stratification is not 1 unit per stra-
tum and hence the first two column totals are not 1.

To illustrate the first problem for this example, assume that M has been selected. Then
(1,2,1) € S/3 since myy; =1 and (1,2,1) is the only unit in Dj,; but, impossibly,
(1,2,1) € S, also because my,; = 1 and (1,2,1) is the only unit in D,, for which 7}, > 0.

To illustrate the second problem, again assume that M; has been selected. Then
(1,1,1) & S5 since my;; =0, while (1,1,1) & S, either since m,;; = 0. Consequently,
(1,1,1) & S, if M, is selected and (2.2) cannot be satisfied since 7, = 1.

To illustrate the third problem, assume that M, has been selected. Then one of the units
(1,1,1), (1,1,2) would be selected to be in S5 since m;;, = 1, while one of these two units
would be selected to be in S5 since my;, = 1. The Ernst (1996) procedure selects the sam-
ple units corresponding to each cell independently. This does not work here since the same
unit could be selected to be in both S5 and S5.

3. The Main Procedure

We divide this section into three subsections as follows.

In Section 3.1., given a set of probabilities w;jkﬁ, (i,j,k)€T,B=1,2,3,4, we construct
an array A of expected values. This is analogous to the array A of Section 2, but more com-
plex in order to avoid Problems 1 and 2 of Section 2. We also obtain a controlled rounding
M of A, which determines the actual number of sample units to be in S}, S5, S5, S4 by type
of unit.

In Section 3.2 we describe how to select a single sample for the two designs given M.
By a sample, we mean the following. Each unit in 7 must be in exactly one of the four sets
1,85, S5, S,. A sample simply specifies to which of these four sets each unit in 7 belongs.
The approach of associating a single sample with each controlled rounding M differs from
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the approach in Ernst (1996) where each controlled rounding is used together with a prob-
ability mechanism to select a sample. The approach used here was chosen to avoid the
third problem of Section 2.

The algorithm described in Sections 3.1. and 3.2. results in a single sample. However,
what we need is a set of samples, S,,S5,, S5 Su» 4 =1,...,4€, and associated prob-
abilities, py,...,p¢, where: € is the number of samples; S}, is the set of units in the D,
sample only for sample u, with analogous definitions for S5,, S4,, S4,; and p, is the prob-
ability of selecting sample u. Note that for each u, each unit in 7 is in exactly one of
S'1u> Shus S5u» Say- To illustrate, a possible set of samples is given in Table 3 at the end of
Section 3.3 for the example in Section 2. Here € = 4. For each unit (i,j, k) and each
sample u, the table entry is that 3 for which (i,j, k) € S};u. Furthermore, the probabilities
associated with these four samples are .4,.2,.2,.2, respectively. For example, (1,2,1) is in
sample for both designs for Sample 1, is in sample for neither design for Sample 2, and is
in sample for D, only for Samples 3 and 4. Thus Pr((1,2,1) ES};) is 0,.4,.4,.2 for
B =1,2,3,4, respectively, in agreement with (2.4). The construction of the € samples
is described in Section 3.3 and employs a recursive procedure that requires the con-
struction of an array of expected values A, and a controlled rounding M,, of A, for
each sample u.

3.1. The construction of A

To construct an array A that overcomes the first two problems of Section 2 we begin by
partitioning 7 into five subsets, namely:

Tic = {0 ).k) s mijo < mijpy = 1}, Tig = {@J, k) @ mijpo < mija < 1}
The = () k) mijpg < mijo = 1}, Tog = {0, ), k) mijg < mijrp < 1}
T3 = {(i,),k) : Tijer = Tijea)

In our example, T =, Ti1s = {(3, 1, )}, Tr,e = {(1,1, 1)}, Ths = {(1,1,2),(1,2, 1)},
T, ={(2,1,1),(2,2,1),(2,2,2),(3,2,1)}. We also let T, = Toc U Tpg, @ = 1,2.

As we will show, the partitioning by the numerical subscript overcomes the first pro-
blem of Section 2 and the further partitioning determined by the C and S subscripts over-
comes the second problem. We will accomplish this by using an expanded tabular array
A = (a;;) with dimensions M* x N*, where M* =3M + N +2 and N* =M + 3N +2,
instead of the array A of dimensions (M + 2)x (N + 2) described in Section 2. The
expanded A contains five subarrays corresponding to the five sets in the partition of T.
The subarray corresponding to T is denoted by A;, with analogous notation for the
other four subarrays. Each subarray corresponds to the internal elements in the array A
of Section 2, except that each subarray is restricted to the units in the corresponding subset.
Furthermore, A, A;g have dimensions M X (N + 1) instead of dimensions (M + 1) X
(N + 1); Ayc, Ays have dimensions (M + 1) X N; and Az has dimensions M X N. This is
because units in T;¢, T)g cannot be in S5; units in T¢, Thg cannot be in S}; and units in
T; cannot be in either S| or S5. These five subarrays allow us to separately control the num-
ber of units selected of each of these five types, which is the key to overcoming the first
two problems of Section 2.
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We proceed to define these five subarrays. The expanded array A for the example of
Section 2 is presented at the end of this subsection, with the boundaries of the five sub-
arrays indicated by broken lines. In this figure, the first row and first column are not ele-
ments of A, but instead list the column and row numbers, respectively, of A. In all
subsequent arrays in the article those rows and columns consisting entirely of zeros are
omitted to conserve space.

Let Tjjic = {k:Gj,kET c},i=1,....M,j=1,...,N, with analogous definitions
for T;ji5, Ti oc> Tijos» Tijz» Tiji» Tijo- Az occupies the upper left-hand corner of A with its
elements defined by

aj= Y mui=1.. M j=1,. N (3.1)

KET, 3

A, is located to the right of A; and A,g to the right of A,.. Similarly, A, is located
below Az and Ay below A . A,c begins in Column N + 2, not N + 1, and A begins
in Row M + 2, in order that these two subarrays shall not overlap. Consequently, the cells
in the first M + 1 rows of Column N + 1 of A and the cells in the first N 4 1 columns of
Row M + 1 are not in any of the five subarrays and we let a;; = 0 for each of these cells.
An essential reason for the placement of the five subarrays as described is to insure that
none of the other subarrays has cells in the same columns as A,-, A,g or the same rows
as Ao, Agg.

The first M rows of Ay, A,g are defined as in (3.1), except j is replaced by j + N + 1
and j + 2N + 1 for A,¢ and A, respectively, on the left-hand side of (3.1) only; while T} 3
is replaced by T; ¢ and T s, respectively. The cells in the first N columns of A ¢, A are
defined by making analogous substitutions in (3.1). As for row M + 1 of A,, the row to be
used in selecting units in S5, we let

M
UM+ DN+ = Z Z 7T;jk2’ j=1,....,N 3.2)

i=1 k€T e

while the same formula holds for Row M + 1 of A,g, except N is replaced by 2N on the
left-hand side and C is replaced by S on the right-hand side. For Column N 4 1 of A,
we analogously have

N
A MIDN+) = Z Z T j=1,....M (3.3)

j=1 kETc
while for Column N + 1 of Ag, M is replaced by 2M on the left-hand side of (3.3) and C is
replaced by S on the right-hand side.

We let a;; = O for the remaining elements in the first 3M + 1 rows and first 3N + 1 col-
umns of A. Cells defined to be 0 have no role in the sample selection process. We postpone
the definition of the cells that are in either the final N internal rows or the final M internal
columns of A. For the example, we have so far defined those elements that are in both the
first ten rows and first seven columns of the array A at the end of this subsection.

M is a controlled rounding of A and is used to select the first sample. We proceed to
explain the meaning of those elements of A that are within the five subarrays and the cor-
responding elements of M. i jpn+1y,i=1,...,M, j=1,...,N, the value for Cell (i,j) of
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A, is the expected number of units in Dj; N T, to be selected to be in S5 and my J+N41) 18
the actual number of such units to be selected for the first sample. Likewise, apsp1yj+n+1)
is the expected number of units in D;, M T to be selected to be in S, and MO 1)(+N+1) 18
the actual number of such units for the first sample. The cell values for the other four arrays
have analogous interpretations.

We now define and explain the need for the final N internal rows in A. The definition
and explanation for the final M internal columns is analogous. Let

3M+1 3M+1
dp= Y ag my=Y myj=1,...3N+1 (3.4)
i=1

i=1

"

/ / / i / / / .
ajy = ajy + aginte T dgrane, Mz = My + Mgy yin + Mgpoves. j=1,....N
3.5)

Then from (3.4), (3.5), and the discussion in the previous paragraph, it follows that the
three terms in the definition of a}, are the expected number of units in D;, N (T3 U T)),
Dj> N Ty, Djy M Tg, respectively, to be selected to be in S,, j = 1,..., N; consequently,
aj/-/z is the expected number of units in D, to be selected to be in §,. From (2.1), (3.1), (3.2),

(3.4) it follows that forj=1,...,N,

M M M

/ ! /

ajy = E E Tijk2s A(+N+1)2 = E E Tijk2s Q(j+2N+1)2 = E E T jk2
i=1 kET;;3UT;), i=1 kET,,. i=1 kET})s

(3.6)

and, consequently, that a, = n;, as required by (1.1). Furthermore, since m}, is the actual
number of units in D;, to be selected to be in S, for the first possible sample and since
ajy = n;,, we must also have m;, = aj, by (1.1). To force this last relationship to be
true for any controlled rounding M of A, we define elements in the last N internal rows
of A as follows. For any real number x, let [x]| be the smallest integer that is larger
than or equal to x and let r(x) = [x] — x. Then let

agjram+nj = @), apamrnGran+n = r@ionvsn)s j=1,...,N 3.7

and let the cell value be O for all other internal cells in Row j 4+ 3M + 1 of A. It is estab-
lished in Section 6.1 that m}, = a,.

The entries in the final M internal columns of A are defined analogously to entries in the
final N internal rows, that is,

3N+1

ay=Y api=1,...3M+1 (3.8)
=
Qigisanety = (@), Agromsniraney = Maompn)s i= 1. .M 3.9

and the cell value is O for all other internal elements in Column i 4+ 3N + 1 of A. (3.8),
(3.9) are needed to force the number of units in D;; selected to be in S; for the first possible
sample tobe n;;, i =1,...,M.

This completes the definition of the internal elements of A. The remaining elements are
the marginals. M is any controlled rounding of A. The complete array A for the example
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and a possible M are given below.

1 2 3 456 7829 10 11
100505.4 05.2 .45000 1
204 6{0{0 0{0 0{0 0 01
310 61010 0o 0i0 0 4|1
410 0 016 012 4i0 0 012
500 0 0i0 00000 0]0
60 0 0i0 00 000 0]0

A= 1o 0o o0io0o0 000 0o
80 0 0{0 00 000 00
90 0 0io 00000 00
1002 0 210 00 000 6|1
114 00 006000 0]1
200 80 000 200 0] 1
31 2 2101 100 172

1246 7 10 11
100001 01
2/1 0000 o1
3101000 01

M= 4/00 100 0]1
1000000 1|1
1o oo 10 of1
200 1000 01
BT 2111 17

3.2.  Selection of a sample given M

We now describe how to select a single sample, that is a set of units in S}, S5, S5, S, given
M, which will be the first sample in the solution. For Cell (i, ) in A3, select any m; j units in
Dj; N Tj to be in S%, with the additional requirements that

if 7} i3 = Othen (i, ], k) cannot be in S5 and if =};3 = 1 then (i,j, k) must be in Sj.

(3.10)

Such a selection can always be made if there are at least m;; units in D,’-‘j N T for which

i3 > 0 and no more than m;; units in Df; N T for which w3 = 1. It can be shown
that the first of these conditions is met by combining (3.1) and the inequality
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m;; = [a;;], while the second condition follows from (3.1) and the inequality |a;;| = m;;.
We select the units to be in S5 from the corresponding cells of A;¢, Ajg, Asc, Agg in the
same way. Note, however, that it is not possible for 7r§_,-k3 = 1if (i,], k) & Ts.

After all the units to be in S are selected, units are selected from T, T»g corresponding
to the cells in the last row of Ay, A,g, respectively, to be in S5 as follows. For Cell j of A,
in this row, which is Cell (M + 1,j + N + 1) of A, choose any m 1) jtn+1) Units in
Dj> N Ty to be in S5 among those units in Dj> M T, not selected to be in S%. Units are
selected similarly corresponding to cells in the last row of A,g.

The selection of the units corresponding to the cells in the last column of A, A;g to be
in S} is analogous to the selection of the units corresponding to the last row in Ay¢, Ayg to
be in S5.

In Section 6.2. we show that for this selection method and o« = 1, 2 there are a sufficient
number of units in T, not selected to be in S5 to select the required number of units to be in
S.,, and, consequently,

if (i,j,k) € T, then (i, ], k) & S, N Sh 3.11)
In addition, we show that for any (i,j, k) € T
if w4, = 1then(i,j, k) €S, (3.12)

Consequently, by (3.11), (3.12), the selection avoids Problems 1 and 2 of Section 2.
Furthermore, for this selection method, if a unit is not in 7, then clearly it cannot be in
S', a=1,2. It follows from this result and (3.11) that a unit can be in at most one of
S, S5, S5. Finally, by definition, a unit is in S} if and only if it is not in any of S}, S5, S5
and, therefore, each unit is in exactly one of S}, S5, 55, S4.
The particular first sample chosen for the example is given in the first row of Table 3.

3.3.  The recursive process of selecting a set of samples

The selection of the ¢ samples Sj,,S5,, S5, 54, and associated probabilities p,,
u=1,...,¢, described earlier, is done recursively as follows. To obtain sample u and
p. we begin with a set of probabilities r;jkﬁu, (i,j,k)eT,=1,2,3,4, foru=1, and a
set of probabilities py, ..., p,—; for u> 1. For u =1 we let @5 = w5 for all i,j,k, B,
which will result in the same possible samples for # = 1 as the possible samples for the
selection described in Section 3.2. For all u the Jkgu Must satisfy the conditions satisfied
by the 7, that is:

0= 7y, = 1forall i,j,k,B (3.13)
4

> whikgu = 1 for all i,j,k (3.14)

=1

For each i,j, k, either 7}, = 0 or 7}, = 0 (3.15)

M 1 N lj
ZZWijkzu:njz, j:1,...,N, andZZWUkluan,i:l,...,M (316)
i=1 k=1 j=1 k=1
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where
/ /
T ko = T jloe T Wi i3 & = 1,2 (3.17)

For u = 1, (3.13)—(3.16) are satisfied since ;5 = ;. For general u we assume that
T Jkgu satisfies these relations; proceed to explain how sample u is selected and p,, calcu-
lated; define the set of =; kBu+1) 1N terms of sample u, the set of T kgu> ANA Py, Py
establish that the set of 7; k1) satisty (3.13)—(3.16); and finally explain how the recur-
sive process terminates.

To obtain sample u, first an array A, is constructed exactly as A was constructed in
Section 3.1 except T/ Jkpu TEPlaces T jkg- In particular, in this construction, T’ ¢ and the other
four subsets that form a partition of 7 depends on ;1 T;jk2u> DOt ;1> Tijio; that is, a
unit can be in different subsets for different u. To illustrate, the subscripts of the subset
for each unit and sample for our example are listed in Table 2.

Next a controlled rounding M,, of A,, is obtained and a sample S},,, S5, S5, S, selected
exactly as the sample was selected in Section 3.2., except M,, replaces M and 7r§jk3u
replaces ;6. In particular, A; = A and M; = M.

After sample u is selected, we compute p, as a function of sample u, the rﬁ_ikBu, and
Pis---sPu_i» and then recursively compute ; B+ as follows. For (i,j,k) €T,
B=1,2,3,4,let

W;T/kﬁu = 7l“;‘jkﬁu if (i’j’ k) € S;iu’ 7T;/jk6u =1- W;_jkﬁu if (i’ja k) & SZiu (3.18)

pu = min{@jg, : (k) ET, B=1,2,3,4} (3.19)
u—1

pu=piifu=1,p,= (1—2;77),9:; if u>1 (3.20)
y=1

)\ijkBu = 1if (i,js k) € S%u’ )\ijkBu =0if (i’j’ k) $ S;?u (321)

and, if p) < 1

/ )\ E3
TijkBu — NijkBu Pu

. (3.22)
- Pu

/
T jkBu+1) =

In Section 6.3, we show that if (3.13)—(3.16) are satisfied for u then they are satisfied for
u+1.
The recursive process eventually terminates since, as is established in Section 6.4,

there is an integer € for which pj = 1 (3.23)

Table 2. Subset of T for each unit by sample

(i,j, k)
u a.rn (112  d.21n @Lh @221 222 @GLD) (21
land2 2C 28 28 3 3 3 1S 3
3 2C 3 2C 3 3 3 1C 3
4 3 3 2C 3 3 3 3 3
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Table 3. 8 for which (i,j, k) € S;;u for each unit and sample

(i.), k)
u 1.LH (1,12 (121 2L (221 222 @GLDH G2l
1 2 4 3 3 4 4 4 3
2 3 2 4 4 4 3 4 3
3 2 3 2 4 3 4 1 4
4 3 4 2 4 3 4 3 4
Consequently,
(-1
pe=1-— Z Pu (3.24)
u=1

which ends the algorithm. It is established in Section 6.5 that this set of € samples satisfies

3
> Nijgy Py = Tijgs (1K) ET, B=1,2,3,4 (3.25)

=1

which is equivalent to (2.4).

The results of using the recursive algorithm for the example are presented below and in
Table 3 above. Here € = 4. Arrays A,, M,, A;, M3, are presented, along with the samples
in Table 3 and the =’ kBu> B =1,2,3, in Table 4. A,, My, which are identical, have been
omitted since, as is established in Section 6.4, there is only one possible Sample 4, which
is given by (6.7). That is, A4, My is the array with cell value 1 for Cells (1,1), (2,2), (3,1),
and (4,5), and O for all other internal cells. The 7; jk4y are omitted but can be calculated
from (2.1). We also have that the p; are .4,.33,.5,1, respectively, and that the p, are
4,.2,.2,.2, respectively.

In this example the samples are, with one exception, uniquely determined by the M,
since there was usually no more than one unit eligible to be chosen for each cell. The
exception occurred in Sample 2, where we could have chosen either (2,2,1) or (2,2,2) to

Table 4. g,

(i.), k)

u 6] (1,1, (1,1,2) (1,2, (@211 @21 @22 @G1,1) G210
1 1 0 0 0 0 0 0 2 0

1 2 .6 2 4 0 0 0 0 0
1 3 4 2 4 4 4 2 2 .6
2 1 0 0 0 0 0 0 .33 0
2 2 .33 .33 .67 0 0 0 0 0
2 3 .67 .33 0 0 .67 .33 .33 .33
3 1 0 0 0 0 0 0 5 0
3 2 5 0 1 0 0 0 0 0
3 3 5 5 0 0 1 0 ] 0
4 1 0 0 0 0 0 0 0 0
4 2 0 0 1 0 0 0 0 0
4 3 1 0 0 0 1 0 1 0
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be in S} since m,y, = 1. We chose (2,2,2).

1 2 3 4 6 7 10 11
10 0 0 67 33 0 O 1
210 1 0o 0 o0 0 o0 1
3]0 3 0 O O 0 67| 1
A)= 4]0 0 0 33 33 67 0 |1.33
103 0 33 0 0 0 33|11
1mye67 0 0 0 33 0 O 1
12 0 .67 0O 0 33 0 1
1311 2 33 1 1 1 1 |7.33
1 2 4 6 7 10 11
110 01 0 0 0|1
2101 0 0 0 01
3]0 1 0 0 0 0|1
M= 4,0 0 01 0 0|1
100 0 000 1|1
1mf1r 0 0 0 0 0|1
12/(0 0 0 01 011
3]1 2111 1|7
1 2 3 4 5 11 1 2 3 4 5 11
1.5 0 5 0|1 111 0 0 0 01
210 1 0 0 O |1 2101 0 0 O0f1
As = M; =
410 0 0 5 1 (15 410 0 0 1 112
715 0 5 0 0|1 710 0 1 0 0|1
3]1 1 5 1 1 |45 31 1 1 1 1[5

4. Minimization of Overlap

The procedure described in the previous section can be modified to minimize overlap
instead of maximizing overlap by making the following changes. While S; remains
unchanged, let S, denote the random set consisting of the units not in sample for D, instead
of the units in sample for D,. Analogously, let 7, i, denote the probability that unit (i, j, k)
is not in sample for D, and n;, denote the number of units in D;, not in sample for D,. The
definitions in (2.1) remain unchanged, as does the method for selecting the samples and
associated probabilities described in Section 3.
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With these changes, (2.4) still holds, exactly as it does for the maximization problem,
and (2.1) and (2.4) imply (2.2). Now, unlike in the previous sections, (2.2) with o = 2
states that for this sampling procedure Pr(i,j, k) € S, is the predetermined probability,
Tijk2, that this unit is not in sample for D,, but this immediately implies that
Pr(i,j, k) & S, is the predetermined probability, 1 — 7, 4,, that this unit is in sample for D,.

As for the minimization condition, note that with S, defined as in this section, it is now
S’ that is the set of units that are in both samples, rather than S5 as in the maximization
problem. Thus, we want Pr((i,j, k) € S}) to be minimal for each (i,j, k) € T. Now by
(2.1) and (2.2),

Pr((i,j,k) € 8}) =m0 — min{ 71, T 50} = max{0, w51 — 70} 4.1)

This is clearly the minimum possible value for (i, ], k) to be in both samples, since if the
probability, m; ., that (i, /, k) is in sample for D exceeds the probability, m; ,, that it is not
in sample for D,, then the probability that it is in both samples must be at least the differ-
ence of the these two values.

5. A Simulation Study

In the first part of this two-part study, we used the procedure of Section 3 to maximize
overlap when selecting two samples of 310 establishments from two different designs
for each of 22 industry strata from an artificial universe consisting of 2,736 establishments
created for a previous project (Springer et al. 1999) at the U.S. Bureau of Labor Statistics
(BLS). The frame for the study was developed to imitate the universe for a middle-sized
metropolitan area. The industry strata were identical for the two designs and thus the prob-
lem can be viewed as 22 separate overlap problems. The two designs correspond in part to
the designs for two BLS compensation surveys. The Ernst (1998) procedure was originally
developed to implement a plan to maximize the overlap of sample establishments for a
portion of these two compensation surveys, one of which has since been replaced. This
application is described in detail in that paper.

For the D, design the sampling within each industry stratum was PPS. The universe
sizes in the industry strata ranged from eleven to 426 and the sample sizes ranged from
one to 46. For the D, design we partitioned each industry stratum into seven size class sub-
strata and allocated the industry sample among the substrata proportional to the aggregate
measure of size. Thus for each industry stratum we have M = 1, N = 7, and the dimen-
sions of A are 12 X 24.

The results of this simulation are as follows. The expected number of units in sample for
both designs over all 22 industry strata when using the overlap procedure is 287.3 out of a
total sample of 310, which is a 92.7% overlap. In comparison, if the two samples were
selected independently then the expected overlap would be 111.6 or a 36.0% overlap.
The CPU time, on a SUN E4500 computer, for solving these 22 overlap problems ranged
from two to 249 seconds and the number of possible samples, €, ranged from seven to 807.

A second simulation was run to gauge the computational efficiency of the procedure on
a larger problem. In this simulation, the D design was identical to the D design in the first
simulation. For the D, design, however, this time no size class substrata were used, but
instead the sampling within the 22 industry strata was PPS as in the D, design. However,
in order that the two designs not be identical, the establishments were randomly assigned
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to different industry strata in the D, design in a way that did not change the number of
establishments in the universe for any of the strata. The sample sizes for the D, strata
were the same as for the D, strata. Thus, since the universes for the industry strata are
now different for the two designs, we now have a single relatively large overlap problem
rather than 22 smaller problems. Here M = 22, N = 22 and the dimensions of A are
90 % 90.

The results of the second simulation are as follows. The expected number of units in
sample for both designs over all 22 industry strata when using the overlap procedure is
261.6 out of a total sample of 310, which is an 84.4% overlap, compared to 99.1 units
or a 32.0% overlap if the two samples were selected independently. The CPU time for
the overlap problem was 5 hours, 16 minutes and the number of samples was 4,435.

6. Appendix

We prove here some of the claims made in Section 3.

6.1.  Proof that m}, = dj,

We first observe that ayjin41) = aEHNH)Z,j =1,...,N, is an integer by (3.6) and the
fact that w3, = 1 for all (i,j, k) € T,c. Furthermore, ay;, apj1on+1) are integers by
(3.7). Then, since a}, is also an integer by (3.5), and

"
AGraM+ DN = Ay + Ay antn + Ayeiran+n — G52 (6.1)

this row total is an integer. Consequently, since controlled roundings round integers to
themselves we have by (3.5), (6.1),

a "
My = Mygej + Mppeipng1) T My (ran+1) — MmN = dj2

6.2. Proofof (3.11), (3.12)

We will establish these relations for o = 2. The proof for a = 1 is similar. We will con-
sider units in T,¢, T,g separately for (3.11) and units in T,¢, Trg, T, T3 separately for
(3.12).
For cells corresponding to units in D;, M T,¢ we have by (3.4) and the fact that a{ N2
is an integer by (3.6), that
M
M nGan+1 + Zmi(j+1v+1) =Mt = ANt J = 1., N (6.2)
i=1
Furthermore, by (3.6), az i+N+1y2 18 the number of units in D;, M T,¢, which together with
(6.2) establish that there are exactly my1yj+n41) Units in D;» M T, that would not be
selected to be in S/3, all of which would be chosen to be in S5. Therefore, all units in
Dj> N T, would be selected to be in S, but none would be selected to be in both Sh
and S5. Thus the units in T, satisfy (3.11), (3.12).
As for units in D;, N Ty, we have by (3.4), (3.7) that

M

/ ’
Mt 1yjean+1) T Z Myian+1) = Mjran+12 = Mag(ran+1) = | Aj+an+12 | (6.3)
P
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and also, by (3.6), that there are at least [da(; oy41)2| units in D;, N Tys. Consequently,
there are at least my 1yj1on+1) Units in D;, M Thg not selected to be in S4; any of these
units can be chosen to be in S5, with the selection thus satisfying (3.11) for units in T»g
and, consequently, (3.11) is established. Since 7, # 1 for units in 7T,g or T, these units
automatically satisfy (3.12). Finally, all units in T satisfy (3.12) by (3.10).

6.3. Proof that if (3.13)—(3.16) hold for u then they hold for u + 1

To prove the results we first extend a previous result by showing that (3.10) holds for all
B =1,2,3,4, not only 3 = 3; that is, for all (i,j,k) €T, 5 =1,2,3,4

if )45 = O then (i, j, k) & S and if ;5 = 1 then (i, j, k) € S (6.4)

We first consider the case when rﬁjkﬁ = 0. For 8 = 3, this part of (6.4) holds by (3.10).
For B = 1,2, it holds since if wﬁjkﬁ = 0 then (i, /, k) & T and hence (i,j, k) & SZ; by the
method of selecting units in S described in Section 3.2. Finally, if ; ks = 0, then for
either o = 1 or @ = 2, m; 3, = 1 by (2.1) and, consequently, (i, j, k) € S, by (3.12).

If 7} 5 = 1 then 7}y, = O forall y # B by (2.1) and, consequently, (i,j, k) & S, . There-
fore (i,j,k) € S}; and the proof of (6.4) is complete.

Also observe that if (3.13)—(3.16) holds for u, then Sample u has the same properties as

Sample 1, and hence the analog of (6.4) holds for Sample u; that is,
if ;g = O then (i, j, k) & Sp, and if 7}jg, = 1 then (i,j, k) € Sp, (6.5)

We will use this result both in this and the next subsection.

Now we establish the main results of this subsection, that is, if (3.13)—(3.16)
hold for u then these relations hold for u+ 1. We establish this by combining the
inductive assumption that they hold for u with (3.22) and the following additional
relations.

For (3.13): py = mijgu if Nijugu = 1, and g, =1 — py if Nijg, = 0, which follow
from (3.18), (3.19).

For (3.14): the relation E‘é: 1Nijkgw = 1, which states that each unit is in exactly one of
S/lu’ S/2u» Sgw Sﬁlu'

For (3.15): Njjkeu = 0 if T ke = 0, which follows from (6.5). Note that the same rea-
soning can also be used to establish the more general result that

if g, = 0 or w5, = 1 for some i,j, k, B, u, then =} jgui1) = T jipu (6.6)

which we will use in the next subsection.

For the first equation in (3.16): (3.17) and the relation Eﬁ-‘ilEZ;l()\i ou T Nijiu) = 1o,
j=1,...,N, which follows from m/,, = n;,, where m;,, is the analog of m}, for Sample
u. The second equation in (3.16) is established similarly.

6.4. Proof of (3.23)

By (3.18), (3.19), and (6.5), for each u we have p;, = 1 and also p}; < 1 if and only if there is
at least one i,j, k, 3 for which 0 < ; ikgu < 1. Furthermore, if p, <1 then there is some
i,j,k,B, for which 0< g, <1 and /g, =p,. By (3.18), (3.21), and (3.22),
T gty = 0 OF ijgusry = 1 for this i,j, k, 3, which together with (6.6) establish that
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{i,j,k,0B: rﬁ_,kﬁu =0 or W;_jkﬁu =1} is a strictly increasing set as a function of wu.
Consequently, ngkﬁg =0 or wéjkﬁf =1 for all i,j,k,3 for some €. Furthermore, by
(3.14), W;jkﬁg = 1 for each i, , k, for exactly one 8. Then by (6.5) there is only one possible
sample €, namely the sample for which

Nijkge = Tijuge for all i, j,k, 8 (6.7)

Finally, p§ = 1 by (6.7), (3.18), (3.19).

6.5. Proof of (3.25)

We establish by induction that

u
T kB ut1) <1 - ZP«y) +
y=1

and then combine (6.8) for u = € — 1 with (6.7), (3.24) to conclude (3.25). For u = 1, (6.8)
follows immediately from (3.22) with the substitutions pj = py, T8 = ;g If (6.8)
holds with u replaced by u — 1 then it holds for u since if we solve (3.22) for kBu> Sub-
stitute the result in (6.8) with u replaced by u — 1, and use (3.20), we obtain

u—1 u—1 u—1
Tikg = T jkpu (1 - ZP7> + Z NijkBy Py = T jkB(ut1) (1 - ZP7>
y=1 y=1 y=1

Nijkgy Py = W;jkﬁ’ u=1,....6-1 ©.8)
y=1

u—1 u—1
+ Nijkgu — T kBt 1)) (1 - Zp'y> P+ injkﬁypy
v=1

v=1

u u
= T Bt 1) (1 - Z Pv) + D Nijkgy Py
y=1

r=1
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