Journal of Official Statistics, Vol. 18, No. 4, 2002, pp. 511-530

Measures to Evaluate the Discrepancy Between Direct
and Indirect Model-Based Seasonal Adjustment

Edoardo Otranto" and Umberto Triacca®

In this article we deal with the problem of the evaluation of the discrepancy between direct
and indirect seasonal adjustment. In a model-based framework, the direct seasonally adjusted
series seems to be preferable, but a large discrepancy over the indirect seasonally adjusted
series can cause confusion among the users. This is a crucial problem in respect of dissemina-
tion policy for the National Statistical Institutes. We propose a new approach to evaluate the
size of the discrepancy, based on the idea that the two data generating processes of the alter-
native series (the direct and the indirect seasonally adjusted series) can be compared in terms
of dissimilarity measures between RegARIMA models. A small dissimilarity implies that the
difference between direct and indirect series is negligible. The procedure is performed in
terms of classical hypothesis tests.
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1. Introduction

A seasonal time series can be the result of adding up two or more sub-series (possibly
weighted). From the point of view of the seasonal adjustment policy, two natural
alternatives arise to seasonally adjust the aggregated series:

1) the aggregated series is seasonally adjusted on its own (direct method);
2) the aggregated seasonally adjusted series is obtained as a sum of seasonally adjusted
sub-series (indirect method).

It is clear that the two approaches may give different results, and a problem of choice of
method arises.

Some criteria are proposed in the literature with regard to choosing the direct or the
indirect method. In the seminal paper of Geweke (1978), the direct and indirect methods
are compared, using the mean squared error (MSE) criterion, whilst Dagum (1979) uses
two measures of lack of smoothness of the seasonally adjusted series. Lothian and Morry
(1977) indicate small revision errors as an important factor in choosing the method for
seasonal adjustment, and Ghysels (1997) suggests the final estimation error. A criterion
based on the stability of the seasonally adjusted series is used in the X-12-RegARIMA
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program, based on sliding spans and month-to-month changes (Findley et al. 1998).
Another approach was proposed by den Butter and Fase (1991), allocating the discrepancy
between direct and indirect methods among the seasonally adjusted sub-series, proportion-
ally to the variance of the sub-series. In practice, they create a new seasonally adjusted
series, different from those obtained from direct or indirect methods.

The most recent developments refer directly to the model-based approach. Planas and
Campolongo (2000) base their analysis both on final estimation errors and on total revi-
sions in concurrent estimates, applying this procedure to the industrial production series
of European Monetary Union countries. Gomez (2000) has proposed a criterion based
on empirical revisions, measured with three alternative statistics.

The limitation of these approaches is that the choice is based on a single aspect of the
seasonal adjustment (smoothness, errors, revisions, stability, etc.), which can vary with the
kind of series or subjectively, according to the point of view of the researcher.

The direct method can be preferable since the aggregated adjusted series is clearly of a
higher quality. Furthermore, following a model-based approach, the direct method is the
natural choice because the seasonally adjusted series is derived from the ARIMA model
of the original series. On the other hand the indirect method allows consistency in
aggregation.

In general, the National Statistical Institutes consider quality and consistency equally
important.

A typical common criterion (recommended by Eurostat) is the use of direct seasonal
adjustment if the discrepancy between methods is acceptable, and the use of indirect
seasonal adjustment if this discrepancy is relevant. But when is the discrepancy relevant?

The simple evaluation of the size of the discrepancies is not sufficient; it depends on the
series analyzed and its magnitude. In addition, two series can be similar for the absolute
discrepancies but they can have different behaviours in terms of period-to-period varia-
tions (the period-to-period variations are relevant in dealing with seasonally adjusted
data).

If the seasonal adjustment method is a model-based one, we believe that a correct
approach should consider the stochastic properties of the series. In other terms, we regard
a discrepancy as relevant when the data generating process (DGP) of the indirect season-
ally adjusted series is different from the DGP of the direct seasonally adjusted one. This
approach is different from the others because we do not consider a particular aspect of the
seasonal adjustment, but its stochastic properties, concerning the DGP. We propose the
use of Piccolo’s (1990) distance as a measure of difference between the two DGP’s.?
Another approach to evaluating the difference between DGP’s is based on the comparison
of the forecasts produced from the two models; for this purpose we use a Diebold and
Mariano (1995) style test.

We want to stress that we do not propose a solution to the problem of the choice between
direct or indirect seasonal adjustment, but only some instruments to evaluate the discre-
pancy between them in a model-based framework; these instruments can support the
choice of diffusion policy in respect of seasonally adjusted data.

In the next section we formalize the consistency problem. In Section 3 we derive

3 Of course other measures of dissimilarity could be used; for example, an interesting alternative is the distance
between filters used in Depoutot and Planas (1998).
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the DGP for direct and indirect seasonally adjusted series, and then in Section 4 the two
procedures are described. In Section 5 an application of the approaches is provided.
Concluding remarks follow.

2. The Consistency Problem

The purpose of this section is to provide a formal framework to analyze the so-called
consistency problem. For the sake of simplicity, let us consider an observed seasonal
time series Y, composed of two sub-series X, and Z,, via the relationship

Y, =NX, +N2Z, t=1,..T

where N\, and A, are known constants. Furthermore, we assume that the observable time
series Y;, X,, Z, can be decomposed as

Yt — YtﬂX + YtS
X, = Xtm + th
Zt — Ztns + Zts

where Y, X, Z/** are the nonseasonal components containing the trend, the cycles and
the irregular components, and Y;’, X;°, Z are the seasonal components.
The results of this article will be valid even if the aggregation formula is multiplicative:

Y, =xMzM t=1,...,T

and the decomposition follows a multiplicative model too:

Yt — YtVlS YtS
X, = sz Xzs
ZI — ZtﬂSZtS

In fact using the log-transformation we are in the presence of additive models and
additive aggregation.
A desired property of seasonal adjustment procedures is that

YtVlS — )\XXIVLY _"_ )\ZZIHS (1)

In general the consistency requirement (1) is not satisfied: the seasonally adjusted series
obtained directly from the composed series Y, is not equal to the sum of the seasonally
adjusted components. In this case, a natural question arises: is it ‘‘better’” to seasonally
adjust the aggregated series (direct method) or to aggregate the seasonally adjusted
sub-series (indirect method)?

If the discrepancy between direct and indirect seasonal adjustment

Dfns — th _ ()\xths + )\zZlm)’ t=1,... T

LX)

is ‘‘negligible,”” the direct seasonal adjustment is preferable, because the seasonally
adjusted composite series is clearly of a higher quality, especially when a model-based
approach is used. Furthermore, the correlation structure between X, and Z, cannot be
captured with the indirect method, whereas this problem does not exist if there is direct
modelling of the aggregate series. Finally the seasonally adjusted series obtained by using
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the indirect method may still present spurious seasonality (for this reason, a common pro-
cedure is to test for residual seasonality). On the other hand, a strong difference between
the direct seasonally adjusted series and the sum of the seasonally adjusted sub-series (a
large D;”) can cause confusion among the users of data.

In this article we utilize formal statistical tests to evaluate if the discrepancy is
negligible. In particular, we consider the model-based approach, so that every series fol-
lows a RegARIMA model; it implies that nonseasonal and seasonal components follow
RegARIMA models too. If the RegARIMA model for the observed series is known, the
models for the components can be derived through the canonical decomposition (Hillmer
and Tiao 1982). This approach is followed in the routine TRAMO-SEATS, developed by
Go6mez and Maravall (1997).

3. DGP for Direct and Indirect Seasonally Adjusted Series

From what was said in the previous section it should be clear that a problem in choosing
between direct and indirect methods is the evaluation of the size of the discrepancy. A nat-
ural solution can be obtained by use of some instruments to measure the differences
between the DGP of ¥,* and the DGP of (A X" + X, Z/”). In a model-based framework
the DGP’s can be derived from the identification and estimation of an ARIMA model for
each series considered.

The ARIMA model for the direct seasonally adjusted series, Y,”, is immediately
obtained. Details can be found in Box et al. (1978), Burman (1980), and Hillmer and
Tiao (1982). In this framework it is supposed that the aggregated series Y, is decomposable
in a trend-cycle, a seasonal component and an irregular component; all these components
are unobserved. If the following assumptions hold:

the unobserved components are uncorrelated;

the unobserved components follow ARIMA models;

the AR polynomials of the components do not have common roots;
the model for the observed series is known;

N

then it is possible to consistently identify the models for each component with the overall
model for the observed series. There are infinite admissible decompositions, differing
from each other by the amounts of noise in each component (a constant in the spectra
of the components); the so-called canonical decomposition, in which the irregular part
contains the maximum amount of noise, is chosen. In this way, the canonical decomposi-
tion produces an invertible ARIMA model for the seasonally adjusted series. For example,
a typical seasonal model, such as the ARIMA(O,1,1)(0,1,1), produces a seasonally
adjusted series following an IMA(2, 2) model.

The DGP of the indirect seasonally adjusted series can be obtained by summing up the
ARIMA models relative to the seasonally adjusted sub-series (obtained from the canonical
decomposition too). The state-space representation and the Kalman filters can be utilized
to obtain the implicit model relative to the aggregated series. The techniques to derive it
are summarized in the Appendix.

Note that this solution is valid both in the case of additive aggregation and
additive decomposition and in the case of multiplicative aggregation and multiplicative
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decomposition. For the cases of additive aggregation-multiplicative decomposition and
multiplicative aggregation-additive decomposition, we cannot derive the ARIMA model
for the indirect seasonally adjusted series. In this case we suggest an approximation of
the DGP, explained in the next section.

4. Comparing Direct and Indirect Seasonal Adjustment

Dealing with model-based methods for seasonal adjustment, we have shown that the
DGP’s can be represented by ARIMA models. More in general, it is supposed that the
series Y, is composed of the sum of a deterministic part and a stochastic part, such as:

Y, =DBY 4+, t=1,...,T Q)

where D, is a known row vector containing 4 regressors (generally representing outliers
and calendar effects), B(y) = (B(ly), e, Béy ))’ is a vector containing unknown coefficients
and sﬁy ) is a disturbance which follows an ARIMA model.

The sub-series X, and Z, will follow similar models:
X, =D, +¢”

(2) (2) )
Z,=D/B" + &

Note that we are considering the same regressors for the three models; if they are not fully
equal, D, will contain the union of the regressors, constraining to zero some coefficients.
The aggregation constraint

Y, =N X, 4\, Z,
implies

DAY + & =D, (A BY + N.B9) + N e + N6 )
As a matter of fact, the comparison between direct and indirect methods can be performed

in two phases; first, we linearize the original series, subtracting the deterministic parts* and
verifying their equality; then we compare the stochastic parts.

4.1. Comparing the deterministic parts

The first step is to verify if the deterministic effects identified on the aggregated series are
equivalent to the sum of the deterministic effects identified on the sub-series. This property
can be verified by a classical statistical test. Let us recall that the direct and indirect series
are obtained independently, so that we can represent the equations in (2)—(3) in the
following compact form:

Y, D, 0 0 g
X|=]10 D 0|8+ |&W
Z, 0 0 D, g?

4 To construct the final seasonally adjusted series, some regression effects (in particular, the calendar effects) will
be assigned to the seasonal component, whereas the others (for example a constant term or a deterministic slope)
may stay with the nonseasonal component.
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where 8 = (B(Y)/, B("‘)/, B(Z), Y. Given the constraint of aggregation (4), the null hypothesis
of equal deterministic effects can be verified as:

Hy: B(y) =\, B(X) + N, ﬁ(z)

This is a particular case of the well-known econometric problem of testing a set of linear
restrictions:

Hy: RB=0 %)

where R = [I;,, —\" ® I,,], with I, representing the & X h identity matrix, A = (A, \,) and
® the Kronecker product. Let V9 (i= ¥, X, Z) be the covariance matrix of the estimator of
B(i ) (say B(i)); for the independence assumption the covariance matrix of the full set of
parameters 8 will be V = diag (‘7@), Ve, V(Z)) . Using the maximum likelihood estimator,
R (3 is asymptotically Normal with mean Rf3 and covariance matrix RVR', V being the true
covariance matrix of 3. An appropriate statistic to test the null hypothesis (5) is:

F = (RB)'(RVR') "' (RB) (6)
which follows a Chi-squared distribution with degrees of freedom equal to the number of
constraints in (5) (h in this case).

If the null hypothesis is accepted, it is possible to consider only the stochastic parts to
compare direct and indirect seasonal adjustments.

4.2.  Comparing the stochastic parts: a distance-based approach

The comparison between direct and indirect linearized series can be achieved using a dis-
similarity measure between ARIMA models. In order to obtain this measure, a useful tool
is the AR metrics introduced by Piccolo (1989, 1990).

Let V, be a zero-mean stochastic process and F' the class of ARIMA invertible processes.
It is well-known that if V, € F then there exists a sequence of constants {ﬂ'i} such that

§:|7fi’<°°
i=1

and
Vi=> mVi+eg (7)
i=1

where &, ~ WN(O, 02).
Following Piccolo (1989, 1990) we define the distance between two processes Vi,
V,, €EF as

- 1/2
d(Vy, Vo) = [Z (my; — m)z} ®)
i=1

To economize on notation we write d to indicate (8). In real applications, considering a
convenient finite approximation of the AR(eo) representation and using suitable estimates
7;;, we obtain the distance estimator:

of ﬂ'jl' (] = 1, 2), say 7le',

) ‘ 1”2
dy = lz (T — %25)2] 9

i=1
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In practice a suitably large k is used (in our applications we will use k = 200).

Piccolo (1989) shows that if the two processes are independent, the asymptotic distribu-
tion of EZ,% is a linear combination of independent Chi-squared variables. To test the null
hypothesis:

Hy:d=0 (10)

we use the procedure explained by Corduas (1996), who approximates the distribution of
di with a single Chi-squared distribution.
Let us note that (10) is equivalent to testing:

S (11)

where m; and 7, are vectors containing the first k autoregressive coefficients of the
representation (7) of the processes V|, and V,,, respectively.

Let us denote by #; and @, the coefficients obtained as functions of the maximum
likelihood estimators of the parameters of the ARIMA models (say 8, and 0, ), for V,,
and V,, respectively:

i, =a(0,), J=1.2 (12)

For the property of invariance they are the maximum likelihood estimates of 7 and 5.
Thus %, and %, are asymptotically multivariate normally distributed with mean 7; and
w, and variance matrices X; and X,, that can be obtained analytically. In particular:

i‘] == B_]VJB‘;

where V, and V, are the covariance matrices of the estimated ARIMA coefficients and B,
and B, are matrices containing the derivatives of the functions (12), for V;, and V5,

respectively. Setting =% +%ands= (2)71/2 (7?1 — 7?2), the statistic

d;y =<'Es (13)
is a linear combination of r Chi-squared variables with 1 degree of freedom. r is the rank of
L and the weights of the linear combination are equal to the positive eigenvalues of E.
Under the null hypothesis (11), this distribution can be approximated with axz + b, where

X2 is a Chi-squared random variable with ¢ degrees of freedom (see also Mathai and
Provost 1992) and, setting ¢; = trace (f:i):

a=ntlt, b=t —Blt, c=0blt (14)

This approximation has a good performance, as shown in Corduas (1996).

We will now provide a result that will be utilized in the next section. Denoting by d; and
d, the orders of integration of the processes Vi, and V5,, respectively, we can show that if
d = 0, then d; = d,. In order to do this, we remember that the processes V, and V5, can be
represented in the following form:

$1(B)(1 — BV}, = 8,(B)sy,, &1, ~ WN(0,07)
$:(B)(1 — BY*Vy, = 85(B)sy, &y ~ WN(0,03)

where d; and d, are two integers, ¢(z), ¢#(z), $,(2), and ¥#,(z) are finite polynomials in z (z
is a complex variable) of degrees p, g1, P2, and g, respectively, with ¢, (z) # 0, §,(z) # 0,
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¢,(z) # 0 and 9,(z) # 0 for |z] = 1. Now, if d = 0, then 7¥ = 7%?, i = 1,2,... . Since

¢ ()1 — )"
1 — ,n_(’v)Z _ 7[_("U)ZZ . _el =
11 12 01(Z)
and
1 -2
|- 2Pz —a®2 .= $2(2)(1 —2)

9,(2)

we have that

$1@(1L 2" _ ¢ —2)"
91(2) 92(2)

that is

31(2)p,(2) (1 — )"
Hh (1—h

Let us assume that d; # d,. In particular, without loss of generality, we can set
d>, = d; + k (k integer). We have that

91(2)9,(2)
9,(2)

Thus ¢,(z) has k unit roots. This result is absurd since, by assumption, ¢,(z) # 0, for
|z] = 1; it follows that d; = d,.

This theoretical result is confirmed in Table 1, in which the statistic (13), with k = 200,
and the corresponding 95% critical value are reported for various lengths (7') of the series
and various couples of ARIMA(1,8, 1) processes,” different only on the order of the
differences 6 = 0, 1. Note that the null Hy: d = 0 is always largely rejected.

The distance measure d can be used to compare the DGP of the direct seasonally
adjusted series and the DGP of the indirect seasonally adjusted series.®

If this distance does not differ significantly from zero, the discrepancy between direct
and indirect methods can be considered negligible.

The procedure that we propose follows these steps:

6,1(2) =

¢(2) = (1—2)F

1. seasonally adjust the aggregated series and each sub-series with the model-based
procedure; the former is the direct seasonally adjusted series;

2. sum the ARIMA models relative to the seasonally adjusted sub-series, obtaining the
coefficients via the procedure described in the Appendix; they are the coefficients of
the indirect seasonally adjusted model;

3. express the direct and indirect seasonally adjusted series in the AR form (7);

4. calculate the distance d, between the two AR models and check if d} differs from zero
with the test procedure explained in this section; if the null hypothesis is accepted the
discrepancy between direct and indirect method can be considered negligible.

5 Knowing the length of the series T, the covariance matrix can be calculated as a function of 7 and the ARMA
coefficients.

% We note that the direct and indirect series are independent regarding construction, in the sense that they are
obtained separately, not using any information about the other series.
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Table 1. Squared distance and relative 95% critical value (cv) for various ARIMA
models

ARIMA process 95% cv EJ%OO
¢1=¢,=03,3,=8=0 0.192 (T =50) 1.090
d=0,d,=1 0.960 (T = 100)

0.064 (T = 150)
¢ =¢,=06,8 =8 = 0.135 (T =50) 1.360
d=0,d,=1 0.067 (T = 100)

0.045 (T = 150)
¢ =¢,=09,8, =8 = 0.040 (T =50) 1.810
d=0,d,=1 0.020 (T = 100)

0.013 (T = 150)
¢=¢,=0,8, =8 =03 0.161 (T =50) 1.099
d=0,d,=1 0.081 (T = 100)

0.054 (T = 150)
¢=¢,=0,8,=8,=0.6 0.279 (T =50) 1.563
d=0,d,=1 0.139 (T = 100)

0.093 (T = 150)
¢ =¢,=0,¢4, =8 =09 3.863 (T =50) 5.263
di=0,d, = 1.932 (T = 100)

1.288 (T = 150)
61 =¢,=03,9,=8,=0.6 0.287 (T =50) 1.141
d=0,d,=1 0.143 (T =100)

0.096 (T = 150)
6 =¢,=06,%, =8 =03 0.285 (T =50) 1.099
d=0,d,=1 0.143 (T = 100)

0.095 (T =150)
6 =¢,=09,8%, =8 =03 0.282 (T =50) 1.396
di=0,d,=1 0.141 (T = 100)

0.094 (T = 150)
6 =¢,=03,8%, =8 =09 2.157 (T =50) 2.895
d=0,d,=1 1.079 (T = 100)

0.719 (T = 150)

As previously noted, this procedure is valid in the case of additive models. In the case of
multiplicative models we cannot make explicit the DGP of the indirect seasonally adjusted
series. In fact, we maintain the relationship:

Y, =NX, +\,Z

but the multiplicative model implies:

Y, =Y, th tS
Xt — X[nSXtS
Z[ — Ztl’lS Z[S

The ARIMA models identified are referred to the logs of the series and components. Thus
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we cannot obtain the ARIMA model for the indirect seasonally adjusted series as the sum
of two ARIMA models. In this case, we suggest directly estimating an ARIMA model on
the indirect seasonally adjusted series and comparing this model with that of the direct
seasonally adjusted series. In the application of Section 6 we will note that the introduction
of this approximation does not imply differences in the final results. This suggests that we
can approximate the DGP of the indirect seasonally adjusted series, estimating an ARIMA
model in the case of an additive relationship too, bypassing the second step of the
procedure. The computational advantage of this approximation is particularly significant
when the number of sub-series is large.

4.3.  Comparing the stochastic parts: a forecasting accuracy approach

Another criterion when it comes to evaluating the discrepancy between the DGP of the
indirect seasonally adjusted series and the DGP of the direct seasonally adjusted one is
based on the forecastability of the stationary part of the two series.’

Let us consider two processes V|, and V,, in F’; they can be represented in the following
form:

6 (B)X(1 — BV, = 9,(B)ey,, &, ~ WN(O, o7)
62(B)(1 — BY2Vy, = 8,(B)ey,, €2, ~ WN(O, 03)

where d; and d, are two integers, ¢,(z), (), $,(z), and ¥},(z) are finite polynomials in z
of degrees py, q, p,, and g, respectively, with ¢,(z) # 0, &{(2) # 0, ¢,(z) # 0 and
8,(z) # 0 for |z| = 1. The processes W, = (1 — B)!'V;, and W,, = (1 — B)*V,, can be
represented in the following form:

(w)
Wy, = Z 7"1‘; Wi+ ey
i=1

(w)
Wy = Z 772:}1 Wo_i + &
i=1

We note that

EW \Wiog,...) = Z o Wi
i=1

EWy | W_y,..) = w5 W,
i=1

Thus

o

Wy, = Z 7z'(1:'V)Vvlt7i

i=1
and

Wy, = Z o Wa i

i=1

7 We are clearly supposing again working with linearized series, given that the equality of the deterministic parts
has been verified previously.
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are the best mean squared predictors of W, and W,,, respectively, and the innovations &y,
and g,, are the correspondent forecast errors.

Now, in order to compare the forecastability of W;, and W,,, we can consider the
following functions of the forecast errors

2

g(e)) = _fu
o var(Wl t)
and
2
_ €y
g(SZt) - var(Wz,)
and define

fi = g(ey) — g(ey,)

We note that

. var(sm) B var(s”)
E(f) = var(WZ,) var(WU)

s5)

The quantity R% = 1 — var(ey,)/lvar(Wy,) is a reasonable measure of the forecastability
of Wy, relative to the information set { W;,_, ... }. In particular, R% is 1 when the variance
of the forecast error is O; R% is 0 when W, is a white noise (not forecastable); the same
considerations hold for R% = 1 — var(ey)/var(W,,). Thus the null hypothesis of equal
forecastability for the two processes can be formulated as follows:

Hy R2—R=0

Hence, the equal forecastability null hypothesis is equivalent to the null hypothesis that
the population mean of f; is 0. Since f; is a stationary and short memory process, we can
verify Hy: E(f,) = 0 using the Diebold-Mariano (1995) test. The statistic is:

5, = ﬁf% (16)

where f =77 'S°C f, and v = T ™' 3.2, (f, —f)*. Under the null hypothesis, S; is
asymptotically normally distributed with unit variance (see Harvey et al. 1997).

When the seasonally adjusted series are stationary or integrated of the same order, this
test can be used to compare the direct and indirect seasonally adjusted series following the
criterion of the forecast performance. Instead, it is likely that in cases where the stochastic
nonstationary trends are different, the proposed measure may accept the null hypothesis
Hy: E(f;) = 0, even if the direct and indirect adjustments will give very different results.
However, in these cases we can continue to use this procedure to make inferences regard-
ing the distance between direct and indirect seasonally adjusted series. In fact, we can
show that the equal forecastability condition for the two stationary processes, W;, and
W,,, is necessary for a null distance between V;, and V,,.
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We have proved in the previous section that if d(Vy,, V,,) = 0, the following holds:

$1@(1—2" _ @)1 —2)*
J1(2) J5(2)
with d; = d,; thus:

9(2) _ 9,(2)
01(2) ()

On the other hand, we note that by developing the variances in the denominators of (15)
we obtain

EF)=(04+3 +v+.. ) = +¢3 +¢h+..)"

where the coefficients {y;} and {y,;} are determined by the relationships

= i %@
%;%“¢ﬂ>

= i ()
%;%ﬂ_¢x@

respectively. Hence we have
Lt ynz+vnd +o.= LHynz+ynd +...

Thus we can conclude that R} — R3 = 0 . The condition of equal predictability for the
stationary processes Wy, and W,,, R% —R% = 0, is necessary for d(Vy,, V,,) = 0. The
importance of this result consists in the fact that it can be utilized to make inferences
regarding d(Vy,, V,,). In particular, if the null hypothesis Hy: E(f;) =0 is rejected we
can also reject the hypothesis H: d(V,,, V,,) = 0. However, it is important to remember
that if we accept Hy: E(f;)=0, we cannot accept H(: d(V,,, V,) = 0. The condition
E(f;) = 0 is only necessary for d(Vy;, V,,) = 0.

120 -

e L

8

8 & 8 8

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 199

Fig. 1. General Industrial Production Index (Istat source)
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Table 2. Weights of the sub-series to obtain IPI®

Years PV IP[® P
1985-1989 0.267 0.177 0.556
19901994 0.257 0.158 0.585
1995-1999 0.232 0.165 0.603

5. An Example: The Italian Industrial Production Index

Let us consider the monthly series of the general Italian Industrial Production Index
(IPI'”) from January 1985 to December 1999, plotted in Figure 1. This series, which
presents a clear seasonal behavior, is obtained by weighted aggregation of the indices
relative to consumer (IP/ (1)), investment (IPI (2)) and intermediate goods (IPI (3>). The
weights change with the different bases used to construct the indices and are reported
in Table 2.

In order to apply our procedure, we have estimated the following model for each series:

IPI? = B\ TD, + B LY, + BY.EE, + BV H, + £,i =0,1,2,3 17)
where sgi) is a disturbance which follows an ARIMA(O, 1, 1)(0, 1, 1) model,

o _ (L+ 9B+ 918w’
! (1 — B)(1 — B'?)

. w ~ TIN(0, o(y)

TD; is a regressor which represents the trading days effect, LY, is the leap year effect at
time ¢, EE, is the Easter Effect and H, is the Holidays effect. The regressors are obtained
as:

TD, = number of (Mon, Tue, Wed, Thu, Fri)-#(Sat, Sun)5/2 in the month z;

0.75 if ¢ is referred to a February in a leap year

LY, = ¢ —0.25 if ¢ is referred to a February in a nonleap year
0 otherwise
j o1
EE, == ——
6 2

where j is the number of days of the month ¢ that are in the temporal interval:

[(date of Easter) — (6 days), date of Easter]

H, = number of national holidays, not coincident with Saturday and Sunday, that lies in
the month .

Using the routine TRAMO-SEATS, we obtain the canonical decomposition of the
model in a trend-cycle, a seasonal component and an irregular part.

In this case, the deterministic effects identified with regard to the aggregated series are
equivalent to the sum of the deterministic effects identified on the sub-series. In fact we
have applied test (6) to our series (the statistic follows a Chi-squared distribution with
four degrees of freedom), verifying separately the three constraints of Table 2; note that
the three rows are very similar, so that we cannot verify simultaneously the twelve con-
straints, because a singular matrix problem in (6) would arise. Each p-value obtained is
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Table 3. Estimates of the parameters of models (17) (standard errors in parentheses)

o8 Osp) Brp Bry BeE By 02
IP1© —0.484 —0.660 0.805 3.036  —1.768 —2.118  3.664
(0.070) (0.072) (0.036) (0.895) (0.525) (0.281) (0.023)
PI —0.598 —0.543 0.951 2507  —1.937 —2.487  7.843
(0.063) (0.075) (0.048) (1.112) (0.663) (0.359) (0.736)
IPI? —0.539 —0.679 1.072 3.907 —1.791 —2.662 12562
(0.069) (0.068) (0.069) (1.674) (0.994) (0.527) (1.366)
IPI® —0.387 —0.664 0.669 2851 —1.750 —1.813 3.131
(0.073) (0.075) (0.033) (0.830) (0.478) (0.259) (0.220)

above 0.999, largely accepting the null hypothesis of equality of the deterministic effects
in the direct and indirect seasonally adjusted series. Thus the presence of deterministic
effects does not affect our analysis.

The estimated ARIMA parameters for the three series and the other estimated coeffi-
cients are reported in Table 3. They produce the following models for the seasonally
adjusted series (D and [/ indicate direct and indirect, respectively):

(1 — BY*SAP = (1 — 1.4550B + 0.4724B")0\"",  a(o,p = 2.482

(1 —B)*SA"" = (1 — 1.5575B + 0.5770B*)0{",  of;, = 3.439
(18)
(1 — B)*SA? = (1 — 1.5119B + 0.5264B%)v?, 0hy = 8.462

(1 — B)’SA® = (1 — 1.3597B + 0.3801B%)2”, o) = 2278

where SA? (i=0, 1, 2, 3) is the seasonally adjusted series for IPI” and o” is a white
noise.

Summing the stationary parts of the processes relative to SA", SA®, SA®, weighted
following Table 2 (their innovation variances are 0.159, 0.187 and 0.608, respectively),
we obtain the model for the indirect seasonally adjusted series:

(1 — B?SAY" = (1 — 1.4185B + 0.4377B*)2\"! (19)

The distance between the direct and indirect seasonally adjusted series, using 200 AR
coefficients, is 0.603. To test the null hypothesis of distance zero we use the statistic (13),
obtaining d? =0.363. The parameters (14) to calculate the approximate distribution are:

a=18.029, b=0.721, c=1.006

and the 95% critical value is equal to 70.223; hence the null hypothesis is largely accepted.
Estimating directly an IMA(2,2) model on the indirect seasonally adjusted series, we
obtain the following model:

(1 — B2 SAYT = (1 — 1.4381B + 0.4851B%)2"" (20)

The distance between (19) and (20) is equal to 4.117, that is not significantly different
from zero, because the 95% critical value of (13) is 42.396 (El,% = 16.952, a=10.492,
b=1.137, and ¢=1.037). In the same way, the distance between (18) and (20) is
negligible, being ZZ,% =12.642 with a 95% critical value equal to 35.550 (a=28.763,
b=1.007, and ¢ =1.041).
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Fig. 2. Discrepancy between the direct and indirect seasonal adjusted series

Now, we expect a coherent result with the forecasting accuracy criterion. In this case,
we compare the forecastability of the series (1 — B)ZSAgo)D and (1 — B)ZSA(TO)I . Using the
forecast errors function described in Section 5, we obtain the S; statistic (16) equal to
0.1526, accepting the null hypothesis of equal forecasting accuracy of the direct and
indirect seasonally adjusted models.

The inferential results are confirmed by the graphics comparison of Figure 2, in which
the discrepancy between the direct and indirect seasonally adjusted series is plotted. We
note that the maximum difference is less then 0.22. Note that, excluding the presence
of different deterministic effects between the two series and of spurious seasonality in
the indirect seasonally adjusted series, their dynamics is random. In Figure 3 the discre-
pancy of month-to-month percentage variations is plotted, confirming the similarity of
the two series.

Finally, we want to stress the fact that, following other criteria based only on an aspect
of the characteristics of the seasonally adjusted series, we can achieve different results.
For example, if the criterion chosen is the smoothness, we could calculate the

03 -

-03

_04 LI N N N N B
19 1986 197 188 1 190 1B 192 198 1B 16 196 17 198 199

Fig. 3. Discrepancy between direct and indirect month-to-month variations
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Table 4. Statistics on direct and indirect methods

Criteria Direct Indirect
Lack of smoothness 2.407 2.340
Final error variance 0.087 0.092
Revision error variance 0.087 0.092
Total error variance 0.174 0.184

roughness measure proposed by Dagum (1979) for both the direct and indirect seasonally
adjusted series:
T

S SAY s, i=D.1

=2
This measure, expressed as an average, is 2.407 for the direct series and 2.340 for the
indirect one, so that the direct shows a larger lack of smoothness (first row of Table 4).

On the other hand, if we are interested in the estimation errors and revisions, we can
apply the criterion proposed by Campolongo and Planas (2000), obtaining the variances
of the final, revision and total errors displayed in Table 4 (expressed in units of variance
of the innovation of IPI°). In this case the direct approach seems more precise.®

6. Final Remarks

Many of the economic series to be seasonally adjusted by statistical agencies are obtained
as aggregations of a certain number of components. In this situation, the issue of adjusting
the series directly or indirectly immediately arises. If the target of the National Statistical
Institutes is to seasonally adjust the aggregated and the component series, a problem of
consistency can arise too: the seasonally adjusted series obtained directly from the
composed series is not equal to the sum of the seasonally adjusted components. A large
difference between the direct seasonally adjusted series and the sum of the seasonally
adjusted sub-series can cause confusion among the data users.

In this article, we have utilized two approaches to evaluate the relevance of this discre-
pancy. The first one is based on the Piccolo’s distance between ARIMA models using the
test procedure described in Corduas (1996), in which is also studied the capability of this
approach to compare couples of series with Monte Carlo experiments.

The second approach proposed in this article concerns a comparison of the forecastabil-
ity of the direct and indirect series, applying a Diebold and Mariano (1995) style test.
Obviously, the functions of forecast errors utilized can be substituted by other functions;
our choice is justified by the interpretation that is consistent with the seasonal adjustment
operation and by the relationship with the Piccolo distance. The Diebold and Mariano test
needs simple calculations and it does not imply the transformation of the seasonally

8 An example where our procedure rejects the hypothesis of equality of direct and indirect seasonally adjusted
series is represented by the quarterly (I 19931V 2001) Italian labor forces, obtained as the sum of male and
female labor forces. The three series do not present deterministic effects; the series of males follows an additive
ARIMA (1,0,0)(0, 1,0) model, whereas the female and total series follow an ARIMA(O, 1, 1)(0, 1, 1) model. The
statistic (16) is equal to —3.37, rejecting the null hypothesis; as a consequence, also the distance-based approach
will reject the hypothesis of distance zero, as demonstrated in Section 4.3. Details of this application are available
on request.
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adjusted models in AR models, as the other approach does. On the other hand, it can only
be applied to stationary series, whereas the Piccolo’s distance is also used with integrated
processes. In both cases, to compare only the stochastic parts, a test of equal deterministic
effects has to be performed first.

The approaches are correctly applied only in the case of additive models with additive
aggregations or multiplicative models with multiplicative aggregations. Their application
to the cases of multiplicative models and additive aggregations or additive models and
multiplicative aggregations requires the DGP of the indirect seasonally adjusted series
to be approximated by estimating an ARIMA model directly rather than deriving it
from the sum of the ARIMA models of the sub-series. Finally, we recall that the nature
of our approach is inferential, being based on classical tests. As for the usefulness of these
tools, we think that they can be applied to support the choice of diffusion policy in respect
of seasonally adjusted data.

Appendix

For the sake of simplicity, we always consider the simple case (1), in which the aggregated
series is the sum of 2 sub-series, but the results are easily extended by summing up more
series. For example, let us consider two MA processes of order ¢, and g,, respectively:

X, =0+ 9180 +"'+0q1§‘l—ql
Zi=n+0m_ + ... +0q277z—q2

where {; and 7, are white noises uncorrelated at all lags and leads. We recall that, in the
indirect method, the sub-series are individually adjusted and then aggregated, without
taking into account the correlation among them.

The process Y, = X, + Z, follows an MA(max{q,, g, }) model (for sake of simplicity we
omit the weights A, and A\,). In order to obtain the coefficients of this last model we express
the process Y; in the following state-space form:

Observation equation: Y, = a§,

State equation: £ =B +e
where:
a=[1 191 19q1 1 01 qu]
0 0 0 0
(Ixqy) (Ixq2)
I, 0 0
B— (@ x1)  (q1%Xq) (g1 x1)
0 0
(Ixq1) (Ixg,)
0 I,
| (@2xq1)  (g2x1) ; (g2x1) |
f;=[§‘z Sim1 e g‘t—ql M M= - "'It—q2]
ee=[& 0 ... 0 9 O ... 0]

and ]Ok is an & X k matrix with all the elements equal to zero, whereas I; is the identity
(hx
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kx k matrix. Denoting by K the steady-state Kalman gain, defined as:
K = BPa'(aPa’)™' 1)

where P is the steady-state MSE matrix of the state vector £,, it can be demonstrated that
the coefficients of the MA process of Y, are (see Hamilton, 1994, Chapter 13):

6j=aB’7'K, j=1,...,max(q), q,) (22)

The (21) does not imply burdensome calculations; in fact the steady-state MSE matrix is
expressed as:

P= limP,‘t_l
t—roo

where {P,,_,} is the sequence of the variance matrices calculated in each step of the
Kalman filter. In particular, this sequence can be calculated by:

Pt+1\t = B[Pt\tfl —P,‘,,la/(aPm,lB)_laPt‘,,I]B/ +0 (23)

where Q is the variance matrix of e, (invariant with ¢). If B is a kxk matrix whose
eigenvalues are all inside the unit circle and P | is the initializing matrix of the sequence,
satisfying:

vec(Py ) = [I;2 — (B ® B)] 'vec(Q)

it can be demonstrated that {P;,_;} is a monotonically nonincreasing sequence that con-
verges to:

P = B[P — Pa'(aPB)"'aP|B’ +Q

In addition, if @ is strictly positive definite, the convergence is unique for any positive
semidefinite symmetric matrix P . In other terms, iterating (23) we can obtain P, that
provides the calculation of (21) and (22).

Hence, if the sub-series follow MA processes, we are able to make explicit the model
representing the DGP of the indirect seasonally adjusted series.

Now let us suppose that X, and Z, are two AR processes of order p; and p, respectively:

Xt = ‘pIXt—l +...+ ¢p1Xt—pl + g‘t
Zi=d1Zi 1 +...+ ¢p2Zt7p2 +

with ¢, and », uncorrelated at each lead and lag.
In this case, the process Y; = X, + Z, follows an ARMA( p; + p,, max{ p;, p,}) model:

Y)Y, = 6(L)e,

where y(L) = ¢(L)¢(L) and 6(L)e; = ¢(L){, + ¢(L)y,. The coefficients of the polynomial
6(L) are obtained by (22).

Finally, we remark that if X; is an ARMA(p;, ¢g;) process and Z, an ARMA(p,, ¢»)
process, then Y, = X, + Z;, will follow an ARMA(p, q) model, with p = p; 4+ p, and
q = max{ p; + q1, p» + g, }, with coefficients deriving from the same rules previously
described.
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