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Methodological Principles for a Generalized Estimation
System at Statistics Canada

V. Estevao,! M.A. Hidiroglou,l and C.E. Sirndal’

In this paper we present the methodological principles behind the development of the
Generalized Estimation System (GES) at Statistics Canada. The GES allows the specifi-
cation of an estimator from a wide group of estimators produced under a general linear
regression model. The resulting GREG estimators are characterized in the paper via
three important concepts: model level, model groups and the model type. Familiar
estimators such as the simple expansion, post-stratified and raking ratio estimators
can be classified according to these concepts. But more generally, these concepts help
to structure a wide class of possible estimators. The specification of a GREG model
depends on the available auxiliary totals. This information is used to produce a set of
g-factors to adjust the sample design weights. The resulting final weights have the
property of producing estimates for the auxiliary variables which are equal to the known
auxiliary totals. This consistency condition is appealing to most survey practitioners.
Furthermore, efficient estimates are produced when the variable of interest is highly
correlated with the auxiliary variables. The GES produces domain estimates for
parameters such as domain size, totals, ratios of totals and means. This is done based
on the sample design and the specified GREG model. We have shown that it is possible
to extend the theory for the estimation of a total to handle any non-linear parameter.
This is done through the usual Taylor approximation. Variance estimation is based on
a formula suggested by Sdrndal, Swensson, and Wretman which incorporates both the
g-weights and the residuals under the specified model.

Key words: Generalized regression estimator; auxiliary information; model groups;
model level; model type.

1. Introduction

This paper presents an overview of the methodology used to construct Statistics
Canada’s Generalized Estimation System (GES). The idea of developing a GES
has been present at Statistics Canada for several years. Documents that reflect the
evolution of this idea include Choudhry (1988), Dumais and Carpenter (1988),
Outrata and Chinnappa (1989), Sirndal (1990), Lavallée and Leblond (1990),
Hidiroglou (1991), and Estevao (1991). Software of a general purpose character,
developed outside Statistics Canada, include LINWEIGHT (Bethlehem and Keller
1987), PC-CARP (Schnell, Kennedy, Sullivan, Park, and Fuller 1988), SUDAAN
(Shah, Lavange, Barnwell, Killinger, and Wheeless 1989) and CLAN (Andersson
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and Nordberg 1994). The GES, and future extensions of it, produce domain point
estimates and corresponding estimates of variance for parameters of the sampled
finite population. This process considers the sampling design as well as any available
auxiliary information.

In the current Version 3.1 of the GES, the parameters of interest are totals, ratios of
totals, averages and proportions. The existing sampling designs include: (i) single-
stage designs such as stratified simple random sampling with and without replacement
(SRSWR and SRSWOR), and (ii) stratified cluster sampling and stratified probability
proportional-to-size (PPS) sampling.

An important aspect of the GES is the use of auxiliary information in the form of
known auxiliary variable totals. For single-stage element sampling, the known totals
always refer to the population of elements, or to specified subgroups of this popula-
tion. For single-stage cluster sampling and for sampling in two or more stages,
auxiliary information can appear at different levels. These levels correspond to the
different populations that can be distinguished. For example, in single-stage cluster
sampling, we may have: (i) known auxiliary totals for the population of clusters (or
for subgroups of it), or (ii) known auxiliary totals for the population of elements
(or for subgroups of it).

A population subgroup with a known auxiliary total is called a model group. For
each model group, a general linear regression model can be stated. The variable of
interest is chosen as the dependent variable and the auxiliary variables as predictors.
A special case is when the entire population defines the only existing model group. In
the GES, the term GREG model refers to the collection of regressions fitted in the
various groups.

The fit of the GREG model produces a generalized regression (GREG) estimator
of the parameter in question. Simple special cases of the GREG estimator include the
expansion, ratio and simple regression estimators. A more complex special case is the
raking ratio estimator.

A principal function of the GES is to produce parameter estimates for one or more
domains of interest. Common domains of interest are the individual strata and the
entire population. But arbitrary subpopulations can be designated as domains. The
domains may cut across the design strata and may be different from the model groups.

The sampling design and the GREG model are important components in the struc-
ture and function of a generalized estimation system. The specification of the sam-
pling design should include: (i) the number of stages of selection, (ii) the sampling
procedure at each stage, (iii) sample counts for each stage and (iv) the ultimate unit
of selection. The GREG model requires: (i) identification of model group membership
for each sampled unit, (i) the corresponding model group totals at the population level
and (iii) the identification of a model level. The model level specifies the population for
which the auxiliary information is known. After the sampling design and GREG
model have been specified, the GES is set up to produce parameter estimates for
any domain of interest. This is reflected by three main modules in the GES. These
are: (i) determination of the sampling weights, (ii) determination of the estimator fac-
tors (also called the g-factors), and (iii) calculation of point estimates and correspond-
ing estimates of variance for the specified domains and parameters.
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The sampling weights may be either provided directly or generated from the sampling
design inputs. The g-factors, which may be read in directly, are calculated as a func-
tion of the auxiliary information and the sampling weights. The GES uses the
sampling weights and the g-factors to produce the parameter estimates and
correspondiﬂg estimates of precision. This is done for each parameter and domain
specification.

The GES allows any number of model groups. An important requirement of the
GES is that the model groups form a mutually exclusive and exhaustive partition
of the population identified by the model level. This is required to generate a single
g-factor for every unit and to allow estimation for any domain. A GREG estimator
can be formed for the total of a given variable within any given model group. The
GREG estimator of the entire survey population total is simply the sum of the
estimators for the various model group totals.

This paper is organized as follows. Section 2 reviews the basic theory of the GREG
estimator for a population total. Three important concepts used to characterize the
GREG model, namely, model groups, model level and model type are discussed in Sec-
tions 3 and 4. Poststrata are shown to be an example of model groups but, as explained in
Section 4, the concept has a much broader implication in the GES. Domain estimation is
described in Section 5. The significance of the model level is made clear in Sections 6
and 7 for single-stage cluster designs and multistage designs, respectively. Section 8
extends the theory of the previous sections to the estimation of non-linear parameters.
Throughout the paper, several examples are given to illustrate the principles used in
the GES.

2. The Generalized Regression Estimator for Single-Stage Sampling Designs

Consider a finite population of elements U= {1,...,k,...,N}. A single-stage
element sampling design is used to obtain a sample s from U. Let p(s) denote the
probability that s is realized. Letm, = > 5, p(s) and my = D o5 (ke}p(s) denote
the inclusion probabilities for k and {k,¢} respectively. Note that when
£ = k, m, = . The variable of interest is denoted by y and its value for the kth ele-
ment is y;. The objective is to estimate the population total ¥ = Xyy,, with the aid of
auxiliary information. Let X = (xy4, ..., Xg, . .., xz) denote the value for the kth ele-
ment of a J-dimensional auxiliary vector, x. Suppose that data (y;, X;) are observed
for each element k € s. The population auxiliary totals present in the vector
X =%yxe = SuXie, - - - SuXi, - - - Yyxy) are assumed to be known from one or
more sources such as administrative registers or a census. We seek an estimator of
Y that makes efficient use of this auxiliary information. An estimator that meets this
objective is the generalized regression estimator (GREG)

Yorec = X'B + Z,a, (v — x;B) 21)
where the vector B is the solution of the sample based normal equations
(Ssarxixi/cx)B = Ssapxyi/ci (2.2)

and ¢ is defined in relation to the variance structure of the linear regression model
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associated with the GREG estimator. This model, denoted by &, states that
Ve=XB+e for keU , (2.3)

where E¢(ex) = 0, Varg(g) = cxo” and Cove(ex, &) = 0 for all k # £.

The GREG estimator provides a suitable basis for the development of the GES
because: (i) most standard estimators that use auxiliary information can be obtained
as special cases, (ii) the GREG estimator can be applied to any sampling design, and
(iii) it can be used with any set of auxiliary variables for which the associated vector of
totals, X = Yy Xy, is known. The GREG estimator (2.1) is linked to the model (2.3)
in the following way: If the data (y;, x;) were observed for all N elements k € U, a
generalized least squares fit of the regression of y on x would require solving the
census fit normal equations

(SuxiXi/ci)B = SyXyi/c. (2.4)

But B cannot be obtained since (yi, X;) are observed only for the sampled elements.
We then replace (2.4) by the corresponding sample based normal equations (2.2)
that can be solved for B as a function of the sample data. This then allows calculation
of the residuals e, = y; — x;B needed in (2.1).

It is useful to note two alternative expressions for Ysreg. The first is given by

IA/GREG = f"l‘ (X - X)lﬁ (25)

where ¥ = Y.,y and X=x <Xy are the Horvitz-Thompson (HT) estimators of Y
and X, respectively. The term (X — X)'B is a regression adjustment to the HT
estimator Y. Another useful expression for Ygrgg is given by

YGREG = Zs@&ksVi (2.6)
with
ks = 1+ (X = X) (Syaexix’s/cr) " /e (2.7)

Note that (2.6) shows the total weight of y, as the product of the sampling weight a;
and the factor gy, called the estimator factor or g-factor. An important property of
the GREG estimator is that the estimated population totals of the auxiliary variables
equal the corresponding known population totals, i.e.,

YsargrsXr = X. (2.8)

Furthermore, under general conditions, Ygreg is a design consistent estimator of the
target parameter Y for any configuration of the finite population values y;, y»,..., -
This property does not depend on whether (2.3) is in some sense a “true model” or
not. This has important implications for estimation of domain totals as discussed
in later sections.

The regression residuals e, = y; — x}cﬁ are required in the calculation of the
variance estimate corresponding to (2.1). The variance estimator is defined as

Var(Yorec) = B k.)es(Dre/Te) (rser/ T) (&esee/Te) (2.9)

where Ay, = m, — mmy, and E(H)es stands for X, ¢ Xyc ;-
The traditional Taylor expansion variance estimator, which corresponds to taking
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gr = 1 forall kin (2.9), is known to give slight underestimation for small sample sizes.
However, the presence of the g-factors in (2.9) reduces this underestimation, as
evidenced by several simulation studies. Another reason to put the weights g, on
the residuals in (2.9) is that the variance estimator becomes better for conditional
inference. Sdrndal, Swensson, and Wretman (1989) showed that (2.9) is design consis-
tent. It is also approximately unbiased under the model, conditionally on s. A similar
desire to combine good design-based and good model-based features underlies the
variance estimator of Kott (1990), who starts from (2.9) with g, = 1 and attaches a
ratio adjustment to achieve good model properties. A wider class of variance estima-
tors for the GES could be created for a fixed size sampling design, as given by Rao’s
(1975) representation of a variance estimator for the HT estimator. Formula (2.9) is
also implicit in the variance estimation suggested for special cases of YsreG covered
by SUPER-CARP (Hidiroglou, Fuller, and Hickman 1976).

In summary, the calculations that are carried out in the GES are the following.
Using the sample data and the sampling design specification, the GES calculates
the sampling weights a;, = 1/, needed for point estimation, as well as the quantities
Ay, needed for variance estimation. Using the specifications of the sampling design,
the known auxiliary totals X = X;x; and the sample data (y;,x;) for k € s, the
GES further calculates: (i) the g-factors, g, for k € s, (i) the point estimate,
YGoREG = Ss@i&isVi, (iii) the residuals, e, = y; — ka for k € s, and (iv) the variance
estimate (2.9).

3. Features of the Underlying Regression Models

The general linear model (2.3) includes many special cases of potential interest to the
user of the GES. There are three important concepts that need to be discussed con-
cerning a model: model group, model level and model type. The concept of model
group is discussed in Section 4. The concept of model level relates to the type of
unit used in the formulation of the model. A model is said to be at the element level
if it is formulated in terms of auxiliary data on the individual elements, as in (2.3). The
known auxiliary totals then refer to groups of elements. For the single-stage element
designs discussed in Sections 3 to 5, a model is necessarily at the element level. For
single-stage cluster designs, considered in Section 6, the model may be formulated
either for elements or for clusters of elements. Thus, the model can be at the element
level or at the cluster level. For multistage designs, considered in Section 7, several
different model levels are possible. In element level models, the known auxiliary totals
refer to groups of elements; in cluster level models, they refer to groups of clusters. In
either case, the model is used to generate an estimator for characteristics of the
elements, for example, the total ¥ = Xyy,. Thus, the response variable in the model
is always a function of data on elements.

The auxiliary variables specified in the model (2.3) characterize the model type.
Simple auxiliary vectors and the associated model types are: (i) x; = 1 = ¢; for all
k € U, corresponding to the common mean model; (ii) x; = x;, = ¢, for all k € U,
where x; is a single positive variable, corresponding to the ratio model;
(iii) xx = (1,x;) with ¢, = 1 for all k € U, corresponding to the simple regression
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model with an intercept. These three formulations lead via (2.1) and (2.2) to well
known GREG estimators of the population total. These are the expansion estimator,
the ratio estimator, and the simple regression estimator.

For fixed size sampling designs, the HT estimator Y = %,y /m can be obtained as a
special case of the GREG given by (2.1), by taking x; = m;, = ¢ for all k € 5. We note
that the auxiliary total X = Zym, = n is known since the sample size is fixed at n.
However, the estimated variance (2.9) agrees with the traditional variance estimate
only for stratified simple random sampling without replacement.

An important category of models, called group models in Sdrndal, Swenson, and
Wretman (1992), arises when there exists a partition of U into subpopulations
Uy,...,U,,..., Up. We use the term partition to mean a set of mutually exclusive sub-
sets. The subpopulations may correspond, for example, to an age/sex classification of
individuals or to an industry classification of business establishments. For every
selected element k € s, suppose we can observe the subpopulation to which the unit
belongs and possibly other data. Examples of x; vectors for such situations are
x; = (0,...,1,...,0) and x; = (0,...,X,...,0)". In these vectors of dimension P,
all entries except one are zero; the non-zero entry occurs in the position corresponding
to the subpopulation to which k belongs. In the case of x; = (0,...,1,...,0)" the
model type can be characterized as one-way ANOVA; the auxiliary total that must
be known is X = Zyx; = (Ny,...,Np,..., Np) where N, is the population count in
the pth subpopulation. The corresponding GREG estimator is the classical post-
stratified estimator (see Example 4.1). In the case of x; = (0,...,X,...,0)’, the
auxiliary total that must be known is X = Xyx; = (X1,...,X,,..., X, p) where X,
is the total of x; over U,. The model types identified in this section, and the associated
GREG estimators, are discussed in detail by Sdrndal, Swensson, and Wretman (1992).

A general expression for the x; vector for a partitioned population is given by

Xp = (6uX 16, - - 6pkxlpka s OpX ) (3.1)

where 6, is a subpopulation indicator whose value is 6, = 1 if k € U, and 8 =0
otherwise. The vector X, is composed of all the auxiliary variables available for
element k € s, where s, = U, Ns is the part of the sample s in U,. Note that the set
of auxiliary variables does not need to be the same in all subpopulations. For example,
we could have x;; = (1,w;)’ for the first subpopulation, x,; = z for the second sub-
population, and so on, where w and z are different variables. The requirement that
X = Xyx; is known is equivalent to the requirement that the subtotal X, = Yy X,
is known for p=1,...,P. When x; is of the form (3.1), the general model
specification (2.3) is equivalent to specifying a model separately for each subpopula-
tion. The model implied for the pth subpopulation is given by (4.1) in the following
section.

4. Model Groups

We continue to assume a single-stage element sampling design with a probability sam-
ple s drawn from the population U. A model group is defined to be a subpopulation
U,, U, C U, such that: ‘
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i. a regression model with an auxiliary vector x,; can be fitted separately within
the group, and
ii. the group auxiliary total X, = By, Xpk is known.
Let x; be given by (3.1) and let 8= (81,...,8,,...,87)". Then (2.3) implies a
regression model for the model group U, that can be stated as

Ve =X, +e for keU, (4.1)

where E¢(e;) = 0, Varg(eg) = cxo” and Covi(ey, €4) = Oforallk # £. Thismodel can be
fitted using the observed survey data from group U, that is, (y, X,«) for k € s,, where
s, = U, Ns. Then B, is estimated by B, which satisfies the normal equation

(s, @ Xpk X/ c)B, = s, G Xp Vi / k- (4.2)

The predicted value of y for element k € U, is x;,k]?p. A GREG estimator can be
created for the group total Y, = Zy, i as

A~

Y,0reG = (Bu,%p1)' B, + S, a1 (% — XpiB,) (4.3)

or, expressed in terms of g-factors, as

A~

Y, GREG = X, W8ks, Vi (4.4)
where
gks, = 1+ (X, — X)) (5, aXpuXpie/ €)™ Xpie/ i (4.5)

with X, = Xy Xy, and ﬁp = Xy, Xp- That is, g-weights can be calculated according
to (4.5) for the pth model group, forp=1,..., P.

Poststrata represent an important example of model groups because, by the
customary definition, they are non-overlapping subpopulations with known popula-
tion counts. Other subpopulations often considered in surveys are strata, domains of
interest and clusters. They may or may not qualify as model groups. A domain of
interest qualifies as a model group if there exists one or more auxiliary variables
with known domain totals. For example, we might know the total number of
elements in the domain. Strata qualify as model groups assuming the stratum sizes
are known.

To produce estimates for any domain of the population of elements, GES requires
the existence of a set of model groups defining a partition of U. Unless indicated
otherwise, we assume from now on that the model groups satisfy this requirement.

The following result shows that the GREG estimator of the entire population total
Y = )y can be obtained by simply adding the GREG estimators for the model
group totals.

Result. Let Uy, ..., U, ..., Up be a partition of U into P model groups. Let x; in
the global model (2.3) be given by (4.1) with a known vector of totals
X =(X},...,X,,...Xp) and let the model parameter vector be 8=
(B1s---Bp,-..B%). Then, the GREG estimator for the entire population total
Y = Sy is equal to the sum of the GREG estimators for the model groups totals.
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That is

YGrEG = Y »,GREG ' (4.6)

S
Il Mw

where Ygrpg and YP’GREG denote the GREG estimators of Y and Y, defined by (2.6)
and (4.3), respectively.

Proof: The GREG estimator of the entire population total is derived by fitting the
global model (2 ywithB=(8),...8,-..,8 ’»)' and with x;, given by (4.1). Then B1is
estimated by B, which is the solution of (Xa;X;X,/cx)B = Z,arxyi/cx. Here, the
matrix (Z,a;Xx;Xy/c;) is block diagonal, and thus easy to invert. The predicted
value of y for element & is obtained as x;B = ;,kﬁp for k € U,, where ﬁp satisfies the
normal equation (4.2). The GREG estimator of the entire population total ¥ = Xy
is therefore

Yoree = (Suxi)B + Sya, (v — xiB)
P . P
= Z{X;,Bp + Zspak(yk — X;,kB } Z p,GREG- (4.7)
p=1 p=

This result gives a simple recipe for calculating the GREG estimator of ¥ = Xy, for
a population partitioned into model groups:

1. For each model group, calculate g-factors according to (4.5) and use these g-
factors to produce YP,GREG as in (4.4).

2. Sum these estimates over the groups to produce the GREG estimator of the
entire population total ¥ = Xy, as in (4.6).

In the GES, the g-factors are produced by this group-by-group approach. Similarly the
residuals for variance estimation are computed group-by-group. That is, the residuals

e =y —XpuB, for kes, (4.8)
are calculated for p=1,..., P and then used in (2.9) for variance estimation. This

approach has computational advantages and is intuitively appealing. The following
four examples illustrate the use of model groups.

Example 4.1 Consider a population of individuals partitioned into P model groups
Uy,...,U,,...,Up corresponding, for example, to an age/sex classification. Let x
be an aux111ary variable with value x, for k€ U, whose auxiliary total
X, = ZU X 1s known for each model group. Under the model y = Byxx + &k,
Eg(sk) = 0 Varg(g;) = xp02, Covg(sk, gs) = 0, for k # ¢, the GREG estimator of the
model group total Y, =3y yx is Y GREG = X B where B = (B, avx) / (B, arx)-
Summing over the groups, the estimator of the entlre populatlon total is obtamed
as YGreG = Z,’,LIX pﬁp. This is the familiar poststratified ratio estimator. The clas-
sical poststratified estimator is obtained when x; = 1 for all £, so that X}, = N, repre-
sents the known count in the pth group.
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Example 4.2 Consider a survey with stratified sampling and poststratification estima-
tion. The strata (indexed by A=1,2,...,H) and the poststrata (indexed by
j=1,2,...,J)are based on different criteria. For example, in a survey of individuals,
the strata may represent provinces and the individuals may be poststratified by age/
sex groups. Sﬁppose that a sample s is obtained by simple random sampling without
replacement (SRSWOR) in each stratum, with », elements sampled from N, in the
hth stratum. Assume that an auxiliary variable x; is observed for the elements
k € s. Depending on the auxiliary totals that are known, it is possible to define
different sets of model groups. The model within a group is assumed to be of the
form y, = Bx; +¢&, where B is an unknown slope parameter, E.(e) =0,
Varg(eg) = x;0* and Cove(ex,e4) = 0 for all k # £. The following three cases A, B
and C illustrate different model group specifications.

Case A. The J poststrata are used as model groups. Here, the poststrata totals
X; = >_u, x; must be known. The GREG estimator of Y is obtained as

J
Yores = »_ X;B;
j=1
with Bj = (}A’]/)A(]), f’] = ZhH=1(Nh/nh)Eshjyk and X'J defined in the same manner,
where s;; = s, Ns; is the set of sampled elements in stratum 4 and poststratum j.
This is a poststratified ratio estimator in which strata are combined to compute B;.

Case B. The H x J cells formed by crossclassifying the strata and poststrata are used
as model groups. This implies that the cell totals X); = Yy, x must be known. The
GREG estimator of Y'is

A H J A

YGrEG = Z XBy

h=1j=1

where th = f/hj/X’hj with ?hj = (Ni/my)Zs, yx and X’hj = (Ny/mp) %, xx. This can be
described as a separate poststratified estimator, because strata are treated separately
within each poststratum.

Case C. Familiar estimators were obtained with the model groups in cases A and B.
They represent two extremes of the following intermediate case. Let the population
cells {Uy,} be combined in a specified fashion to form a partition of U into P model
groups U, forp = 1,2,..., P. That s, a typical group U, is the union of a specified set
of cells. The cells that make up U, can be part of one or more of the strata or one or
more of the poststrata. Supposing the group totals X, = ¥y x; are known, the
GREG estimator of Y is given by

P
YoreG = Z X,B,
p=1
where Bp = f’p /X » With f’p =X, ae X » = Ss,axg and a = N, /ny, for each element

k in stratum A.

In some situations, auxiliary information may be available for overlapping sub-
populations. We cannot specify each of these subpopulations as a model group in
GES, because they are not mutually exclusive. However, this need not cause a waste
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of information. It is possible to make a complete use of the available information by:
(i) specifying a model group as the union of subpopulations, and (ii) suitably
redefining the vector of auxiliary variables. Example 4.3 shows how this is done.

Example 4.3 Suppose the population U consists of two overlapping subpopulations
U, and U, such that the population count N; is known for U;, whereas the total
X, = Xy, X, is known for U,. Then, by considering U = U; U U, as the only model
group, it is possible to profit from all of the available auxiliary information in deriving
the GREG estimator by defining x; for £ € U in the following way

(l,xk)' forke UyNU,
Xy = (1,0)/ for k € U—Uz
(0,x;) forke U- U

We assume that each sampled element can be classified as belonging to one of the
three subpopulations used to define x. It follows that X = Eyx; = (Np, X,)' is the
required vector of auxiliary totals for the GREG estimator. Letting s; = s N Uj,
i = 1,2, we have that the g-factors associated with this estimator produce the known
totals as follows

<N1)—Eag X _( X5, Us )
- ksXk = :
X5 sk Bs, On8ks Xk

In the following example, which involves generalized raking, the only model
group formulation permitting full use of available information is the entire
population U.

Example 4.4 Consider a population of individuals U divided into r x ¢ cells Uj;
formed by crossclassifying age and occupation categories. The marginal counts N;.
for i=1,2,...,r, are known for the r age categories (rows). Similarly, the single
auxiliary variable totals X ; for j=1,2,..., ¢, are known for the ¢ occupation cate-
gories (columns). The cell counts N;; and the cell totals X; are, however, unknown.
A model appropriate for this situation is

Vk=0o;+ Bxg+e for keUy i=1,...,r, j=1,...,¢c

which we can write in general form as

V=X B+¢e for keU (4.9)
where both 8 = (ay,...,0,,8,...,53) and x; have the dimension (r + ¢) and x; is
defined as

X =(0,...,1,...,0, 0,...,x...,0).

There is an entry equal to 1 in one of the first r positions corresponding to the row to
which & belongs, and an entry with value x; in one of the last ¢ positions correspond-
ing to the column to which k belongs. The other (r + ¢ — 2) entries have values of 0.
Here X = ;X is a vector composed of the r known counts N;. fori=1,2,...,rand
the c known totals X forj = 1,2..., c. Here, the cells do not qualify as model groups
because the N;; and the X;; are unknown. It would be possible to use either the age
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categories or the occupation categories as model groups. But, in either case some aux-
iliary information must be disregarded. If the age categories are used as model groups
then we cannot make use of the known total X ; for each occupation category. Simi-
larly, some auxiliary information would have to be foregone if we used the occupation
categories as model groups. The entire population is the only model group that can be
defined to make use of all the auxiliary information. The GREG estimator is derived
by fitting model (4.9) to the entire population U, assuming E¢(ex) = 0, Varg(ex) =
cxo® and Cove(ex,g,) = 0 for all k # £ where ¢ is a specified constant for each
k € U. The normal equations consist of a system of (r + ¢) equations. Note that
one equation is redundant when x; = 1 for all k € s, and must be deleted in solving
the normal equations. They are similar to the equations solved by the CALMAR soft-
ware described in Deville, Sdrndal, and Sautory (1993).

5. Estimators for Domains of the Finite Population

A domain is any subset of the population of elements U for which a separate estimate
is required. Most large surveys require estimates for a variety of domains. Therefore,
estimating characteristics of arbitrarily specified domains of the survey population is
an important feature of the GES. The general notation for a domain is U,). The sam-
ple s is drawn from U based on a sampling design with inclusion probabilities 7, and
e As before, let a; = 1/m; represent the sampling weight associated with element .
Also let sy = s N Uy denote the part of the sample s that falls in Uyy). It is helpful to
work with a domain variable of interest, y), whose value for the kth element is
defined as
v ifkeU (d)
Vi = {0 if k¢ Uyy (5.1)

The domain total of y, denoted Y(4), can then be expressed as Y (4) = Xy, ¥k = ZuY(ak-

In some survey applications the domains of interest form a partition of the survey
population U and estimates are required for the D domain totals Y, = yg Vi
d=1,2,...,D. Users often require these estimates to be additive over the domains.
Estimates of the domain totals then add up to the estimate of the entire population
total. The GES produces domain GREG estimators, Y( 4),GREG> d = 1,..., D, with
this additivity property, that is, Zd ) Y(d) GREG = YGRrEG- A simple proof of this
additivity property is given later in this section.

We assume, as before, that there exists P model groups Uy,...,U,..., Up that
form a partition of U. The domain of interest, U, can be related to the model groups
in a variety of ways. We consider a general case and two special cases.

Special case 1. The domain is identical with a model group.
Special case 2. The domain is properly contained in a model group.
General case. The domain intersects one or more model groups.

Special case 1 implies that auxiliary totals are available for the domain itself. In
practice, this is often not so and the general case (or special case 2) is more likely
to prevail.
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The general case is illustrated by the following situation. In a population of
business establishments, the SIC code of a given business establishment may change
from one year to another. The change may only be discovered when the unit is
sampled and observed in the current survey. The estimation of the current SIC group
total is an example of domain estimation as in the general case.

For simplicity, we consider first special case 1, that is, the domain of interest U(y) is
identical with a model group. This implies that there exists a vector of known
auxiliary totals X5y = X Uy Xk for the domain. We can then calculate g-factors based
on this information and obtain the GREG estimator of the domain total according to
(2.7) and (2.8)

Y(0)GREG = Zsk€ksa Y (ak = Sy Wksia) Vi (52)
where the g-weight for element & is given by
sy = 1+ (X(a) = X (@) (S @XuXi/ i)~ X/ i (53)

with X4 = EU(d)Xk and X(d) =%
following example.

sty WXk These expressions are illustrated by the

Example 5.1 Consider a population partitioned into D domains, each being identical
with a model group. Suppose that the total X4 = By Xk is known for each domain
Uy, d=1,...,D. Suppose the model for domain Uy is yx = B(g)xx + & where
Eﬁ(‘g’i) =0, Varg(eg) = x;0” and COYg(Ek,A gg) = 0 for all k # ¢. Applying (2.2) we
get By = (B, avi)/ (s axx) = Y(a)/X(a). The GREG estimator (5.2) for the
domain total Y4 is

Y4 6rEG = Es oy WeBhsay Vi = X @B (54)

where the g-factor is given by gy, = X(a)/ b'¢ () for all k € s(4). This is a domain ratio
estimator. The GREG estimator of the entire population total, obtained by adding
the domain estimators, is

D
Yorec = ZX(d)é(d) (5.5)
d=1
which has the form of a poststratified ratio estimator if we consider the domains to be
the poststrata. Here each domain should contain enough observations to avoid
unstable slope estimates B(d).

Consider now special case 2, that is, the domain is properly contained in one model
group. For simplicity, we assume this model group to be the entire population. The
vector of auxiliary totals X = Xyx; is assumed known. We can then calculate
g-factors from (2.6) and produce a domain estimate by applying these g-weights to
the domain variable values y(4)c. Since these g-factors are calculated on auxiliary
information at an aggregated level, that is, the entire population U, they do not
require auxiliary information for the domain itself. The GREG estimator of
Y(d) = EU(d)yk is then

Y (4)GREG = ZsO&sV (aye = Xy U8ks Vi ‘ (5.6)
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where g, is given by (2.7). We can also express this estimator as
Yiayorec = Yy + (X = X)Byy : (5.7)

where Y(d) )y s ( (@)k andX =% sar Xy are the HT estimators of Y4y = Xyy(4)c and
X = $yx; and B d) is the solution of the normal equation

(Zs akaXk/Ck) (@) = Ds@XpY(aye/ Ck- (5.8)

This normal equation arises formally from the fit of the regression of the domain
variable y(;) on x through the model

Yak =XiB+e for keU (5.9)

where E¢(gr) = 0, Varg(ey) = cxo”® and Cove(ek,e0) = 0 for all k # £. This fit will
sometimes be mediocre because of the special nature of y (), which equals y inside
the domain but is always equal to zero outside. Therefore, the residuals cannot be
expected to fluctuate in close vicinity of zero. The residual for element k will usually
have a substantial positive value or a substantial negative value depending on whether
Y@k = Yk Of Yy = 0.

For example, consider a population of business establishments where x = Gross
Business Income and y = Wages and Salaries. Suppose the auxiliary variable x
explains y well at the entire population level with a value of R? equal to about
0.90. The entire population estimator (2.5) will then realize important gains in
precision due to regression, compared to the standard HT estimator. However, we
can expect the regression of the domain variable y(;) on x to be much weaker. The
residuals will be considerably larger. The domain estimator (5.7) may produce little
or no gain due to regression. Here we are not primarily interested in the goodness
of the fit. Instead the primary objective is to work with g-factors that: (i) produce
additive domain estimates (an often required property), and (ii) are unchanged
from one domain to another (which has some computational advantages).

Example 5.2 To illustrate special case 2, consider a population partitioned into D
mutually exclusive and exhaustive domains Uyy,..., Uy, .-, Up). Assume that
the only model group is the entire population U and suppose there is a single positive
auxiliary variable x for which the population total X = Xy x; is known. Consider
the model stating that y, = Bx; +¢, where Ef(sk) 0, Varg(ek) = x;0% and
COVé(Ek,Eg) 0 for all k#¢. Thus we have B= Y/X where ¥ = Z,a;y; and
X = Z,a;x;. The g-factors are given by Sis =X /X for all k € s. The estimator (5.7)
of the domain total Y, is then given by

Yy oree = (X/X)E,, awye = (X/X) ¥ ). (5.10)

Summing over domains, we get the GREG estimator of the entire population total,
which is the standard ratio estimator

D
Yoreg = Y _(X/X) ¥, = (X/X)7. (5.11)
a=1
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The domain estimators defined by (5.10) for d = 1,2, ..., D can thus be viewed as a
way to distribute the entire population ratio estimator (5.11) over the domains in
an additive fashion. For the dth domain, (5.10) may be only slightly better than
the HT estimator ¥, axyx. For the entire population, (5.11) will be considerably
better than the HT estimator X,a;yy if the model provides a strong fit for the entire

population.
We turn now to the general case. That is, the domain of interest intersects one or
more of the P model groups indexed p = 1,..., P. For group U, we have an auxiliary

vector x, with known total X, = Xy X Wlth this 1nf0rmat10n the g-factors g,
defined by (4.5) are first calculated for each model group U,,p=1,...,P. The
GREG estimator of the domain total Y4 = Xy is then obtained as

P
Y (4)GREG = Z X5, A8ks, Y (d)k (5.12)
p=1

where s, = s N U,. In summary, the steps in the calculation of the domain estimator
(5.12) are as follows.

1. For domain Uy, identify the intersecting model groups, that is, the groups U,
such that U; N U, is non-empty.

2. If U, is an intersecting model group, apply the combined weight a;g;, to the
value y 4y and sum over the elements k € s,,.

3. Sum over the intersecting model groups to obtain the point estimate (5.12) of the
domain total Y 4.

In the GES, the computation of the estimator (5.12) and the corresponding variance
estimator is easily handled. The variable y is replaced in the formulas in Sections 2 and
4 by the domain varlable Y- For the variance estimation, this implies that the
residuals ¢, = y, — x kB for k € s, are replaced in (2.9) by

ey = Y — XpBiayp (5.13)

for k € s, where B(d)p satisfies (X axXprX k/ck)B(d = B, GXpkY (d ye/ ¢k Here, (2.9)
becomes

Var( (@).GREG) = Sk 0yes(Dke/Tke) (Grse(aye/ k) (8ese(aye/ Te)- (5.14)

Thus, for any model group U, that intersects the domain of interest Uy, we have

{yk - X;;kﬁ(d)p if k € Sp and k € U(d)
Dk = A .
— ;;kB(d)p ifke Sp and k ¢ U(d)

Further, ey =0 for all sample elements belonging to non-intersecting model
groups, which simplifies the calculation of the variance estimator (5.14).

The domain estimator (5.12) has two important properties: (i) design consistency
and (ii) additivity over a set of domains forming a partition of the entire population
U. The design consistency follows because (2.1), or equivalently (2.6), is a design
consistent estimator for any configuration of values y;,y,,...,yy. Thus, it is design
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consistent in particular for the configuration y(41,ywy2;---,Y@n- The additivity
property,

D

Z Y(4)GrREG = YGREG

d=1 :
where Ygreg and f’(d),GREG are defined by (4.6) and (5.12), follows easily since
S 2-1 Y@y =y forallk € U.

Example 5.3 Consider a domain that intersects the first two out of P > 2 model
groups. Then the GREG estimator (5.12) of the domain total Y ;) = Zy, oYk becomes

Y(4)GrEG = Z X5, W8ks, Y (d)k = Z Y0y WBks, Vi
p=1 p=1
where s(4), = 5, N Ugy = s N U, N Uy, is the part of the sample s that falls in domain
U4y and group U, for p = 1,2. To be specific, suppose there is a known group count
N; for the first model group, and a known total X, = Xy, x; for variable x in the
second model group. Then the GREG estimator of the domain total is

Yayorec = (N1/N1) Yy + (X2/X) Yiay

where Nl = Zsll/ﬂkaXZ Estk/T(k, (1= Zs(d)lyk/ﬂk and Y s(d)zyk/ﬂ-k' The
calculation of the variance estimate (5.14) will require the followmg res1dua1s ea)k

a. for sample elements in the first model group, k € s; = sN U, we have

. {yk—(f(d)l/Nl) if k€ Uy
@k = N L
—(Yan/Ny) if k& Uy

b. for sample elements in the second model group, k € s, = s N U,, we have

e o {yk_xk(f,(dﬂ/x}z) lfke U(d)
@k = . T
X (Yap/X2) if k& Uy

C. e(g) = 0 for all other sample elements, k € s — 51 — 55.

6. Single-Stage Cluster Sampling

The previous sections dealt with the GREG estimators for single-stage element
sampling designs. But, because of cost, administrative reasons or sampling efficiency,
these types of designs are not used in many medium to large scale sample surveys. For
those surveys, the sampling design generally involves cluster sampling in one or more
stages, possibly with unequal probability selection at each stage. Clusters generally
form natural groupings of the elements of the finite population. In single-stage cluster
sampling, a probability sample of clusters is selected and all elements in these clusters
are surveyed. This section discusses the use of GREG estimation in single-stage
cluster sampling designs.

Let the population of elements U = {1,...,k, ..., N} be partitioned into Ny clusters.
The population of clusters is denoted by Uy = {1,...,i,..., Ny }. This population may



196 Journal of Official Statistics

be stratified. A sample s of clusters is selected from this population with associated
probability of selection p;(sy). The elements in the sampled clusters form the sample
of elements s = U, 5;, where s; denotes the set of sampled elements in the ith cluster.
Note that in single-stage cluster sampling, s; is composed of all elements in the ith
cluster. The sampling weight for the ith cluster is denoted by ay; = 1/7y; for i € Uy,
where my; is the cluster inclusion probability. As in earlier sections, the sampling
weight for the kth element is denoted by ay. In single-stage cluster sampling designs,
a, = ay; for every k € ;.

Let us consider the estimation of the population total ¥ = ¥y, and the domain
total Y4y = Yy Ve In cluster sampling designs, auxiliary information may be avail-
able: (i) for subgroups of the population of clusters (case A below) or (ii) for sub-
groups of the population of elements (case B below).

Case A. Model groups at the element level. Suppose the population of elements U is
partitioned into the model groups Uy, ..., Uy, ..., Up for which we have known aux-
iliary totals X, = YuXps p=1,..., P. The auxiliary variables may be different in
each group. The part of the samples that falls in the pth model group is denoted as
s, = s N U,. Within each model group we can formulate a regression model at the
element level. The element level model for group U, is given by (4.1), and the g-factor
8ks, for the sampled element k € s, is given by (4.5). The GREG estimator of the

population total Y is then given by
. P
YoreG = D 5y, ak8ks, Vk- (6.1)
p=1
The residuals produced by the model fit are given as
e =y —XuB, for kes, (6.2)

where ﬁp satisfies the normal equation (4.2).
The estimation of variance of Ygrgg involves a simple modification of formula

(2.9).
The variance is estimated by
Var(Yorec) = Siijes (Duyj/my) (E/m1) (E;/ ) (6.3)

where E; = 3 ke, 8ks ek fOT k € ,, € is given by (6.2), and Ay = my;; — iy
It is a simple matter to produce estimates for domain totals. Replacing yx by ya«
given by (5.1), we obtain the GREG estimator of the domain total Y. For the
corresponding variance estimation, E; is replaced by Eyy; = ) e, 8ks, @ ( 4k where
e(4)k is given by (5.13).
The following examples illustrate how familiar estimators may be obtained under
the specification of an element level model.

Example 6.1 Suppose an auxiliary variable x, is available for the group U, with the
known group total X, = 2 U,Xpk> P = =1,. P Withjn the group U, we spemfy the ratio
model as y; = Bx, —|- € with Varg(sk) =0’y =0 Xy We find that the g-factor for
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each sampled element k € s, is given by
8ks, = p/XIp = Xp/zspakxpk , (6.4)

with @, = 1/my; for all elements k € s;. The domain total Y4 is then estimated by

P
Y(4)GREG = Z(Xp/Xp)Y(d)p (6.5)
p=1
where Y Zs @y (a)c- Note that the domains, the clusters and the model groups

may cut across each other Each may be based on a different classification criterion.
Nested arrangements are also possible. Although (6.5) has the familiar appearance of
a poststratified ratio estimator (with model groups as poststrata), it actually represents
a variety of ratio type estimators. A special case of interest is when x,; = ¢, = 1 for
each element k € U,. The g-factors are then gks =N, /N for all k € s,, where N, is
the total number of elements in the group, N, = ¥ a, and a; = 1/my; for all k € ;.

Case B. Model groups at the cluster level. Suppose the population of clusters Uy can be
partitioned into the model groups Uy, ..., Uy, ..., Urp with auxiliary information
available for each group. The auxiliary variable vector value x,,; is available for every
cluster i € sy,, where sy, = sy N Uyp is the set of sampled clusters falling in group Uy,
and X, = XUp,x,; is the known vector of group auxiliary totals. The cluster level
model for group Uy, is

Yi=x,By,+¢e for ieU, (6.6)

where Y; =Xy, is the total of y for the ith cluster. We assume E(e;) =0,
Varg(g;) = ;o8 and Cove(e; ;) = 0 for all i # j. Note that the dependent variable
in (6.6) is the cluster total ¥;. The GREG estimator of Y is given by

P

YGREG = Z:l Xy, Wigis,, i

=

where g;, , is a cluster g-factor given by

8is, = 1+ (X, — X)) (B, apX i/ )" Xpife; for i€ sy (6.7)
where ﬁp = Xy, anXpi. The sample based estimate ]§Ip of By, is obtained as the solution of

(Es,,,alixpixﬁyi/ Ci)ﬁlp = Eslpalixpi Yi/e; (6.8)
and the residuals obtained from the model fit are given as

;=Y — x;iﬁlp for i€ sy, (6.9)

For cluster level models, the variance of Ygrgg is estimated through a straight-
forward modification of (2.9),

Var(¥orec) = i jyes (A1ij/ 1) (8is, €1/ 71) (s, €1/7) (6.10)

where e; is given by (6.9). Again, estimates for domains require only a simple change
of variable. The GREG estimator, Y( 4),GREG, Of the domain total Y(;) =X Uy Yk is
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obtained by replacing Y; by Y(4); = X yy. The appropriate residuals for the
domain, €(a)i, are calculated by replacing Y; in (6.8) and (6.9) by Y(4y;. The variance
estimator, Var(Y () grec) is then obtained from (6.10) by replacing e; by e(y);.

The ratio models in Example 6.1 were at the element level. It is interesting to
compare it with the following Example 6.2, where the ratio models are placed instead
at the cluster level.

Example 6.2 Suppose an auxiliary variable total X, = Xy, x,; is available for each
group of clusters Uy,, p=1,...,P. If we let x,; = x,; and ¢; = x,; in the general
regression model (6.6), we have a ratio model for the pth group. The g-factor for
the sampled cluster i € sy, is then obtained as

8isy, = (Xp/Xp) = Xp/zslpalixpi (6'1 1)

where X, » = B, A1iXpi- The resulting estimator of the domain total Yy is

P
Yayorec = O (Xp/ %) Yia (6.12)
p=1

where Y, (@)p = Bs, a1 Y (a)i- The model groups at the cluster level may correspond to
strata of clusters or poststrata of clusters. Then (6.12) corresponds, respectively, to
stratified and poststratified ratio estimators. The standard ratio estimator is obtained
when the whole cluster population defines the only model group. Note that (6.12) is
different from the element level ratio type estimator given by (6.5), although they have
the same form. An interesting special case arises if in the model (6.6) we have x,; = 1
and ¢; =1 for each cluster i € Uy,. Then the g-factors for the sampled clusters
are

gislp = NIp/NIp = NIp/ZslpaIi for ie st (613)

where Ny, is the number of clusters in Uy,. The estimator of the domain total Y, is
then given by

P

4),GREG (6.14)

p= N Ip
A familiar estimator is produced when the sample selection consists of stratified
SRSWOR of clusters and each stratum corresponds to a model group. If the strata
are indexed A= 1,...,H, we have ay; = Ny,/ny, for each i € sy, and the g-factor
(6.13) is g5, = 1 for each cluster i € sy;,. Then (6.14) becomes the stratified expansion
estimator Zle(NI,,/nlh)Esth ()i~ The case of H =1 implies that there is a single
model group equal to the entire population of clusters. We obtain the simple expan-
sion estimator (Ny/n;) X, Y(4); where Ny/ny is the inverse of the cluster sampling rate.

7. Multistage Sampling

In multistage sampling, the population of elements is first partitioned into subpopula-
tions called primary sampling units (PSUs) and a probability sample of PSUs is
drawn. For the second stage, the set of units within each selected PSU is further
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partitioned into second stage units (SSUs). A probability sample of SSUs is
then drawn from the PSUs. For a sampling design that has r stages (r>2), each
selected sampling unit at the (r — 1)th stage is further partitioned into rth stage
sampling pnits (RSUs). Then, a probability sample of RSUs is drawn. The ultimate
stage sampling units are not necessarily elements. They can also be clusters of
elements and every population element in the selected ultimate stage clusters is
then surveyed.

Let the population of elements U = {1,...,k,..., N} be partitioned into Ny PSUs.
A sample s; of m; PSUs is selected from the population of PSUs
Up={l,...,i..., N}, with probability pi(s;). Denote by ;=Y ;pi(s;) the
first-order PSU inclusion probability induced by the design p;(-). The sampling
weight for the ith PSU is ay; = 1/my;. The overall sampling weight for element k&
contained in the ith PSU is given by a; = ayay;, where ay; is the sampling weight
of k resulting from (r — 1) stages of subsampling within the ith PSU. We denote
the total realized sample as s = U, s; wWhere s; is the sample of elements resulting
from the (r — 1) stages of subsampling within the ith PSU.

To derive the variance estimator for the GREG estimator in multistage designs, we
need some preliminary results. Let the parameter of interest be the population total
Y = ¥ yyk. An unbiased estimator of Y is

j}: ESIaIi?I. (7'1)

where Y; is a conditionally unbiased estimator of the ith PSU total. That is,
E(Y|s;) = Y; where the conditional expectation is taken over the (r — 1) remaining
stages of selection, given sy.

Let /(Y ), where Y, = {Y; : i € 51}, be an unbiased quadratic form estimator of the
variance of the HT estimator X ay; ¥; under single-stage cluster sampling.

Also, let V, = Var(Y;|s;) be the conditional variance due to the last (r — 1) stages
of selection, and let v, be conditionally unbiased estimator of this variance, that is,
E(vy,|s1) = Vis,- Note that v could depend on s;. Rao (1975) provided a recursive
unbiased variance estimator of Y given by

Var(¥) = f(¥y) + 5, (af; — by)vs, (7.2)
with
N 1 ~” A
2
f(Yy) = Egby Y7 + 5;; i YiY; (7.3)
I 1

where the coefficients by; and +y; are obtained from the expansion of the unbiased esti-
mator of the variance of ¥ ay;Y; into the form (7.3). Formula (7.2) reduces to the one
given by Raj (1966) if V;, = V; for all s;.

To illustrate how the coefficients in f( Y} ), are derived, suppose that the first stage
design consists of an SRSWOR selection of n; from the Ny PSUs in the population.
The estimated variance for ¥ = ¥, (N1/n1)Y; is then given by

— A 1 1 1 S
2 2

Vv Y)=N{{——— | — (Y.— Y
ar( ) I(nl NI) . 1 s,( i )
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with Y = £ Y;/n;. Expanding this expression into the form (7.3) we obtain

_ Nx 2 Hny _ NI 2 ny 1
= () (=50) o= 2G) (R amn

In general, the use of (7.2) and (7.3) can then be described as follows. First, you
express f(Y,) in the form (7.3). Then, you obtain a copy of it, f( f’s,), by replacing
each Y; with its conditionally unbiased estimator Y;. In the estimated variance
(7.2), it only remains to specify the conditional variance estimator vy, for i€ sy.
This can be done by recognizing that at each stage there is a conditional variance.
The process can be repeated iteratively with a new function f(-) at each stage of
selection. The estimated variance (7.2) can be computed using a procedure provided
by Bellhouse (1985), which uses a general tree construction algorithm to represent the
multistage design.

Surveys based on multistage sampling often use auxiliary data to improve the
efficiency of their estimates. For instance, the Canadian Labour Force Survey uses
a multistage stratified cluster design and calibrates its estimates using known age-
sex and subprovincial counts. The use of auxiliary information can be translated
into regression models that relate the variable of interest to a known auxiliary vector.
Augxiliary information may be known for any of the populations at the various stages
of selection. The partitioning of these populations into model groups can also occur at
any of the stages, if the necessary auxiliary information exists for these model groups.
Furthermore, the partitioning must be reasonable. In the following, the discussion is
restricted to the use of model groups at the element level (case A) and at the PSU level
(case B). An example of the use of model groups both at the PSU level and at the
element level can be found in the weighting procedures used for the Canadian Labour
Force Survey. PSUs are grouped into urban and rural clusters. Elements (individuals)
are grouped by age-sex, by Census Metropolitan Area and by Economic Region.

Case A: Model groups at the element level. The features of this case are as described
in Section 6. The model for group U, is given by (4.1) and g-factors are calculated as in
the cluster sampling case by (4.5). The GREG estimator is given by (6.1) and the
associated residuals by (6.2) where ﬁp satisfies (4.2). Recalling that a; = ayay;, the
variance estimator for Yggrgg is now obtained with the aid of (7.2) and (7.3) as

Var(Yorec) =f(Ey) + 5 (@ — bu)viy (7.4)
where
N N 1 ~ A
fE,) = SobuE} + 3 Z Z i EiEj
i#f € 5y

and Esl ={E;:ic s} with E; = ¥, akjiZk, Where
Zk = Sks,k = 8ks, Wk — X;cﬁp) for kes, (7.5)

The coeflicients by; and ~y;; in f (Esl) are identical with those that appear in f( Ysl) in
equation (7.3). In (7.4), vi, is an approximately unbiased estimator of
Vis = Var(Ej|s;), which is obtained from v, in equation (7.2) by replacing yi by z.
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The GREG estimator for a domain total Y(,) is obtained by replacing y; by y gy in
(6.1). Note that this replacement is also carried out in (4.2), (7.4) and (7.5) to obtain
the corresponding variance estimator.

Case B: Model groups at the PSU level. The features of this case are as specified in
Section 6, except that a cluster is now called a PSU. The model for group Uy, is given
by (6.6). However, unlike in Section 6, the PSU total Y; is not known in this case, but
must be estimated by ¥, = Y5, akiyr as a result of the (r — 1) subsequent selection
stages, so the GREG estimator of Y is now

P
YoreG = Z Eslpaligislp Y. (7.6)
p=1

The corresponding variance estimator is

Va\f(f’GREG) =f (Zsl) + X (af; — by)vis, (7.7)
wheref(ZsI) = ESIinZ,» +%ZZ%UZ,-Z]~ and ZSI = {Z;:i€ s} with
i#] € sy
Z;= gisIP(Yi - x;;iBIp) (7.8)

where ﬁlp is given by (6.8) provided Y; is replaced by its estimate Y;. The coefficients
by; and ;5 in f1 (ZSI) are identical with those given in (Y, ) in equation (7.3). Note that
V;5, 18 an unbiased estimator of the conditional variance Vu, = Var(Y|s).

A regress1on estimator Y( 4),GREG for a domain total Y 4y is obtained by replacmg Y;
by Y(4); = X,aki¥ () in (7.6). The corresponding variance estimator, Var(Y(d)yGREG)
is obtained by carrying out the same replacement in (7.7) and (7.8), and by replacing
functions of the y;’s in v by the same functions of the y(4);’s.

8. [Estimation of Non-Linear Parameters

So far, only estimators of population totals have been discussed. By using the Taylor
linearization method, the results for regression estimation and the corresponding var-
iance estimation can be extended to parameters composed as non-linear functions of
two or more totals. These include, for example, ratios of totals, regression coefficients,
correlation coefficients, etc. Examples of the Taylor linearization method for non-lin-
ear parameters are given by Tepping (1968) and Woodruff (1971). In other words, we
combine the GREG estimation technique with the Tepping-Woodruff procedure for
non-linear parameters.

Suppose that the parameter to be estimated for population U is 6 and that § can
be expressed as a function of the Q population totals in the vector
Y=(Y,...,Y,,...,Yp), where Y, = Byyg. That is,

6 = F(Y).

An estimator for 6 that uses auxiliary information can be obtained by replacing each
unknown total Y, by its corresponding GREG estimator, Y, grgg- Letting

Yorec = (Y1,6REG: - - -» Y4,GREG: - - - » Y0,GREG)
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then the resulting estimator of 6 can be expressed as

0 = F(¥ogec)- 4 (8.1)
For the Taylor expansion of (8.1), we find the partial derivatives of F, evaluated at the
approximate expected value point, that is, forg=1,...,0,

F

P

0 Y;crEG Yorec=Yorec

In D,, replace each unknown total by its HT estimator to obtain ﬁq. Then, supposing
case A of Section 6 applies (modelling at the element level), we compute

0
iy = Z Dqgksp (qu - x;chp)
g=1
where p is the model group (poststratum) index, and g, and ﬁqp denote the appro-
priate g-factors and regression vectors. To compute the variance estimator
Var() = Var{F(Yggrec)}, we would now simply replace E; in (6.3) by E; = Ty ¢ il

9. Conclusions

In this paper we have presented the methodological principles that were used in the
development of the Generalized Estimation System (GES) at Statistics Canada.
GES was developed to produce domain estimates and corresponding estimates of
variance for population parameters such as totals, averages, ratios, and proportions
for a variety of sampling designs. The currently programmed specifications can
handle stratified, single-stage sample designs such as stratified simple random
sampling without replacement, stratified cluster sampling, and stratified probability-
proportional-to-size, with and without replacement, (PPS) sampling. These sample
designs are common at Statistics Canada. GES currently handles the estimation for
over 20 major business surveys, and several social surveys, including the Canadian
Labour Force Survey at Statistics Canada.

An important aspect of the GES is the use of auxiliary information in the form of
known auxiliary variable totals (Sdrndal, Swensson, and Wretman 1992). For single-
stage element sampling, the known totals always refer to the population of elements,
or to specified subgroups of this population. For single-stage cluster sampling and for
sampling in two or more stages, auxiliary information can appear at different levels
corresponding to the different populations that can be distinguished. For example,
in single-stage cluster sampling, we may have known auxiliary totals for the popula-
tion of clusters (or for subgroups of it), or known auxiliary totals for the population
of elements (or for subgroups of it). A population subgroup with a known auxiliary
total is called a model group. For each model group, a general linear regression model
can be stated and fitted with the variable of interest as criterion and the auxiliary
variables as predictors. In the GES, the term GREG model refers to the collection
of regressions fitted in the various groups.

The system is in modular form so that it can easily accommodate additional
estimators and designs. It was developed in micro-SAS environment. The most recent
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version (GES3.1) runs under SAS 6.08 (Beta) for Windows and needs SAS features
such as BASE, AF, FSP, and IML. The system is menu driven. For example, the
user is allowed to choose the estimator to be used for given parameters of interest.
A model statement is used to define an estimator.

Hidiroglou and Siarndal (1995) have extended this methodology to handle arbitrary
two-phase sampling designs, where auxiliary information plays an important role.
Also, as imputed data have an effect on variance estimation, we plan to include it
using methods given in Sirndal (1990), and Rancourt, Sdrndal, and Lee (1994).
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