Journal of Official Statistics
Vol. 3, No. 1, 1987, pp. 45-67
© Statistics Sweden

Methods and Problems in
Coding Natural Language Survey Data

Rodger Knaus'

Abstract: This paper discusses a computer
algorithm for coding, i.e., classifying, natural
language survey data. The algorithm uses
“semantic vectors” over the set of codes to be
assigned. The database for the algorithm can
be automatically constructed from manually
coded records. When applied to industry
descriptions from the 1970 U.S. Population
and Housing Census, the algorithm agreed

1. Coding Using Semantic Vectors

1.1. The natural language coding problem

Natural language (NL) is an especially useful
response medium in surveys on employment,
household expenditures, or health and safety.
For these subjects, the variable of interest
usually has a large set of possible values and
we can expect a large number of different
responses. Furthermore, the values for certain
variables, like “type of job,” are normally de-
scribed in words and cannot be described by
numbers or any other more structured data
without first deciding on a coding method.

! Instant Recall, Box 30134, Bethesda, MD 20814,
U.S.A.

Acknowledgement: The author acknowledges the
support of the Dept. of Mathematics, Statistics and
Computer Science of American University in pre-
paring this paper.

with expert manual coding in 80 % of the
cases. The agreement rate of 80 % for the
industry data is comparable to the rate of
agreement between a novice and an expert
coder.

Key words: Coding; classifying; natural lan-
guage; survey data; semantic pattern
matching.

By our definition, natural language variables
(NLV) are survey variables that can assume a
large number of values. For NLVs, the only
adequate notation is in the natural language
itself. We also contrast responses in natural
language to responses in an artificial medium,
such as a code number chosen from a table.
An artificial medium for a survey response is a
finite set of allowable answers defined by the
surveyor. Questions whose answers are in
artificial mediums are called artificial ques-
tions. According to this definition, multiple
choice questions are an example of artificial
questions.

For natural language variables, natural
language has the following advantages over an

- artificial medium:

Economy in the question set: No reasonably
sized set of artificial questions can solicit infor-
mation as complete as simple natural language
questions like “Where do you work?” and
“What do you do?”

46

Objectivity of the survey questions: With natural
language, the respondent can answer in a way
that reflects his or her perception of the
subject. In contrast, for artificial media, the
survey designer decides the possible answers
and the respondent selects one of those
answers. The flexibility of natural language
can be both an advantage and a disadvantage.
On the one hand, the flexibility of natural
language permits an uninformed respondent
to provide an uninformative answer (e.g.
occupation = helper). On the other hand, the
same flexibility might provide a more accurate
answer. A structured question to computer
professionals might ask whether they work
primarily with hardware or software, whereas
a natural language question would allow them
to reply with “firmware” or “communica-
tions.”

Natural language responses can be reana-
lyzed using different similarity criteria to
answer different questions. For example,
systems analysis and data entry might be
mapped to the same type of industry (data
processing) in an analysis of economic sectors,
but to different educational levels in a survey
analyzing educational requirements. In this
way, natural language data can be reused for
different analyses, while artificial media
generally do not support such reclassification.

Simplicity for the respondent: Questionnaires
using natural language questions are easier for
the respondent to complete. Both the ques-
tion and response are in a medium already
familiar to the respondent. This simplifies the
survey instructions. Because a single natural
language question captures a great deal of
information, the use of natural language
responses probably also shortens a survey.
The advantages of NL data discussed above
must be weighted against the difficulty of pro-
cessing natural language data. For responses
to multiple choice or other questions with a
small fixed set of possible responses, there is a

Journal of Official Statistics

simple correspondence between the form of a
response and its meaning. No such simple
relation between form and meaning exists for
natural language.

Coding is usually the first step in processing
census or survey data collected in natural
language form. In the coding process, each
response is assigned a value from some finite
set C of codes. Each value or code in the code
set represents a distinct response. Coding
makes the analysis of NL data possible. Con-
versely, all NL responses mapped to the same
member of C are considered identical for sub-
sequent analysis of the survey data. Thus
coding is the process of filtering out the vari-
ations of linguistic expression from responses
that, for the purposes of a survey, represent
the same response.

In the past and in most current surveys,
natural language responses have been coded
by persons who assigned codes to the re-
sponses. This method of assigning codes is
called hand coding. The U.S. Current Popula-
tion Survey (70 000 households) conducted
monthly and the decennial U.S. population
and housing census (over 10 million house-
holds) are examples of large data sets where
the coding of, say, industry and occupation is
an extensive operation. For large data sets
hand coding is expensive, time-consuming,
and error-prone. It is these problems with
hand coding that have propelled research in
computerized coding at the U.S. Census
Bureau, Statistics Sweden, and elsewhere.

1.2. The coding algorithm

This paper deals with a class of computerized
coding algorithms called vector coding (algo-
rithms). These algorithms have a number of
features in common.

A vector coding algorithm starts by recog-
nizing a set of linguistic constructs in the
response to be coded. The simplest linguistic

Knaus: Methods and Problems in Coding Natural Language Survey Data 47

constructs are words, and in the phrase “citrus
grove” the words “citrus” and “grove” can be
recognized. The phrase “citrus grove” is itself
a linguistic construct, and might be recognized
as such by some vector coding algorithms.
More complicated linguistic constructs
have not been used in any of the implemented
algorithms, but could be included without
changing the basic method. These more com-
plex constructs might include syntax trees,

e.g.,

noun phrase (head noun(grove), adjective
(citrus)),

and case grammar deep structures (see Sec-
tion 3.2.1).

Vector coding algorithms use a coding dic-
tionary that contains a vector over codes for
each construct in the dictionary. The vector
for a linguistic construct L is called its coding
vector. Each coding vector lies in a vector
space over the set C of codes which can be
assigned. If ¢ is one of these codes, the cth
component of the coding vector of L repre-
sents the tendency to assign the code ¢ when L
is present.

For example, suppose that we have the fol-
lowing industry codes:

0 agriculture and forestry

mining

manufacturing

utilities

transportation and communication
wholesale trade

retail trade

business services

personal services

government

N=ie BN B Y e\

Then the vector for “citrus” might look like
this:

(0.95,0,0.05,0,0,0,0,0,0,0).

This indicates that “citrus” appears 95 % of
the time in responses coded to agriculture,
and 5 % of the time in responses coded to
manufacturing. Similarly, vectors for “grove”
might be:

(0.50,0,0,0,0,0,0.50, 0, 0),

indicating that “grove” occurs in descriptions
both of agricultural enterprises and also of
business services (e.g., grove caretakers). In
the same way, the vector for “cannery” might
be

(0,0, 1.00,0,0,0,0,0,0,0),

indicating that “cannery” always appears in
responses coded to manufacturing. In practice,
the empirically built vectors almost always
contain some noise (small random compo-
nents near zero, from word occurrences like
“Grove Press”) not shown in these examples.

Given the ability to recognize some linguistic
constructs and a dictionary of coding vectors,
a vector coding algorithm works in the fol-
lowing way.

The algorithm first recognizes the linguistic
constructs in the input response. It then looks
up the coding vectors for the linguistic con-
structs which were found, and adds up these
coding vectors (possibly with weights, as
discussed later in the paper). It finds the
largest component and next largest component
in the resulting sum vector.

If the largest component is enough larger
than the second largest, then the response is
assigned the code corresponding to the largest
component. (How much larger the largest
component should be is discussed later in the

paper.)

Suppose the response to be coded is “citrus
grove” and that the dictionary contains the
three vectors used as examples above. Then
adding the vectors for “citrus” and “grove,”

48

and ignoring the problem of weighting the
vectors for now, one gets:

vector (“citrus grove”) =
(1.45,0,0.05,0,0,0,0,0.50, 0, 0).

The best code, agriculture, has a component
of 1.45 which is considerably better than the
runner-up, business services, at 0.5. There-
fore the code agriculture is assigned to this
response.

A set of vector coding algorithms that carry
out different levels of linguistic analysis can be
stacked one after the other to form a composite
algorithm. The earlier algorithms in the list
generally perform less linguistic analysis than
later algorithms in the list. If an early algo-
rithm can assign a code on the basis of this
limited information, it does so. If it cannot
assign a code it passes the response to a later
algorithm in the list, which performs a more
detailed linguistic analysis.

The simplest linguistic construct that can be
recognized in a response is the response itself,
taken as a phrase. If the phrase is found in the
coding dictionary, for example,

coding vector(“citrus grove”) =
(1,0,0,0,0,0,0,0,0,0),

a code can be assigned without looking up the
various words and adding their vectors
together. On the other hand, if no vector is
found for “avocado grove” in the dictionary,
then the phrase-level coding algorithm fails to
assign a code, and the response “avocado
grove” is passed on to a word-level coding
algorithm.

A generalized vector coding algorithm,
consisting of a list of vector coding algorithms
that work from less detailed to more detailed
linguistic analysis, is expressed by the fol-
lowing pseudocode:

Journal of Official Statistics

function code (
nlr:natural language response): code;
var s: set of linguistic constructs;
v: vector over codes;
cmax: set of codes
fns: set of functions from a set of code
vectors to a code vector;
c: code;
begin
s:=set of highest level linguistic constructs;
c:=undefined;
fns:=set of functions which combine vectors
for members of s into a vector for the re-
sponse as a whole
repeat
v:=sum of (or other function which com-
bines) vectors of members of s which
occur in nlr;
cmax:=set of codes with a maximal
v-component;
if probability
(cmax has a unique max. v-component)
> a predetermined desired coding reli-
ability then c:=cmax
else if there is another way of combining
vectors for s components,
let fn:=the next such method
else begin
s:=a more detailed set of linguistic com-
ponents;
fns:=set of functions which combine the
vectors for s into a vector for the
response as a whole;

end
until ¢ <> undefined or s=nil;
code:=c;
end;

To summarize this algorithm in more
concrete terms, the NL input is analyzed for
recognizable linguistic components, usually
words and phrases. Then a database of pre-
constructed vectors over the set of assignable
codes is searched for vectors corresponding to

Knaus: Methods and Problems in Coding Natural Language Survey Data 49

the recognizable components. Each vector
represents the meaning of the construct for
coding purposes and has large components for
those codes that are often assigned when the
construct appears. Any such retrieved vectors
are weighted and summed. The weights reflect
the importance, estimated from syntactic
features, of the construct in the response
being coded. The resulting vector represents
the meaning of the whole response. If this
vector is sufficiently similar (codirectional) to
any of the vectors for individual codes, that
code is assigned. Otherwise the process is
repeated, if possible, with a set of smaller
linguistic features. For example, if no vectors
are retrieved at the phrase level, the vector
database is searched for individual words.
This process of constructing vectors for the
response and comparing them to the code
vectors is repeated until either a code is
assigned or all recognizable linguistic features
have been used without success.

1.2.1.
coding

Geometric interpretation of vector

Using a geometric interpretation, each code is
a unit vector and all of these code vectors are
mutually perpendicular. When given a re-
sponse, we construct vectors representing the
response in the space spanned by these code
vectors. When the resulting response vector
has a direction sufficiently similar to one of the
code vectors, the code for that vector is
assigned.

The directional similarity, represented by
the cosine of the angle between two vectors A
and B, can be computed from the inner
product A*B and the lengths, |A|, [B|,

cos(angle between A and B)=A*B/|A|+|B|.

Now suppose that one of these vectors is a unit
code vector C. C has a 1 in the position for
code C and Os elsewhere. Then -

cos(angle between A and code C) = A /|A|,

where A . is the cth component of A.

The general principle in coding using vectors
over codes is to assign a code when the angle
between the response vector and a code vector
is sufficiently small, or equivalently, when the
cosine of the angle is sufficiently close to 1. In
practice, however, a simpler test can be used
for assigning a code. Assign the code when the
ratio,

<2nd. largest component> / <largest com-
ponent> < = <some constant <1, (e.g.
0.75)>.

This test is computationally simpler than
testing the cosine, and is similar in practice for
the following reasons. Since there are a fixed
finite number of components to all the code
vectors, the requirement that the largest code
in a vector A must exceed all other codes by a
fixed ratio places a lower bound on the cosine.
In practice, there are usually only a few com-
ponents of any size to a response vector over
the codes. When there are only a few compo-
nents of any size, the above ratio test with the
constant 0.75 almost always guarantees that
the angle between the response vector and the
code vector is less than 45°.

While the upper bound on the angle between
response and code vectors does not seem very
strict at first, the response vector for even the
typical text description assigned to a particular
code will contain components of other codes.
Most words and phrases used in a typical
description of one code are also used to
describe items assigned to other codes. For
example, “farm” is used to describe enter-
prises classified as agriculture, but also in
phrases like “farm machinery” that describes
enterprises engaged in manufacturing, whole-
sale, and retail trade. Therefore, the response
vectors for a code C do not cluster around the

50

unit vector for the code C, but around some
other vector C'. C' includes components of
codes other than C. C’' can share descriptive
words and phrases with the code C. The aver-
age response vector C’ for the code C is more
highly correlated with the typical response
vector for a code C than the unit vector for C
is.

In addition, the probability that a particular
random response vector will be correlated
even with 45° of a particular unit code vector is
very small for a vector space built over a large
set of codes (e.g., 200 or more).

The abstract formulation of the vector-
combining coding procedure presented so far
is really a procedure template; it represents a
variety of actual procedures depending on the
linguistic structures that are recognized, and
how the vectors are computed and combined.
A series of these particular coding procedures
can be combined into one larger overall
coding program. This is done by trying each
particular procedure in sequence on each data
record, until some particular procedure in the
sequence assigns a code.

1.2.2. Ordering a set of vector coding
algorithms

In a coding algorithm built from a sequence of
vector coding algorithms that use different
levels of linguistic analysis, it makes sense to
start with the least possible linguistic analysis.
For example, the response can be considered
a single phrase, and if found in the coding dic-
tionary, the code with the largest component
in this phrase vector is assigned.

Phrase level coding works well when the
response consists of a phrase in the dictionary,
which usually means that it is used frequently
enough by respondents to be included in the
dictionary. Frequent phrases are often idioms,
i.e., phrases that are used as a unit. For
example, “police station” and “computer
center” are much more common in English
than “police center” and “computer station”,

Journal of Official Statistics

although there is little difference in meaning
between “center” and “station” as used here.
However, the words “station” and “center”
are not freely chosen, but fixed by habit and
familiar usage in the English language.
Accordingly, the words in many phrases that
typically describe certain kinds of establish-
ments are not independent of each other, but
are fixed by idiomatic usage.

Even if all idioms were in the phrase dictio-
nary, some responses would contain phrases
that were not in the phrase dictionary. These
remaining phrases represent concepts for
which no idiom exists. For such concepts, the
words chosen in a particular response depend
on what the response is to describe. Neverthe-
less, the words in the response vary within a
certain semantic constraint. For example,
“wooden boats,” “wood boats,” or “wood
rowboats” describe the product of a small-
boat builder. The occurrence of each word in
this phrase does not determine the other
words. In general the words in a non-idiomatic
phrase are chosen by the respondent for their
contribution to the meaning of the phrase.

For phrases not found in a fairly complete
phrase dictionary, the individual words can be
treated as if they were statistically indepen-
dent. Strictly speaking, the words in non-
idiomatic phrases are not completely indepen-
dent. For example, in a phrase “wood ...,”
“boats” is much more likely to fill the blank
than “computer.” However, there are many
things that are made from wood, so that when
the population of responses describes the
economy as a whole, the probability of “boat”
given “wood” is small, even though it is much
more probable than given
“wood.” Common descriptions of common
kinds of establishments (e.g., “high school”)
would appear in any reasonably complete
phrase dictionary. For uncommon descrip-
tions or uncommon enterprises, the words in
the descriptions are non-idiomatic. Because
words in non-idiomatic phrases are used in the

“computer”

Knaus: Methods and Problems in Coding Natural Language Survey Data 51

industry data to describe many diverse enter-
prises, of which a particular enterprise is a
relatively rare occurrence, all these condition-
al probabilities relating non-idiomatic words
are small. Therefore, we can assume that after
the responses to be coded have been scanned
by a good phrase dictionary, the words of the
still uncoded responses are statistically inde-
pendent. For this reason, the particular vec-
tor-processing procedures that occur late in
the sequence can use statistical techniques
which rely on the assumption of statistical in-
dependence of the small linguistic units.

1.3. Experiments with industry data

Experiments with computer algorithms for
coding natural language data were performed
at the U.S. Bureau of the Census Program-
ming Research Staff by Eli Hellerman and the
author during 1976-1979, as part of the Cen-
sus Bureau’s ongoing effort to automate the
coding of industry and occupation data. As an
example of computerized coding on actual
survey data, the results of an experiment from
this work is presented.

As mentioned above, the coding algorithm
used a succession of strategies. Each strategy
assigned a code to a record if the best code
assignment from that strategy passed an
acceptance criterion such as the <next>/
<best> code ratio. Records not coded by a
particular strategy were passed on to the next
coding strategy in the sequence.

The strategies used in this experiment were
the following.

1. In an exact match, a code is assigned if the
response exactly matches a phrase in the
coding handbook. In this case, the code
from the handbook is assigned. Although
not implemented on the computer in this
manner, we may think of this as a vector
method, like the overall algorithm, in
which the linguistic units used in con-
structing a response vector are phrases.

Furthermore, only those phrases are
included in the coding database which
describe items with a common code.
When only one of these vectors appears in
a response, the single nonzero code for
the phrase is assigned. If two phrases with
different codes appear in a response, the
resulting response vector fails the “next/
best“ ratio test, and no code is assigned.

For example, the coding dictionary
contains the phrase “orange grove,” with
the associated code agriculture. This asso-
ciated code may be seen as the single code
among the entire set of codes for which
the phrase “orange grove,” has a nonzero
component in its coding vector. If a
response “orange grove” was encountered
in the data, it would match the entry
“orange grove” in the coding dictionary,
and the associated code, agriculture,
would be assigned.

In an almost exact match, a code is assigned
if there is a phrase in the coding handbook
which matches the response (overlooking
semantically unimportant variations).
One example of an unimportant variation
is the presence of words such as “co.” at
the end of a response.

Another semantically unimportant vari-
ation is the inclusion of a proper name.
Many company names, gathered as re-
sponses in population census forms, have
a phrase in the coding dictionary pre-
ceded by a proper name. An example of
this would be the response “Adam’s
Orange Grove.” If the phrase is of the
form “X Y” (made up of subphrases X
and Y with X first), and X consists of
words not found in the word dictionary
(i.e., probably proper names) while Y is
in the phrase dictionary, then by almost
exact matching, we can assign the code to
“X Y” that would be assigned to Y alone.
Note that this strategy fails when X is a

52

name which is also a word in the language,
e.g., “Stone’s Orange Grove.”

Almost exact matching is a restricted

form of a matching word count strategy.
This strategy assigns a code if there is a
unique phrase in the coding handbook
that has the most words in common with
the response. This is a matching strategy
that is useful in information retrieval. It
can be thought of as a vector computation
in which the vectors represent word
occurrences in phrases in the coding
handbook. The set of vectors to be com-
bined are all the occurrence vectors for
the words in the response. These vectors
have a 1 for the code of the phrase and 0
elsewhere. These vectors are combined
by adding vectors for the same coding
manual phrase. If there is a vector with a
unique highest code for some score, that
code is assigned.
Using the sum of heuristic weights, the
linguistic units are word roots. The vector
for each word occurrence in the response
is of the form H*V where H is a scalar
called the heuristic weight of the word,
defined in Section 2.4, and V is the vector
computed from the conditional probabil-
ities of codes given the word. If {p(c;|w)}
is the conditional probability of code ¢;
given word w, the cth component of V is
p(clw)=+k, where k is around 0.05.
Raising p to this power turns H*V into a
filter which adds weights close to H to all
codes with p(c|w) bounded away from
zero. It also adds weights close to zero for
codes with very small conditional proba-
bilities. In other words, H*V defines a
fuzzy set of codes that are acceptable
when given the word w. The fuzziness fil-
ters out codes for which the nonzero
probabilities could be the result of hand
coding errors. Some hand coding errors
are found in the sample that is used to
construct the conditional probabilities.

Journal of Official Statistics

The H+*V vectors are added. A code is
assigned if the best code is better than the
next-best by an amount determined by a
linear function of the best code score. A
possibly better, more statistically moti-
vated criterion for this “when to code”
decision is presented below.

For example, using the vectors for
“citrus” and “grove” over ten codes (these
appeared as example coding vectors
above) the heuristic weights of these
words are about 10 and 7, using the com-
putation described in the later section on
the heuristic weight. Thus the vector for
“citrus grove” is

vector (“citrus grove”)

=10+ (0.95,0,0.05,0,0,0,0,0,0,0)
+ 7+ (0.50,0,0,0,0,0,0.50,0,0)

= (13,0,0.5,0,0,0,0, 3.5,0,0).

The code agriculture would be assigned,
because its component in the phrase’s
vector was much larger than the other
components.

When using the product of conditional
probabilities, the linguistic units are word
occurrences and are represented by vec-
tors for word roots. The word root vectors
are vectors of conditional probabilities of
codes for a given word root. These vectors
are combined by multiplying their corre-
sponding components. If there is a com-
ponent in the resulting vector greater by
some fixed ratio to all other components
in the vector, then a code is assigned.

For a given phrase, the components in
the product vector are proportional to the
probabilities for the various codes,
assuming that the words are statistically
independent. As discussed above, thisis a
reasonable assumption if the data has
already been filtered through a good
phrase dictionary.

As an example, the vectors for “citrus”
and “grove” are made up of conditional
codes given the word corresponding to
the vector. If we multiply these probabili-
ties component by component, we get the
phrase vector,

(0.475,0,0,0,0,0,0,0,0,0).

As shown by this example, this is a good
coding method for finding a code. How-
ever, for the phrase “Stone’s citrus grove,”
the product of probabilities would give a
zero vector if “stone” had zero probability
of occurring in an agriculture response. A
word that is almost never used for a
particular code can give that code a low
score, and thereby cause coding to fail.

By taking logs of the probabilities in the
word vectors, we can reformulate this
strategy as one of adding word vectors, in
conformity with the general algorithm
sketched above.

The census experiment described here
used data from the 1970 Census of Popu-
lation and Housing. In this experiment,
responses concerned the industry where
the respondent or another household
member worked. Each record contained
two text fields, the IA and the IB field,
and two multiple choice fields.

The IA field was the name of the estab-
lishment where the individual worked. In
production coding of census data, this
name sometimes compared with a catalog
of establishments with known industry
codes. In this experiment, however, no
catalog of proper names of establishments
was used. The IA field was sometimes
used as a source of generic words, such as
“high school” in “Bethesda High School.”
Many respondents used a generic name
rather than a proper name (e.g., “high
school” rather than “Bethesda High
School”) in this field, as noted by the
success of the exact match strategy.

Knaus: Methods and Problems in Coding Natural Language Survey Data 53

The IB field contained a response to the
question, “What type of business or
industry is this? Describe activity at loca-
tion where employed.” This field provided
the main text data for industry coding.

One of the two multiple choice fields,
the IC field, asked if the establishment
where the individual worked was manu-
facturing, wholesale trade, retail trade, or
other, defined on the census schedule to
include agriculture, construction, service,
government, etc. The other multiple
choice field, the CW field, asked if the
individual worked in federal, state or
local government or private industry, and
whether the person was self-employed.
The responses to these multiple choice
fields were treated in the coding algo-
rithms in the same way as text words. A
code vector for each multiple choice
response to these fields, for example, for
an answer like “manufacturing” in the IC
field, was built in the same manner as for
text words (described below) and added
into the response vector for the record as
a whole just as the vectors were for words
and phrases in the /A and IB fields.

A table below summarizes the results
obtained with the strategies described
below. Each entry in the table is named by
the strategy used (exact match, almost
exact match, sum of heuristic weights or
product of conditional probabilities), and
the text fields (A, IB or both) on which
the strategy was used.

For the coding algorithm as a whole,
the strategies were tried in the same order
as listed in the table. Each strategy was
applied to those records not coded by
earlier strategies. The middle column of
the table, “% coded,” lists the percentage
of those records that a strategy was tried
and where the strategy actually assigned a
code. The right column, “% agreement”
lists the percentage of records where a
strategy assigned the same code as was

54

assigned by coding experts. 250 records
were processed in the experiment descri-

bed by the table below.
Strategy % coded % agree-
ment

exactmatch on /A 32.0 100
exactmatchon /B 9.4 93.7
almost exact match

onl/A&IB 16.9 84.6
sum heuristic weights

onlB 40.6 82.7
product conditional

probabilitieson /B 48.7 62.1
sum heuristic weights

onlA&IB 35.9 50.0
product conditional

probabilitieson TA

& IB 32.0 50.0

The overall results were 96.4 % coded,
where 82.2 % agreed with expert-
assigned codes (the standard deviation of
this agreement percentage is about
2.6 %).

The ordering of these algorithms con-
forms to the principle of increasing statis-
tical independence of the words in the
data record. The first strategy, exact
match, assumes that the response is
essentially an idiom, a linguistic construct
in which particular words appear in a fixed
sequence. The words in a phrase that
assign a code using the exact match
strategy are not at all independent of each
other.

In the almost-exact matching strategy,
various meaning-preserving transforma-
tions are applied to the field. For example,
one or more words not found in the data-
base but are located at the beginning of a
phrase may be assumed to be proper
names in the IA field, and therefore
deleted. This yields a phrase that exactly
matches one in the phrase database.
Similarly, a low-content word like “co.”
may be deleted from the end of a phrase,
and suffixes may be stripped from the

Journal of Official Statistics

remaining words. For responses to be
coded by inexact matching, the words in a
phrase must be somewhat dependent.

Finally, in the sum of heuristic weights
and the product of conditional probabili-
ties strategies, the words are considered
independent. In particular, the product-
of-probabilities procedure assigns each
code a score proportional to its probabil-
ity under the assumption that all the
words occurred independently, and that
only one code can be assigned per data
record.

1.4. Related work

Computerized coding of NL industry and
occupation data has been studied at the U.S.
Bureau of the Census since the early 1970s.
The operational background and motivation
for this work is described in Biggs (1974). The
paper by Appel and Hellerman (1983) de-
scribes a variety of algorithms tried at the
Bureau of the Census from the early 1970s to
1983. Hellerman (1982) presents the most
successful results obtained during this period.
Parallel work in coding NL data at Statistics
Sweden, which includes highly successful
strategies for building and refining coding
dictionaries, is described in the papers by
Lyberg. (See Lyberg (1981) and Lyberg and
Andersson (1983)).

Janas (1977) describes part-of-speech re-
cognition without an extensive dictionary,
which could be used to improve the linguistic
processing in computerized coding algorithms.

Information retrieval techniques related to
those presented here are discussed in Salton
(1975). Fillmore (1975) presents a discussion
of case grammars. Various applications of sta-
tistics to linguistic problems are discussed in
the papers Knaus (1981), Moskovitch (1978),
and Rieger (1978).

General references related to the topics in
this paper include statistics texts such as
Freund and Walpole (1980) and Mendenhall

Knaus: Methods and Problems in Coding Natural Language Survey Data 55

(1968), as well as more specialized works on
numerical taxonomy, such as Sneath and
Sokal (1973). Rustin (1973) and Winograd
(1983) provide surveys of computational lin-
guistics.

2. Semantic Representations for Coding

One of the major problems in building a com-
puterized coding system is finding a represen-
tation of the meaning (i.e., a semantic repre-
sentation) of a linguistic construct adequate
for assigning the right code. Ideally a semantic
representation should be free from particular
choices of vocabulary and grammar that a
particular respondents uses to express his/her
responses. The same meaning, no matter how
expressed, should have the same semantic
representation. Once such a representation
has been selected, the coding of a response
can be broken into the following steps.

i. Map the natural language response into
its semantic representation.

ii. Assign a code using the semantic repre-
sentation.

2.1
ment

Construction by computer is a require-

Automatic coding compares the information
contained in an NL response with a database
containing information on the subject matter
of the survey. This database is called the
knowledge base of the system in artificial intel-
ligence terminology. Many semantic repre-
sentations of NL information have been pro-
posed in both artificial intelligence and
linguistics. For computerized coding, a repre-
sentation of knowledge must be chosen that
makes the knowledge base constructible by a
computer. This is necessary because the
subject area covered by many surveys is large
(e.g., all economic activities for the industry
data used in the census experiment). In addi-
tion, the range of linguistic expressions over
different respondents (e.g., in a large random

sample of the general population) is also
great. Knowledge representations requiring
hand work on each different word, word
sense, or meaning are not suitable when using
these extensive knowledge bases.

2.2. Vectors over codes

In our experiments with computerized coding,
the semantic representation is a real vector
over the coding set C. The meaning of each
word, phrase, or other linguistic construct, is,
for the purposes of coding, represented by a
vector over C. The value of the ¢;th compo-
nent represents the tendency of the construct
to represent a response which should be coded
to ¢;. For example, a phrase which always is
coded to a particular code ¢, might have a ¢,
component of 1 and all other components
zero. The remainder of this paper discusses:
how to build these vectors for words from
hand-coded data, how to combine the word
vectors into vectors representing the entire
NL response, and how to extract the code
from the constructed vector.

2.3. Building the database

The semantic representation vectors, called
semantic vectors, or simply vectors in the fol-
lowing, can be built from a hand-coded
sample hand of data, i.e., a sample in which
each record has been assigned a code by
(human) expert coders (the code so assigned
to a record will be called its hand code). Let L
be a linguistic construct that a vector will be
constructed for. L must have the property that
a computer can reliably recognize it, although
100 % reliability is not necessary. Examples
of such linguistic constructs are words, word
roots, phrases and syntax-independent
meaning representations for short sentences.
For each construct L, a count vector is con-
structed from the sample hand of hand-coded
responses. This count vector is a vector over C
in which the ¢; component is the number of
times an occurrence of L was observed in

56

responses in hand. These were hand-coded to
¢;. These vectors are built by processing hand
with a computer program that recognizes the
linguistic constructs which occur in each
record. The computer program then incre-
ments the count for the hand code of the
record in a current count vector for each con-
struct occurring in the record.

From this count vector, a normalization
process can be used to construct the corre-
sponding semantic vector. One useful normal-
ization process is:

semantic(c;):=count(c;)
/[sum over ¢; count(c;)],

for assigning code ¢; when linguistic construct
L occurs. This probability, which we write
p(c]L), is used extensively in our attempts at
automatic code assignment.

Besides the hand-coded data, other sources
of information on coding are the coding hand-
books used by human coders. These hand-
books consist of NL phrases and their asso-
ciated codes. For example, the coding hand-
book used by the Census Bureau to assign
industry codes contains about 15000 NL
phrases. This information can be recast into a
vector over the codes in the following way. If
the code for phrase Pis ¢, then the cth compo-
nent of the vector for Pis 1 and all other com-
ponents are zero.

2.4. Weighting of vectors

The count and conditional probability vectors
defined in the previous section have a direc-
tion that shows the propensity of the under-
lying construct to result in a particular code. In
this section we discuss a technique for varying
the length of these vectors according to their
usefulness in coding.

One of the ways vectors of components can
be combined into a vector for the response as a
whole is to add the component vectors. By
giving a greater weight to those components

Journal of Official Statistics

that have been found to be most useful in
coding, one reduces coding errors caused by
the random variation among the components
of vectors for components that have little use-
fulness in coding, such as the word “company.”

2.4.1. Entropy

One method of weighting vectors, used in the
implemented vector coding algorithms, was
the heuristic weight. The heuristic weight of a
word, in turn, is computed from the entropy of
the coding vector of the word. Given the
probabilities p; for code i, the entropy is:

E=sum p;#In(p;) over all p,.

Entropy is a measure of the uniformity of a
probability distribution. It is zero when only
one code has a nonzero probability. For distri-
butions where more than one code has a non-
zero probability, the entropy is negative, and
has it greatest magnitude when the distribu-
tion is uniform.

2.4.2. Uniformized probabilities

The first step in weighting coding vectors for
words is to construct coding vectors that show
not only the relative frequency of different
codes when the word is present, but also show
how frequent the word is when a response
with a given code occurs. Coding vectors com-
posed of uniformized probabilities, defined in
this section, achieve this goal.

For most surveys, the responses do not
occur in equal proportions. Some codes are
more frequent than others. For this reason,
the distribution of codes for all responses is
non-uniform. Now consider a word W that
occurs in a certain constant fraction f of the
responses that are assigned a code. W pro-
vides no information for coding, and occurs
uniformly with respect to the codes, although
the distribution of W, which is the same as that
of the codes over the whole survey, is not

Knaus: Methods and Problems in Coding Natural Language Survey Data 57

uniform. On the other hand, a word with a
uniform distribution would occur in different
proportions of records assigned to codes that
occurred in different proportions in the survey
as a whole. Such a word would be an indicator
of the relatively rare codes in the survey.

The entropy computation described above
is modified to use uniformized probabilities
p’(c;) of a code ¢; instead of the probability of
the code, p(c;). The uniformized probability
indicates the probability of a word indicating a
particular code under the assumption that all
codes are equally likely. The uniformized
probability measures the relative frequency of
the word in data assigned to various codes.
For a word W, the uniformized probability
p'(c;) of code ¢; is defined to be:

i. Proportional to the conditional probability
of W given ¢;, p(W|c,).

ii. Scaled such that the sum of the p’ over all
cis 1.

The uniformized probabilities can be com-
puted in the following way:

S=sum(p(W|c,)), for all ¢;, and for all
¢, p'(c):=p(c)/S.

To illustrate the effect of uniformized
probabilities, the word “company” (usually
abbreviated “co.”) is common in descriptions
of establishments assigned to almost all codes.
Suppose, that “co.” occurred in half the
descriptions, regardless of the industry code
assigned to the description. The probability
distribution of “co.” is the same as the proba-
bility distribution of codes in the entire data-
set, and is highly non-uniform. Schools, for
example, employ many more people than
farm machinery wholesalers. Nevertheless,
the uniformized probability distribution is
uniform.

“Office,” on the other hand occurs with
moderate probability in descriptions for a
number of industries (e.g., farm cooperative
office, agricultural services; telephone co.

office, telecommunications). For a few indus-
tries, such as office machines manufacturing,
however, “office” is highly likely to occur in
descriptions of the industry. These industries
employ fewer people than other industries
where the word occurs with lower probability
in descriptions. Thus the probability distribu-
tion of a word like “office” appears relatively
uniform. On the other hand, the uniformized
probability distribution has a relatively large
value at office machine mfg. The distribution
of uniformized probabilities have large values
where “office” is used to describe the industry.
This distribution is based on the entropy of the
distribution of codes for a given component.
In turn, the entropy measures the non-
uniformity in the coding experiments
described here. The heuristic weight was com-
puted for the linguistic component “word
roots,” but the computation works for all
vectors over C, regardless of what the vectors
represent.

2.4.3. The heuristic weight

The final step in the heuristic weight computa-
tion is to transform E’ so that constructs that
are useful in coding have a large positive
weight. And reciprocally, those which are use-
less have a weight near zero. This means that
we want a transformation which maps the uni-
formized entropies E' near zero into large
heuristic weights. Conversely, entropies near
the minimum of E’, (which is a constant In(1/n)
depending on n, the number of codes) are to
be mapped into a small interval around zero.
The function

H=(Eu-E")/E",
has this property where

Eu is the entropy of the uniform distribu-
tion over C.

58

E" is the entropy E’ that is modified slightly
to ensure that E” is nonzero. In the case
where E’ is zero, a small random error is
added to the distribution of uniformized
probabilities. The added error is an esti-
mate of the probability that ¢ would be
encountered in a response hand-coded in
a code different from C. This addition of
a random error is justified by the nature
of the data. Sometimes words appear to
be proper names if used in unusual con-
texts, by persons with limited English, or
through transcription errors. For these
reasons, a very large sample will contain
few, if any, distributions with zero
entropy.

The heuristic weight computed by this
method appears to agree with our intuitive
idea of how well a word lends itself to coding.
Where the coding is over a set of about 250
industry classes (defined by the Census
Bureau), some heuristic weights derived from
a hand-coded sample of around 100 000 are
given in the following table:

co. 1.78 citrus 7.07
plant 1.85 shoes 7.25
service 1.98 hospital 9.17
metal 3.80 liquor 12.00
medical 4.10 beer 12.30
iron 4.35 airline 58.60
farm 4.60 turbine 60.00

The heuristic weight can be viewed as a
generalization of the inverse document
frequency weight used in information retrieval.
In the information retrieval case, documents
can be assigned into just two categories,
relevant and irrelevant. In the case of just two
categories, the inverse document frequency
and heuristic weight are approximately pro-
portional for the case where one of the cate-
gories (e.g., the relevant documents) has a
very low probability. Both weights are
approximately inversely proportional to the

Journal of Official Statistics

probability. This follows for the heuristic
weight, as follows. For small entropy, the
heuristic weight is approximately inversely
proportional to the entropy (assuming the
noise in the denominator is kept very small),
and the entropy can be approximated for
small probabilities by a straight line secant.

2.4.4. Other methods of weighting vectors

Alternatively, one might weight each vector
by a correlation coefficient computed over a
set of data that codes have been assigned to by
hand. More particularly, for each response r
and code clet h(r,c)=1, if and only if the hand-
assigned code of r is ¢. If the hand-assigned
code is not ¢ then h(r,c)=0. Let v(r,c)=the cth
component of v, i.e., the probability of code ¢
given the construct represented by c. Thus if
there are #C codes and #R responses, there
are #R+#C (h,v) pairs, over which we com-
pute the correlation coefficient. Starting with
the usual formula for the correlation coeffi-
cient and applying some algebra, we get

SQRT(#C * SUM(v?) -1)
{over codes c}

SQRT(#C-1)

This correlation coefficient is zero for the uni-
form distribution, and one for a vector with
just one nonzero component. For vectors
between the wuniform and single-valued
extreme, the correlation
between zero and one.

Just as for the heuristic weights of the
previous section, the correlation coefficient
should be computed with a vector of probabil-
ities. These probabilities have been unifor-
mized with respect to the distribution of codes
in the sample as a whole. This is done so that a
vector with probabilities similar to the sample
as a whole has a computed correlation coeffi-
cient of zero. This normalization is important
because some codes may occur much more

coefficient is

frequently than others.

Knaus: Methods and Problems in Coding Natural Language Survey Data 59

3. Comparison and Refinement of Coding
Methods

In a previous section of this paper, the vector
representation of coding semantics was de-
fined, and various coding methods (e.g., sum
of heuristic weights) were described. In this
section the relation between the different
methods are discussed and some refinements
are suggested.

3.1. Relative coding effectiveness

3.1.1. Phrase matching

There is a saying in the advertising industry
that a smart dime never beats a stupid dollar.
The same applies to coding. Nothing beats
phrase matching where the entire response, at
least up to trivial variations, is matched to an
entry in a coding lexicon. This method is fast
and reliable. It was not used to maximum
effectiveness in the industry coding experi-
ments discussed here. The phrase dictionary
was built from old data and a coding clerk’s
handbook. Both these sources lagged behind
current typical English descriptions of places
of work in some respects. For example, the
coding handbook used in the experiment con-
tained “tourist cottage” but not “computer
store.” As a result, the phrase dictionary used
for industry coding in these experiments was
somewhat out of date, and the phrase diction-
ary was not updated with new phrases found in
the data.

No new phrases from the data were added
to the coding dictionary. Nevertheless the
data contained phrases that were not in the
dictionary but these phrases proved to be very
reliable indicators of a particular code. Some
of these phrases described new economic
activities (e.g., “computer store,” “genetic
engineering”) while others represented new
idioms in the language (e.g., “day care” for
babysitting). Since phrase matching is such a
reliable coding method, the best results in a
coding system would be obtained by using a

dictionary containing these new phrases.
Because both the economy and language are
constantly changing, the only way to maintain
a current phrase dictionary is to add the new
phrases to the dictionary from the data, as the
data is coded.

One method of identifying new phrases is to
keep a special file of the complete text of
responses that are not phrase-coded. One
sorts this file and compiles a list of common
phrases not in the coding handbook. This list
is then presented to experts who can identify
the phrases and their associated codes that
should be added to the lexicon.

If phrase matching fails to assign a code in
the first iteration, the statistical independence
of the uncoded words increases. Independence
is an important assumption in product scoring
and error estimation for linear scoring.

3.1.2. Addition versus multiplication

In the experiment described in Section 1.3,
both addition and multiplication were used to
combine vectors for words into vectors for
phrases. Weighted sums generally worked
well for identifying possible codes, but were
quite error prone. The weighted sums were
easily influenced by a single word that was
strongly associated with a particular code. On
the other hand, the product of conditional
probabilities method avoided the errors
encountered in the weighted sum method. But
sometimes the conditional probabilities failed
to identify codes that should be assigned
because the ratio between best and next codes
failed the coding criterion.

Although not tried in the above experi-
ment, it would be reasonable to try these two
methods together in a generate-and-test algo-
rithm similar to that used in many artificial
intelligence programs. The weighted sum
would be used to suggest one or a small set of
possible codes. A suggested code would be
assigned only if the product score was suffi-
ciently high relative to the product scores of

60

other codes. This would eliminate weighted
sum assignments that were based on a part of
the response that was highly related to a par-
ticular code. If several codes were suggested,
some function of sum and product codes
would be required to pass a criterion function
before coding occurs.

3.2. Linguistic refinements

In the experiment of Section 1.3, only phrases
and root words (words with plural and other
suffixes removed) were used. However, other
linguistic features can be reliably recognized
by a computer and might improve the perfor-
mance of the code assignment strategies.

3.2.1. Case grammar

Case grammar (Fillmore (1975)), a widely
accepted approach in both theoretical and
computational linguistics, provides a way to
describe the semantic content of simple sen-
tences. More importantly for computerized
coding, this description of simple sentence
semantics also describes the semantics of noun
phrases and other sentence fragments, which
are more cOMMmon as answers to certain ques-
tions than are complete sentences.

As described by case grammar, a simple
sentence consists of a verb and a set of argu-
ments or noun phrases that stand in a fixed
semantic relation to the verb. Viewed in this
way, a simple sentence has the following
semantic parts.

Action — the action that takes place, described
by the sentence verb;

Object — the thing or person that is affected or
changed by the action;

Source — the environment or state, particularly
of the object, before the action;

Location — the environment or state, particu-
larly of the object, during the action;

Destination — the environment or state, par-
ticularly of the object, after the action;

Journal of Official Statistics

Agent — the thing or person that causes the
action;

Instrument — that which is used in carrying out
the action.

We note that this list of case constituents is
typical and suitable for computerized coding.
Linguists do, however, differ on exactly how
the cases are defined.

Natural languages use word order, word
endings, function words and standardized
patterns of case occurrence to mark the noun
phrases in a sentence. For example, in English
the object in a simple sentence appears after
the verb without a preceding preposition.

3.2.2. Word uses

Case grammar can be applied to sentence
fragments as well as sentences. The grammar
of such fragments, however, is a function of
the question the fragments answer. As is true
of most linguistic data, respondents choose a
grammatical form that eliminates redundant
information. The respondent structures his/
her sentences so that information known to
the researcher precedes new information.
(This is the “given-new” principle in linguis-
tics.) For example, in response to the question
“Where do you work?” the answer is often a
free-standing noun phrase which is a location
in the sentence which would describe the
activity of the work site. Another common
response to this question is a nominalized verb
plus object. Inspection of the data confirms
the general linguistic observation that the
form of the question very tightly constrains
the grammatical form of the response. In the
case of the industry census questions, a few
grammatical forms cover all but a few records.

Survey responses are typically very short
sentence fragments. Four words or less were
typical in the industry data of the experiment.
Computer programs that make use of endings,
word order and other syntactic features can
identify the case-grammar function of most

Knaus: Methods and Problems in Coding Natural Language Survey Data 61

words in the response. Furthermore these
programs can decide if a word in a noun
phrase is a head noun or a modifying word.
We will define a word use as a triple (w, ¢, hb),
where w is a word, ¢ a case grammar function
and hb is either the head noun, modifying
word, or not applicable (for verbs).

Using case grammar functions to mark
word occurrences, we can build and use condi-
tional probability vectors for word uses in the
same way that vectors were built and used for
root words. For many words, however, infor-
mal inspection of the data suggests that such
vectors for the same word but used in different
ways would vary considerably. When coding
industry data, “farm” as a head noun in a free-
standing noun phrase answering “Where do
you work” is very heavily associated with the
agriculture code. “Farm” as a modifying noun
is much more commonly used in responses
which code to machinery and supplies used by
farms, i.e., responses with codes other than
agriculture. It would appear, from this and
other similar examples, that word uses are
better predictors of codes than word roots.

3.2.3. Features based on word uses

The basic principle of the coding algorithm
(presented in the “overview” section) is that a
large constituent determines a code and
assigns it before proceeding to smaller consti-
tuents. This principle can be employed for
word uses by building a coding dictionary in
which the entries are sets of word uses and an
associated code. This type of dictionary would
be consulted before attempting to code using
sums or products of word use vectors. This
dictionary would be similar to the ordinary
coding dictionary, but would allow for more
variation in linguistic structure of responses
for responses that can be successfully matched
against the dictionary.

Another refinement based on word uses is
to separate the head noun from its modifiers.
One might classify modifying words in noun

phrases according to the sum of the weights of
the words which come after them in the noun
phrase. Alternatively, one might define an
inclusion relation on vectors such that Vi<=
V2 if every code that is plausible given V1 is
plausible given V2. One might then distinguish
between modifying words that precede a more
inclusive word and those that do not. The
motivation for this distinction is found in
phrases like “grocery store,” in which
“grocery” functions like a head noun.

4. Assigning Codes to Survey Responses

If Vis a vector which represents the response r
using a set of linguistic constructs, and c is a
code, then the cth component of V is a real
number. We call this real number the score of
cin V for r using s. The vector V will some-
times be called a scoring vector. A code with
the highest score among the ¢ in C will be
called the best code. Our basic code assign-
ment algorithm assigns the best code to a sur-
vey response represented by V if this best code
has a score sufficiently better than the other
scores. In this section we consider methods for
deciding whether the best code is sufficiently
better than the rest.

In deciding whether a coding algorithm has
assigned the right code, our only criterion is
agreement with a hand-assigned code. This is
a correct criterion only when the hand-
assigned code is correct. In research on com-
puterized coding, it is important to have a
sample of hand-coded responses that are
correctly coded. By having the sample hand-
coded by experts, or even a panel of experts,
the number of wrong hand codes (perhaps
definable as codes later rejected by the same
or other experts), can be reduced but not
eliminated for an area as complex as industry
and occupation coding. For some responses,
there is indeed more than one acceptable
code. To assess the accuracy of computerized
coding, one must look at cases where the
automatic code disagrees with the hand code.

62

One must determine which code is correct or
better, or whether both are acceptable. Pref-
erably, this evaluation is done by experts who
are blind to which code is automatically
assigned. This eliminates any prejudice
against the automatic codes.

While keeping the above limitations of
hand coding in mind, we will use right code as
a convenient shorthand for “the hand-assigned
code” and wrong code as shorthand for “a
code not equal to the hand-assigned code.”

4.1. When to assign a code

4.1.1. Different kinds of scoring errors

One problem in computerized coding is
deciding when the score of the best code is
sufficiently high to justify assigning a code at
all. In general it is observed that as the spread
between the scores for the best code and next-
best code. As this spread increases, the
probability of the best code agreeing with the
hand code increases. There are, however, a
few wrong codes with high scores. There are
several types of disagreements with the hand
codes. In some cases the hand codes are in
error. Another source of code disagreement is
statistical scoring error, i.e., the probability
that in our particular hand-coded sample, the
true best code appears as the next-best. Stated
another way, the statistical scoring error is the
probability that the sample score of the true
best code is not the highest score, given the
sample probabilities.

In the early experiments performed while
the author was at the U.S. Bureau of the Cen-
sus, a fixed linear function involving the best
and next-best codes was used as a coding
criterion for all records in a given sample.
There was no clear relation between these
when-to-code functions and the resulting frac-
tion of coding errors. Nevertheless, some sta-
tistical and computational techniques allow
one to get a record-dependent estimate of
coding errors that are related to statistical

Journal of Official Statistics

errors in the best and next-best scores. We can
use these estimates to control the level of
errors due to statistical scoring errors. This is
done by assigning a code only when the
probability of an error due to a statistical
scoring error is below some preset level.

There is an additional error of miscoding
which is not included in these estimates, i.e.,
the error that the highest scoring code is truly
the highest scoring code but is still wrong. This
component of the coding error can be esti-
mated experimentally by comparing the
observed coding error after running a com-
puterized coder on a large sample of data with
the expected level of statistical scoring errors.

In estimating the statistical error in coding,
we will reduce the problem to that of estimating
the error in assigning the best instead of the
next-best code. In the case where there are
more than two close contenders, the pairwise
error estimates can be used to get an error esti-
mate for one of a small set of next-best codes.
In the case of a large set of such next-best
codes, coding is obviously very risky.

4.1.2. Estimating errors as a linear sum of
random variables

In the case where the scoring vector V is a
weighted sum V=sum(g;+V,) of the vectors of
conditional probabilities of codes, given words,
phrases or other linguistic structures, a partic-
ular code is highest-scoring only when the
weighted sum of its conditional probabilities is
greater than zero. In particular, let b,n be the
best and next-best codes, and v, v;, the condi-
tional probabilities of band nin V;.

When sum(a;*v;,)-sum(a;*v;,) is positive
and bounded away from zero, b is assigned.
This expression will be called the score differ-
ence between the best and next best codes. It
measures the amount by which the best code is
better than the next best, based on a coding
algorithm using the weighted sum of vectors,
V=sum(a;*V)).

Knaus: Methods and Problems in Coding Natural Language Survey Data 63

When the probabilities in the above formula
are not close to 1, the g; coefficients are stable
despite changes in the probabilities {v;, v;,}.
This is true if the changes are such that the
probabilities are bounded away from 1.
Therefore we can approximate the statistical
coding error in the score difference by
assuming that the a’s are constants and looking
at the expression on the left as a linear sum of
random variables {v,v;,}. The variance of the
linear sum is computable in terms of the a’s
and the variances and covariances of the
random variables. In the region of stability we
may assume that the covariances are zero. The
variance of the left side of the inequality is
then

SUM(a3 * (var(vy) + var(v;,)),
{over i}

where “var” is an abbreviation for variance.
The variances of the {v;,, v;,} can be computed
using formulas for the variances of propor-
tions in a binomial or approximating normal
distribution, so that the variance of the in-
equality expression is computable from avail-
able information. This variance allows us to
estimate the probability that the score of n
would be >= that of b, which is an estimate of
the statistical coding error in assigning the
code b rather than n.

While the above variance and associated
probability estimate is often best left to a com-
puter, the method is illustrated in this simple
example. In the response “auto repair,” both
words have a heuristic weight of 4 computed
from a sample of 1 000 occurrences, and the
probabilities of various codes are given by the
following.

Table of P(code|word)

code auto repair
auto mfg. 0.3 0
autoservice 0.3 0.3
electrical repair 0 0.15

Then the best code is “auto service” when the
following is true:

wit(auto)+*p(auto service|auto)
+wi(repair)+*p(auto service|repair)
—wi(repair)*p(electrical repair|repair)
>0

The variance of the value of that expression is:

wt(auto)#*2+var(auto service|auto)
+wt(repair)**2+var(auto service|repair)
+wi(repair)**2
#var(electrical repair|repair)
=3#16%(2#2.1+(10++—4) + 1.3%(10%+—4))
=2.64#10%%-2.

The standard deviation of the value of this
expression is 0.163. The value zero is about
6.7 standard deviations from the observed
value of 1.1, so that the statistical error in this
code assignment is very small.

On the other hand if one had a similar set of
probabilities but the number of observations
per word was only 25 (for example with a word
pair like “canvas awnings”), then the standard
deviation is increased by a factor of sqrt(40),
and is 1.03. The value zero is about 1.07
standard deviations from the observed value
of the expression, and the statistical coding
error is about 14 %.

While this example is hypothetical, the
numbers are typical of the sample sizes and
probabilities that arise when constructing con-
ditional probability vectors from a large
sample of actual responses. This example
illustrates the extreme variation in statistical
coding error based on the sample probabilities
used in coding. By illustrating this variation in
statistical error between records, the example
strongly suggests that coding performance can
be improved by using a Boolean “when-to-
code” function that is stored in the computer
and estimates the statistical coding error.

4.1.3. Error estimates in the unstable region

When the distribution of probabilities in one
of the summand vectors is such that one

64

probability is near 1 while the others are very
small, the coefficient (heuristic weight or cor-
relation coefficient, for example) may be
significantly affected by small changes in the
large probability. In this case, the above
method, which assumed that the coefficients
were for practical purposes constant under
changes in the probabilities, does not apply.
The following is an alternative method for
estimating the statistical error in the score

difference when one of the probabilities in a

summand vector is near 1.

i. Estimate from the given vector V the
probability p that the next occurrence of
the construct represented by V will not
have the single high-probability code.

ii. If p is sufficiently small, ignore the
possibility of a change in the large
probability. Otherwise compute the sta-
tistical error for two different cases. The
first concerns the probability-weighted
average in the case where the large prob-
ability remains unchanged. The second
concerns the case where the greatest
other probability is incremented by the
addition of a single occurrence to the sam-
ple with that next-highest code in V. This
has the effect of reducing the highest
probability. In the two subcases, the sta-
tistical error is computed with V assumed
constant, but vectors other than V that
have not been assumed constant at some
previous subdivision of the computation
are allowed to vary.

5. Computer Implementation

At the time these experiments were con-
ducted, hardware was considerably more
expensive than it is now and the hardware
options were confined to large computers.
Processing time was expensive, and the pro-
cessing time per record was about 1 second for
the algorithm in the experiment. These factors
prevented more elaborate coding experi-
ments. In addition, development and experi-

Journal of Official Statistics

ment with the program was hindered by the
long waits and temporary shut downs associ-
ated with using a heavily loaded time-shared
computer.

5.1. Microcomputer-based implementations

5.1.1. Hardware configuration and cost

The microcomputer hardware and software
available today (1986) would support eco-
nomical interactive computerized coding. The
resources needed include a microcomputer
workstation for each coder, and hard disk
storage for the coding dictionary.

The basic workstation costs about 1 500
USD. Each workstation must be able to
access the coding dictionary, which can be
accomplished with a local area network. The
cost of the network includes a network access
board for each workstation computer and the
cost of the hard disk.

The hard disk requirements can be esti-
mated in the following way. Vectors for words
take about 1K bytes apiece, given the 250
industry codes. Therefore about 50 Mb.
(megabytes) of storage would be needed for
this part of the dictionary. The phrase dictio-
nary would take only about 5 Mb., because
phrase vectors have few nonzero components.
For a system that can code both industry and
occupation, 100 Mb. of hard disk should be
more than sufficient. The cost for this storage
is about 2 000 USD.

At least ten workstations can be supported
by a local area network. The local area net-
works at American University support about
25 users from a single hard disk with no
noticable deterioration in service when used
at full capacity. With ten workstations on the
network, the per user cost of the hard disk is
200 USD, and the cost of a network access
card is about 300 USD. In addition, the per
user cost of software and printers adds
another 200-300 dollars to the cost per work-
station. The total direct cost per workstation

Knaus: Methods and Problems in Coding Natural Language Survey Data 65

for a microcomputer coding system (excluding
development of the coding software and
staffing and maintenance for the local area
network) is about 2 200 USD per workstation.

Experience with local area networks at
American University has shown, however,
that although they are very reliable (e.g., one
network break down per year), a network
supervisor is needed to maintain the hard-
ware, assist users, and tend to the software.
For a network of ten users, perhaps two hours
a day should be allocated for these tasks (this
is generous). At a yearly salary of 25 000 USD
for an individual with the proper training, 600
USD per workstation should be added to
cover the costs of network staffing and main-
tenance.

A very large part of the cost of a computer-
ized coding system is the development of the
coding software. This is difficult to estimate,
but a coding algorithm similar to that used in
the experiment discussed earlier in the paper
could probably be developed in six months to
one year.

Even more difficult to estimate is the cost of
building the coding dictionary. This cost
depends on whether hand-coded data is avail-
able in machine readable form and on the
amount of programming needed to extract the
data from the pertinant records. Specialized
programs to build the coding data from these
extracted files of hand coded data are also
needed. Much of the time and effort devoted
to establishing computerized coding at the
Bureau of the Census was devoted to con-
structing coding dictionaries. A good discus-
sion of dictionary construction at Statistics
Sweden appears in Lyberg (1981).

5.1.2. Advantages of interactive coding

There are several advantages to interactive
coding. In interactive coding, the computer
codes those records that it can unambiguously
assign a code. For more ambiguous cases, the
computer assigns a code through a dialog with

the user of the system. If a coding system is
used during data entry, the clerk can use his/
her own judgement to determine the order
that the different parts of the response are
entered in. Highly descriptive parts should be
entered before meaningless parts, like proper
names. If coding occurs before the whole
record is entered, the natural language re-
sponse never has to be keyed in. Discretionary
entry also prevents the computer from being
distracted by proper names which it, in its
limited ability to understand language, does
not recognize as proper names. Additionally,
the computer can catch many probable spelling
errors at a time when the entry clerk can
correct them. In the experimental data, some
records were not coded correctly by the com-
puter because of such data input errors.

While some responses could be assigned
codes without any intervention by the user in
an interactive system (e.g., responses that
matched an entry in the phrase dictionary),
others could not be coded by computer alone.
Two or more codes could have nearly identical
scores. In such cases, the high-scoring codes
and a short description of each could be dis-
played, and the coding clerk could select one
of them. Because the computer-generated list
of likely codes reduces the chance that the
coding clerk will fail to consider some code,
computer-assisted coding is likely to contain
fewer errors than unassisted hand-coding. On
the other hand, the clerk can make a better
judgement among codes with close scores
than the computer can. The clerk has a vastly
superior understanding of natural language
and superior reasoning abilities. Therefore,
an interactive system can be used to assign
codes to responses that are too ambiguous for
unassisted coding.

Another possibility in a microcomputer
environment is the inclusion of expertsystem
rules in the coding algorithm. This is possible
because a micro-based algorithm can use
more processing time per record. The hard-

66

ware itself is inexpensive and as long as the
microcomputer keeps up with the user, the
coding algorithm is fast enough. Several
microcomputer implementations of the artifi-
cial intelligence language Prolog exist for
microcomputers. These have the additional
feature of interfacing well with languages
(e.g., C) that are efficient for numerical com-
putations. A Prolog rule would allow phrase
templates that would in turn expand the
power of the phrase dictionary. For example,
the fact that manufacturing anything out of
plastic is considered part of the plastic fabrica-
tion industry could be expressed by the fol-
lowing Prolog rule.

code([plastic | Item], ‘plastic fabrication’) :—
code(Item, ‘general manufacturing’).

6. Conclusion

For experiments using the US census’s natural
language question on industry, the agreement
between codes assigned by experts and codes
assigned by the computer was 80 %. These
results can probably be improved by using the
techniques discussed above for deciding when
to assign a code, doing more sophisticated
linguistic analysis, providing clerk-computer
interaction, and incorporating expertsystem
rules.

7. References

Appel, M. and Hellerman, E. (1983): Census
Bureau Experiments with Automated
Industry and Occupation Coding. American
Statistical Association, Proceedings of the
Section on Survey Research Methods, pp.
32-40.

Journal of Official Statistics

Biggs, J. (1974): Coding Performance in the
1970 Census. In Evaluation and Research
program PHC(E)-8, 1970 Census of Popu-
lation and Housing, U.S. Bureau of the
Census.

Fillmore, C.J. (1975): Principles of Case
Grammar: The Structure of Language and
Meaning. Sanseido Publishing Co., Tokyo.

Freund, J. and Walpole, R. (1980): Mathe-
matical Statistics. Prentice Hall., Engle-
wood Cliffs, N.J.

Hellerman, E. (1982): Overview of the
Hellerman I&O Coding System. Draft
memo, Bureau of the Census, Washington,
D.C.

Janas, J.M. (1977): Automatic Recognition of
the Parts of Speech for English Texts. Inf.
Proc. Man. 13, pp. 205-213.

Knaus, R. (1981): Pattern-Based Semantic
Decision Making. In Rieger, B. (ed.):
Empirical Semantics, Brockmeyer, Bochum,
W. Germany.

Lyberg, L. (1981): Control of the Coding
Operation in Statistical Investigations.
Urval no. 13, Statistics Sweden, Stockholm.

Lyberg, L. and Andersson, R. (1983): Auto-
mated Coding at Statistics Sweden. Ameri-
can Statistical Association, Proceedings of
the Section on Survey Research Methods,
pp. 41-50.

Mendenhall, W. (1968): The Design and
Analysis of Experiments. Duxbury Press,
(Division of Wadsworth Publishing), Be-
Imont, CA.

Moskovich, W. (1978): Distributive-Statisti-
cal Techniques on Computational Linguis-
tics: Problems and Perspectives. 7th Inter-
national Conference on Computational Lin-
guistics, Bergen.

Rieger, B. (1978): Feasible Fuzzy Semantics.
7th International Conference on Computa-
tional Linguistics, Bergen.

Rustin, G. (ed.) (1973): Natural Language
Processing. Algorithmics Press, N.Y.

Knaus: Methods and Problems in Coding Natural Language Survey Data 67

Salton, G. (1975): Dynamic Information and ~ Winograd, T. (1983): Language as a Cognitive
Library Processing. Prentice Hall., Engle- Process. Addison Wesley, Reading, Mass.
wood Cliffs, N.J.

Sneath, P. and Sokal, R. (1973): Nume.rlcal Received January 1985
Taxonomy. W.H. Freeman, San Fransisco. Revised May 1986

