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Methods for Design Effects

Leslie Kish'

1. Introduction

I aim here to provide a simple, practical manual on where, why, and how values of
deft should be computed for the sampling errors of statistics from complex survey
samples. Deft, or design effects, are “only” tools rather than a theory or even a
method. However, they are based on concepts that are theoretical, perhaps even phi-
losophical, based on a different paradigm from the random variables (IID) of prevail-
ing mathematical statistics, as we shall discuss briefly.

Deft are used to express the effects of sample design beyond the elemental variabil-
ity (S2/n), removing both the units of measurement and sample size as “nuisance
parameters.” With the removal of s, the units, and the sample size n, the design
effects on the sampling errors are made generalizable (“‘transferable”) to other statis-
tics and to other variables, within the same survey, and even to other surveys.

I shall restrict this exposition to basic, essential approximations, which are suffi-
cient in most cases. I must also give simple advice that may hold only in most com-
mon situations, say 0.95 or 0.99 of practical situations. I shall note with (Ex)
possible exceptions relegated to the Appendix; for example (E4) denotes a remark
proposed from Section 4 to the Appendix. Thus forward momentum on basic con-
cepts can be retained.

Users are computing design effects more often and in greater volume now, since the
arrival of several computing packages. This overview should help these users to com-
pute and to use them correctly — if not always, more often than now.

The exposition is divided into the following brief sections.

Introduction

Definitions of Design Effects
When Deft are Unnecessary
Necessary Deft

Other Needed Sampling Errors
Deft for Subclasses and Differences
Deft for Complex Statistics

. Weighting and Generalization

. Computing Deft.
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2. Definitions of Design Effects

Definitions should be public servants. Servants rather than our masters: thus rather
than arguing about their titles and what they “really” are, we can designate what
they should do for us. Public rather than private: to avoid confusion we users must
agree on how we use them.

Design effects have been first defined and commonly used for sample means (§),
and based on properly computed actual variances, var(y), as

deff = (l—_v%((y;)zw (2.1)

But, nowadays I and many others prefer a slightly different definition

var(y)

deft = W (2.2)

Here 5% denotes computed element variances, based on an achieved sample size n,
selected with EPSEM, i.e., equal (fixed) sampling rate (probability) of f. Unequal
probabilities and weighted samples are postponed to Section 8. Furthermore, appli-
cations to other, more complex (analytical) statistics are postponed to Sections 6 and 7.

We must note some strategic choices made here. First, the technique must be made
simple (after the complex computations of variances) in order to allow easy computa-
tions of deft(y) values for all, or most, or many survey means. This is necessary,
because of the large variations of def#(7) we found for different variables within the
same surveys (Section 4). Second, we propose methods for inferring deft for more
complex statistics from the defi(), based on regularities found empirically (Sections
6 and 7). Third, computations of var(7) include the effects of clustering, stratification
and weighting, and separation of the effects would be difficult (Section 8). The meth-
ods for computing proper estimates var(y) of the true variances of (¥), and of other
statistics are beyond the scope of this paper. This is a central topic of most textbooks
and many articles on survey sampling.

These strategies indicate changes (by me and others), based on empirical results
found during the past 40 years. Earlier we computed values of def?(y;) for a few vari-
ables i, with the stated aim of generalizing from their averages to all other variables on
the same survey. Then we had assumed that the average design effect would allow us
to generalize to other variables. But decades of computations with ever increasing
numbers of deft facilitated by faster computers convinced many of us that some of
the variables can have much larger values of deft, and generalizing to them is not
safe. Second, however, we also found, that values of defi(y) were most useful for gen-
eralizing to deft(b) for other statistics (): Sections 6 and 7. Third, we also found that
weighting posed more difficult and more common problems than we had anticipated:
Section 8.

We also found that (2.2) has four advantages over (2.1), although the numerical
differences are commonly trivial.

1. Deft is expressed in the same units as the factors in the intervals y + tste(y),
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which it must chiefly serve. Thus it can appear directly as a multiplier either in ¢
or ste(y).

2. It is easier to type deft’ than ./deff, when one of these is needed; and deft is
needed more often.

3. The factor (1 —f) when computed for the numerator (not often), may be con-
sidered as part of the design effects; the bases are variances of “unrestricted”
sampling; i.e., simple random with replacement (IID).

4. The factor (1 — f) may be difficult to compute when the selection is not EPSEM
(equal probability selection method) with f.

These minor differences should not be taken seriously here, because deft
should be viewed as rough measures for large effects. Similarly, the factor
(n — 1) /n for computing s is neglected here; and pg/n may be more convenient
than pg/(n — 1) for s?/n for proportions when j = p.

However, we should distinguish the population parameters Deft and Deff from the
statistics (2.2 and 2.1) based on sample results, hence subject to sampling variability;
often very large variability (E.2). Similarly we distinguish Ste(y) = /Var(p) from
ste(y) = /var(¥). Also Deff should refer to the concept and theory of *“design
effects,” not to specific cases. Most of the time here I use deft both for the singular
and the plural, as in many deft values or many deft.

We shall also discuss defi(b) for various other statistics (b)

deft(b) = +/[var(b)/SRS var(b). 23

I wish to alert you to two other decisions in defining D EFF which have philosophi-
cal natures. First, we chose SRS variance S?/n for the standardizing denominator,
because of its fundamental, classic character. Fisher’s “efficiency” uses the “opti-
mal” design for the denominator, but this concept is situationally restricted, like
the choice of zero on the Fahrenheit scale, whereas our choice of SRS resembles
the zero of the Celsius scale from the fundamental freezing point of water. Second,

Var(b) — SRS Var(b)
SRS Var(b)

Deff—1=

would be often a more convenient base concept (as we shall see). However, these
could result in negative values; e.g., for proportionate stratified random sampling.
Deft* has a minimum of zero for Var(b) = 0, and this resembles the absolute zero
of the Kelvin scale. (E.2)

3. 'When Deft Are Unnecessary

It is not necessary to compute deft when any one of the following conditions holds.
A. When the population closely resembles a well mixed urn, its distribution is random;
any portion can be regarded as L.L.D., identically and independently distributed.
Examples are a well mixed urn, as in a good lottery, or a well mixed deck of cards.
But real populations, whether astronomical, physical, biological, or social, are never
thoroughly mixed but are “grainy”’; clustered-in my experience, model, and philosophy.
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This clustered status is measured by deft. This paradigm is not shared or is ignored by
many, including “model-dependent” statisticians, mathematical statisticians, and
econometricians; also opportunistic nonstatisticians in academic or market
research. It is true that some populations come close enough to random for practical
purposes, for example, the last four digits of the U.S. Social Security numbers; or the
output of some of the better randomization programs on computers. Nevertheless,
advice from a sampling expert should be sought to judge those populations.
B. The sample design may be SRS or close enough for practical purposes. Here again,
consulting a sampling expert (not any statistician) may help. For example, a systema-
tic sample from a good list of elements (individuals) may yield a sample with deft only
slightly lower than 1, due to mild stratification. Stronger stratifications are possible,
but then they should be foreseen or detected with deft. However, even a telephone list
may result in diverse “frame problems” (Kish 1965, 2.7). Furthermore, selecting sin-
gle adults from household telephones may result in nonnegligible deft, due to weight-
ing (Section 8).
C. Accepting either populations or samples as “approximately random” should be
easier for small samples, where both the demands and resources are more restricted
than for large samples. We are balancing possible biases of mild non-randomness
against sampling errors, which are larger for smaller samples. Sampling errors also
increase in decreasing sized subclasses of larger samples; and these subclasses are
often important objectives of large samples.
D. When only descriptive statistics are needed, and inferential (second-order) statistics
will not be computed or used for the survey; that is, when standard errors and con-
fidence intervals are ignored and only “point estimates” are made.
E. Sampling errors and inferential statistics are needed only for one or a few statistics.
For these few intervals y % ¢-ste(5) may be sufficient without transformations
through deft values. This means that there is no need for averaging with other deft
values from other statistics, from either the same survey or other surveys.

These five cases represent situations when sampling errors are not needed (D); or
can be computed with classic I.I.D. formulas (A, B, C); or with complex ste(j;) sur-
vey formulas, but without conversions into deft, (E).

4. Necessary Deft

Most populations are far from random, and many survey samples are based on selec-
tions that are far from SRS, and considerably clustered. Thus their sampling errors
suffer considerable design effects from clustering. Therefore computing sampling var-
iances that reflect appropriately the restrictions of the sample design is necessary for
appropriate statistical (confidence) intervals and inference. These are the basis of
“measurability” for survey samples (Kish 1987, 7.1E). Proper variances without
deft would suffice for computing and constructing probability intervals for one or a
few statistics. However, variances and standard errors are not sufficient when aver-
aging and generalizing are needed for many statistics; and deft are widely used for
these purposes.

The principal reasons for computing deft from standard errors can be listed briefly:
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a. Averaging sampling error for different survey variables from the same survey.
Averaging the standard errors would be meaningless for variables with diverse units
of measurement. The averages of deft values over survey variables are considerably
better and may be most popular now. However, I urge caution about these
averages, because recent experience has shown great variations of deft between vari-
ables (Table 4). Variations from 1.0 to 3.0 of deft are common, but note that standard
errors can easily vary by factors of 100 or more. (E.4)

b. Averaging over periodic surveys for the same variables. Deft values are better than
standard errors when the effects of changes in sample sizes need to be removed.

c. Relating the errors for different statistics on the same survey. Thus errors for com-
plex statistics (b) such as regression coefficients, may be inferred by generalization
from simpler statistics (¥); as in Sections 6 and 7.

d. Generalization from past surveys for designing other surveys from the same frame.
Clearly these generalizations involve increasing risks with distancing of either survey
variables or of sample designs for the new surveys. These warnings should be
strengthened when other survey organizations try to “borrow” deft values.

e. Checking for gross mistakes in variance computations is greatly facilitated by deft.
Usually a quick look at the printouts of deft values reveals to experienced eyes any-
thing unusual that needs further investigation.

We come now to our central question. For what variables and for what statistics
must values of deft be computed?

Compute values of deft(¥,) for overall means of all survey variables (i). This advice
differs from past practice when values of deft were computed for only a few variables,
chosen to be the most “important™ or the most “representative.” This change from
our past practice and past advice is based on three recent realistic considerations:
(1) Computations of sampling errors have become much easier with available
machines and programs. Where this is not true, some may retreat partially toward
the older restrictions. (2) Much empirical work has shown us that there are large var-
iations in values of Deft for diverse survey variables (Table 4). These variations are of
course much greater for values of deft?, hence of “‘effective sample size,” (n/deft) also
of probability (p,) values, also of standard errors. For example, a deft = 3 denotes
deft> =9, and instead of probability statements of =2 and o = .05, you get
t =2/3 and o = 0.50! (3) Empirical results have also revealed reasonably dependent
relations from deft values for means to deft values of more complex statistics (Sections 6
and 7).

The deft(7;) refers to overall means for the entire sample. Less often the simple
expansion totals ¥ may be of greater interest, as in census counts, but totals are often
computed from means j.

Proportions p (and percentages 100p) are the most common forms of survey means.
Whether for proportions or otherwise, the means from survey samples are commonly
ratio means y = y/x, the ratio of random variables, hence they are often denoted as
r = y/x. The denominator x is the sample size. When proportions come from dichoto-
mies, like gender, with p; = 1 — py, then deft(p) = deft(po) and we compute only one
deft. Often, however, proportions come from polytomies with k > 2 categories, such
as religion, occupation, etc., which are unordered. But ordered categories like number
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of children born, years of education, or income classes are often presented also as
proportions, although these may also be presented as means.

Compute values of deft(p,) for all k categories of categorical variables. This advice
goes beyond the common practice of computing and presenting sampling errors
and deft(p) values only for one category, chosen as most “important” or “represen-
tative.” But empirical data have convinced me recently that there occur sometimes
(not always) large variations of deft(p) values for different categories of the same vari-
able. Where computers and programs are readily available, they permit printing vast
amounts of data, including deft for all variables, and all categories (E.6B).

The printout of the values of deft and sampling errors needs some interested and
knowledgeable expert to examine the entire output. The values of deft should range
mostly from 1 to about 3 or 5 in most situations, hence yield clues about mistakes,
alarms, and outliers more readily than variances or standard errors.

However, the display and presentation of data printed in research reports,
articles, and books should be much more restricted, and pointed to a less
specialized audience. There may not be space for all categories, perhaps not even
all variables, in many large survey reports, because including each sze(y) along with
each (¥) would unduly complicate them for most readers. The deft values may be
presented in technical appendixes. One example presents all defi in decreasing
order, with a code for variable classes, which the readers’ eyes can examine (see
Table 4a) (Kish, Groves, and Krotki 1976). In another publication, the classes
have been formed by experts who present average deft to the reader (Table 4b)
(Verma, O’Muircheartaigh, and Scott 1980). Even further averaging has been done
for survey means represented mostly by proportions: tables of sampling errors are
shown for a few proportions (0.5, 0.2, 0.1) with the sampling errors including aver-
age design effects, 2(ave deft)+/(pg/n). In addition to total n, some major limits of »n
for subclasses may be added. Problems arise due to differences of deft values
between variables (Kish 1965, Section 14.1). A new paper makes abundantly clear,
with 3 variables from 56 countries, the great differences of deft values between vari-
ables, and the similarities across countries (Verma and Le 1995; Le and Verma
1995).

In addition to deft values for the entire sample, separate deft values may also be
computed for major regions. But this topic is better discussed with other sub-
classes, for which deft may also be computed but not necessarily published (Section
6). Deft for differences of means and of subclass means will also be discussed there.
Deft for more complex, analytical statistics are discussed in Section 7.

5. Other Needed Sampling Errors

In addition to deft, some other functions of variances, also some other statistics
related to them may be computed and presented at the same time. Most of these
are needed for and computed as factors for deft; and others are easily available.
Furthermore, these auxiliary statistics can also serve for interpreting deft, and sam-
pling variability in general.

It is common to print out the mean (3, or r = y/x, or p); and sometimes the sample
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total y or the estimated population total Y. Also worthwhile is printing the values of
ste(¥) and SRS ste(y), whose ratio becomes deft(y), which is also printed.

But it is less clear that printing var(y) = ste?(¥) is needed; nor 2ste(¥) and the two
values 7 + 2ste(7) which have also been printed sometimes. This may be useful in
some reports (perhaps medical or pharmaceutical) that publish only one or a few
dozen statistics. Perhaps making graphs of the intervals y £ 2ste(¥) may be useful,
for graphical interpretation.

It is usual to print », usually the simple count of sample elements for EPSEM selec-
tions. This would not be necessary if the values of n for all variables were similar,
because they come from the same EPSEM sample, with only small differences due
to differential nonresponses. Then n and a, the number of PSUs, can be stated in
the introduction, which may come from a/2 strata for paired selections. However
the values of n can vary greatly if some variables have smaller bases, because other
cases are not relevant; e.g., only homeowners or only registered (or intending)
voters; only males, or females, etc., when subclasses are tabulated. Therefore, it is
good to have the program print out n. I wish to point to some problems here, for
which I cannot currently offer satisfactory solutions. Would it be better to print
n' = n/deft?, the “effective sample size?” This becomes more difficult for weighted
samples. Sometimes roh = (deft> —1)/(n/a — 1), a synthetic but useful “ratio of
homogeneity” is also printed. This practice is justified in Section 6 on subclasses.
But its interpretation is more difficult for weighted samples (Section 8).

The coefficient of variation of the statistic (¥) is printed because it is available as
cv(¥) = ste(¥)/7, or perhaps a percentage error 100cv(¥). We must be careful with
denominators near zero, because that would make the c¢v unstable. For example,
for differences the cv(y, — ») varies around zero.

Our own OSIRIS programs have also included computing and printing
cv(x) = ste(x)/x, the coefficient of variation of the denominator x of the ratio esti-
mate y/x. This precaution is necessary to guard against estimates that may be
unstable, when cv(x) > 0.2. (Hansen, Hurwitz, and Madow Vol. II, Section 4.12).
But printing the values of cv(x) proved insufficient safety once, when nobody looked
at them. Thereafter we had the program compare cv(x) against the floor level 0.1, and
whenever the program found cv(x) > 0.1 it printed out in red letters STOP, LOOK,
AND DO SOMETHING. We did not stop the printout, but the warning brought
human help to the problem (E.5).

6. Subclasses and Differences

Here 1 join the treatment for differences (comparisons) of means to those for sub-
classes for practical, empirical reasons, not because of theoretical considerations.
The most common reasons for the frequent use of subclass statistics come from their
comparisons. These take most commonly the form of differences (y. — ;) between
subclasses ¢ and b, though ratios y,/j, are also used, and sometimes other forms,
such as [py/(1 — py))/[pe/ (1~ p.)].

Before dealing with subclasses, we may look at differences (71 — y2) between two
entire samples, and we may distinguish two common types from among many
possible types. First, we may compare two independent samples, such as two



64 Journal of Official Statistics

regions, or two countries, then: Deft*(y; — ;) = [Var(y1) + Var(72)|/[SRS
Var(y1)+ SRS Var(y,)]. If Deft and n are similar for both means, the Deft? of the
difference will also be similar to the two. If the two differ, then the Deft* of the
comparison will be the average of the two Deft?, each weighted by 1/n,. For compar-
ing regions from the same survey, it may be common and safest to use for the regions
(n:/n.)Deft*(3,), where n, and n, are sample sizes for the total and the region.
However, for differences of two time periods (1 and 2) of the same survey we use

Deft (31 — 72) = [Var((71) + Var(y2) — 2Cov(3132)]/|SRS Var(31) + SRS Var(7,)]

because there are appreciable covariances that reduce significantly the value of Defr®
for the difference (Kish 1965, Table 14.1. IV). The covariances and reductions of
Def* have been found often from using the same clusters (primary, secondary, and
lower), even if the elements (and final segments) differ. The covariances can also be
computed and presented as correlations R 5.

One type of subclass, called “proper” or “domain” subclass contains independent
samples and resembles the first type above. Two examples are regions, also urban and
rural subclasses and their comparisons, which are often presented. The computations
of variances, hence deft, may differ between subclasses in these two examples. Meth-
ods of selection and clustering for urban samples may differ greatly from those for the
rural sample, and the deft for the two may be quite distinct. Also there are usually
enough primary selections, so that separate estimation of urban and rural variances
and deft can be justified. However, for regions the situation may be quite different:
when regions are small (and numerous) the number of primary selections (PSUs,
“ultimate clusters™) are few, the degrees of freedom fewer; and the variances and
deft highly unstable. It is then preferable to use the overall deft*(7,) as an average
and infer (n,/n.)deft*(¥,) as the regional deft> with subsample size n,.

The situation is quite different for the second type of subclasses, called “cross-
classes,” which are much more common: age and other demographic classes; educa-
tion and other social classes; income, occupation and other economic classes;
behavioral, attitudinal, and psychological classes, including those created by the sur-
vey questions, etc. These could not be and were not, part of the clustering and stra-
tification effect. They “cut across” the sample design more or less evenly, or
randomly, and tend to be found in all or many of the primary selections. There-
fore, crossclasses are based on (almost) the same number of primary selections and
have as much (or little) stability as the entire sample. Thus the sizes of sample clusters
n./a decrease on the average with sample size n., hence the “design effect” (also)
decreases proportionately (almost).

This follows from deft* = 1 + roh(n./a— 1), to the extent that roh remains the
same for the crossclasses, and that is an empirical question. It does not follow neces-
sarily or mathematically. However, it has been shown empirically for many and very
diverse situations and survey designs and for many survey variables, that generally
Deff decreases toward 1 with the decrease in the cluster sizes n./a. The decrease is
not entirely smooth nor complete, due partly to increasing relative variances of
cluster sizes. These irregularities are greater for subclasses that are not true “cross-
classes”; instead their cluster sizes have greater variations than random. Socio-
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economic subclasses were indeed found to have greater variation and greater rohs
than demographic subclasses (Kalton and Blunden 1973; Kish, Groves, and Krotki
1976). Hence we recommend using 1.2 roh or 1.3 roh; see below and Table 4a.

With the experience of vast amounts of empirical data one can use a reasonably
good model for inferring subclass variances var(y.) = ste*(y.) from var(y;) for the
entire sample for the same variable.

a. The variance is increased by (n,/n.) inversely proportional to the sample sizes.
But this SRS adjustment needs modification when deft(7;) is not close to 1,
because deft(7.) should then be increased, as below.

b. The size of the sample cluster is changed from n;/a to n. /a and the value of roh;
is increased by k. > 1, so that

deft*(3.) = 1 + kcrohy(nc/a —1). (6.1)

Strict proportionality would imply k. = 1 but a better value of k. seems to point to
k. = 1.2 for some subclasses, but to k. = 1.3 for socio-economic subclasses, which are
less evenly distributed because they are clustered. Another way to compute 6.1)
would be

- nja
def () = 1+ kP g ) 1) (62)
where p, = n,/n, the proportion size of subclass c. Somewhat simpler is still another
approach (E6B)

deft(5,) = 1 + p[deft(7,) — 1. (6.3)

Differences between crossclass means (j. — y») are often principal objectives of
sample surveys and the problems of design effects are somewhat different than for
the crossclass means themselves. The following generalization has been found in
many and diverse computations

SRS var(y.) + SRS var(y) < var(y. — y) < var(yc) + var(yp).

The left term is essentially s> /n. + s’n,. The model behind this empirical generaliza-
tion is similar to “‘additivity” in ANOVA: the primary clusters (within strata) that are
high/low on variable y for crossclass ¢ are also high/low for crossclass b. The wealth of
empirical evidence is convincing, and the covariances tend to be positive and large so
that most of the variances tend to fall near the lower SRS limits of Deft*, near to 1.
For most data even the upper limits are low because for small crossclasses they are
mostly not much above 1. Thus the Deft2 are squeezed to shghtly above 1. Variances
below the lower SRS limits also occur frequently, denoting deft* below 1, but both
theory and experience teach us to attribute these to random variations and curtail
deft* at 1. Instability of var(y. — ,) is high, because it is the sum of three compo-
nents, often each unstable.

In spite of my strong confidence in variances and deft for crossclasses from models
based on the deft?(¥;) computed for the entire sample, I strongly urge computation
from actual data. Thus knowledge and confidence can be built. If meaningful contra-
dictions are found, the results and their causes should discover better, even.if more
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complex, models. Good programs exist which facilitate computations of variances,
deft, and other sampling errors. Computing them for all subclasses may not be
feasible, but perhaps we can find those that are most “important,” and for the survey
variables with the highest deft values. These would provide the strongest tests for our
models.

7. Deft for Complex Statistics

I must begin this section with two personal statements which I need as necessary
cautions to the reader, and necessary defenses for myself. Other practicing
samplers support these views, although it is difficult to find clear, unequivocal,
written support. First, the existence of Deft and the need for probability selec-
tions for complex statistics are closely and causally linked. I cannot imagine a
world where probability selection is irrelevant but which would also yield the
empirical evidence of deft, as we have argued for four decades (Kish 1987, 1.4—
1.8) (E.7).

Second, the needs are widespread, as witnessed by computing programs for regres-
sions, etc., with automatic standard errors based on L.I.D., whereas probably most
data going into them come from clustered samples, especially in the social sciences.
The needs are greater than the reasonable conjectures we can offer; these outpace suf-
ficient empirical results and are way ahead of solid mathematical theory. (Needs >
conjecture > data base > mathematics). Let us view current conjectures with those
caveats.

What are complex, analytical statistics? Let us go beyond subclasses and differ-
ences, already seen in Section 6. Instead of attempting a definition, let us view major
examples and how we treat them. We deal here with conjectures for upper and lower
limits for values of deft(b) for complex statistics based on deft(;) available for the
same variables from the same survey. There are also computing programs for some
complex statistics and the researchers should be encouraged to use them (Section
9). But the researchers may not be using these because they: (a) either have no access
to the program; (b) or need features (weighting?) that the program lacks; (c) or lack
time, ability, assistance to use them; (d) or have and need statistics for which no pro-
gram of variances and def? exists; (¢) or have a sample design that baffles the pro-
grams.

Now on to conjectures from deft(j,) to deft(y,) for several statistics.

a. Ratios of ratio means and index numbers: r1/ro = (y1/x1)/(y0/x0) may be used by
researchers, also “odds ratios,” sometimes in addition and sometimes instead of dif-
ferences (r; — ro) of the ratio means of two surveys; these may be periodic surveys and
ro the “base year.” This may be somewhat difficult (though not impossible) to feed
into programs of sampling errors. However, the variances for (r1/ry) and (r; — ro)
are similar, except that the former have “relvariance” terms like var(r)/r? instead
of variances. Therefore, we conjectured and found that the def? for (r;/ry) is similar
to the deft for (r; —rg), which are easier to compute. Similarities may also be
measured for linear combinations of these double ratios, such as (ry/rg — r1/ro)
and indexes ¥(ry /i) (Kish 1965, 12.11; Kish 1968). :
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b. Medians and other quantiles are often used by economists, sociologists and other
researchers (in addition or in preference to means) for skewed distributions like
income, wealth, time spent (in hospitals, prisons, on welfare, in queues), money
spent, etc. Computing variances and deft may be difficult (even for the SRS var-
iances), though possible (Woodruff 1952; Kish 1965, 12.9). However, it has been con-
jectured and found that def? for medians should be similar to deft for proportions near
0.5, and these are easy to compute (similarly for other quantiles). Also similarly, the
difference of medians (e.g., between two subclasses, or two years) should have deft
similar to those for differences between proportions from the two samples, also
easy to compute.
c. Differences (p; — p;) of the proportions of pairs of categories (i,j) from the same vari-
able, with k > 2 categories have been investigated recently. For example, difference of
preferences between two candidates, automobiles, religions, contraceptives, etc. It
was found regularly on diverse surveys from several countries that to a good approx-
imation in each situation deft(p; — p;) = % [deft(p;) + deft(p;)]. This holds even when
the deft(p;) and deft(p;) are not close. Furthermore the (p; — p;) may represent the
net change (+ — minus — +) from two waves of a panel (Kish, Frankel, Verma,
and Kaciroti, 1995).
d. Coefficients for linear regressions are the best known and most important of meth-
ods for multivariate statistical analysis. Deft have been computed and theory devel-
oped recently by a few investigators, since the development of computing programs
and of resampling methods, as we shall see. For forty years, however, I had to argue
with econometricians, mathematical statisticians and others, for the very existence
and validity of Deft for regression. Their arguments were “‘model-based,” or based
on Bayesian and likelihood arguments, but happily some changed their minds since
then. I believe that in a regression ¥ + b;x; (i = 0,1,2...) the choice of the variables
x;, their exponents (1, or 0.5 or 2, or —1), their signs (+ or —) all come from the model
of the researcher (economist, etc.) with little help from the statistician, although some
statistical tests may help with the choices. However, the values of the b; must come
from empirical data, hence from specified samples from specified populations. The
values of the b; are conditional on the populations from which they are sampled,
they are subject to sampling errors, and subject to def, which must be measured
(Kish 1987, 1.4-1.8).

Here follow several suggestions for estimating deft for coefficients in linear
regressions:

1. The usual programs for computing linear regressions display estimates for the
diverse coefficients (regression, partial, and simple bivariate) that are accepta-
ble for complex samples. The standard errors, however, based on IID assump-
tions, serve as denominators for the deft values [E.2].

2. Computing programs exist for linear regressions from complex samples, with
either the Taylor (delta, linear) approximations or one of three resampling meth-
ods BRR, JRR, or Bootstrap (but for bootstrap no programs seem yet to be
useful for complex surveys). The relative advantages are discussed in Section 9.

3. Two cautions should be sounded here. First, weighting may be difficult (or
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impossible?) with some programs. Some model-dependent econometricians
denied the need for weighting, but I do not share those views (E.7). Second,
long multivariate equations may overtax some computing programs; perhaps
an abbreviated program of the most important predictors will yield enough
deft for reasonable conjectures.

4. Conjectures from deft(y) to deft(b) of diverse coefficients have been made for
three decades (Kish and Frankel 1974).

Table7. Values of / Deff for five types of estimators from three complex samples. Set A from Table 2, Set B
Jfrom Table 3 of Kish and Frankel (1970). Set C from Table E-1 of Frankel (1971)

Sample set

A B C
Ratio means 1.106 1.800 1.438
Simple correlations 1.096 1.262 1.355
Regression coefficients 1.015 1.295 1.106
Partial correlation coefficients 1.041 1.400 1.360
Multiple correlation coefficients NA 1.465 1.894

i. Deff(b) > 1. In general, design effects for complex statistics are greater than 1. Hence standard errors
based on simple random assumptions tend to underestimate the standard errors of complex statistics.

ii. Deff(b) < Deff(7). The design effects for complex statistics tend to be less than those for means of the
same variables. The latter, more easily computable than the former, tend to be “safe”” overestimates.
(We noted earlier the “pathology” of multiple R.)

iii. Deff(b) is related to Deff(y). For variates with high Deff(7), values of Deff(b) tend also to be high. See
Kish and Frankel (1970, Section 7) for a set of striking results.

iv. Deff(b) tends to resemble the Deff for differences of means. The latter is a simple measure of relations for
which values of deff are easily computed, and for which (i)—(iii) also hold.

v. Deff(b) tends to have observable regularities for different statistics. This is a hope based on theoretical
considerations; confirming results would help us make useful conjectures.

From Kish and Frankel 1974.

A simple model of the above would be
Deff(bg) = 1+ fe{ Deff(y) — 1}

with Deff(p) > 1,0 < f, < 1 and f, specific to the variables and statistic denoted by g.
Notice that the lowest deft appear for regression coefficients in all three studies,
though we do not know why. Nevertheless, even these deft of 1.106 and 1.295 are
not negligible for statistical inference. We should like to see further research that
would link deft(b;) to deft(y;) for specific variables, to achieve tighter inference.
e. For dummy variables and for categorical data regressions, the above results and con-
jectures should also be helpful. With LISREL and similar sophisticated programs I
have no experience and no guidance to offer.
f. For Chi square tests — such as kxm tests— from survey data I also have little
experience or interest, but nevertheless useful conjectures, based on the essential simi-
larity of 2 x 2 tests to differences of two proportions. For proportionate stratified ele-
ment sampling DEFF goes to 1 (Kish and Frankel 1974). For clustered samples the
Deft are much reduced and can be computed. For k > 2 and m > 2 we can argue
by analogy from the deft values of the pairs of differences. (Nathan, Rao, and
Scott, 1987). :
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8. Weighting and Generalization

All statistics involve generalizations; and the overall means j,, variances var(y;), and
also deft*(7,) for the entire sample ignore and average variations between its separate
domains. For example, in a country’s sample, the urban domain of metropolitan and
large cities may have very different values of deft than the rural, because both the
cluster sizes b and the homogeneity roh can be different in [1 + roh(b — 1)]. The
design can be further complicated if a different (higher or lower) sampling rate was
used in the urban domain than in the rural. The capital’s area in a developing country
may contain a minor fraction of the population for which a larger sample is desired;
but in developed countries the small rural areas may need increased sampling. Per-
haps separate values of the deft* should be computed and used.

The needs for generalizations from computed values of deft lead to conflicts that
are especially difficult when complicated by weighting. Within the same survey Deff
carries the effects of clustering and stratification, often in several stages. After stan-
dardizing for S?/n the Deft* = Var(7)/(S?/n), we must recognize for each variable
distinct Deft values, due to varying factors of homogeneity roh. However, we must
distinguish four major sources of unequal selection probabilities (P;) and hence of
weighting (W; o« 1/P;), because they need distinct treatments for computing deft
(Kish 1992).

a. Nonresponses may be compensated with differential weighting in classes. These
differences should be either small or rare, or both, if nonresponses are under
reasonable control.

b. Frame problems result in unequal selection probabilities, because these could not
be measured or controlled before selection. These also are (or should be) rela-
tively small or rare. An example is weighting with number N; of adults when
one is selected at random from each sample household; we have seen values
of deft from 1.05 to 1.20.

c. Allocation to separate domains of different sampling fractions occurs often,
either to increase sample sizes in some entire domains, or to reduce costs in
others; and sometimes to decrease variances in the total sample. These distinct
domains may be regions, or urban/rural strata, large/small units, etc.

d. Disproportionate sampling fractions may be introduced into crossclasses, which
are not domains, deliberately for “optimal allocation,” or in order to increase
the sample sizes of some subclass. For example, households found to have an
ethnic or age group may be oversampled.

e. Post-stratification and ratio estimates for population control and adjustments
faces us with difficulties. Often the range of weights is not great, mostly within
w(max)/w(min) < 2; for these the unweighted def? values may suffice. I do not
have a simple, general solution.

Classes a and b may often be treated simply, because the effects of weighting on deft
may be small. The effects on the descriptive (first- -order) statistics, like (7), may be
larger than negligible (or weights would not need to be used). Yet their effect on
the variances may be small. And beyond that their effects on deft should be similar
on both sides of the ratio Var(7)/(S?/n), hence even smaller.
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Class c needs a different treatment and separate values of def* can be calculated for
two or a few domains. If the deft? are approximately similar they can be combined for
simpler joint presentation. _

Class d faces us with the most difficult problem and confronts us with the conflict
for which I know of no satisfactory simple solution. The treatment we offer here
applies also to classes a, b, and ¢, when the simple treatments seem unsatisfactory,
and must be treated, like d.

dl. For internal use and inference, the standard definition, var(5)/(s2/n) yields
deft*(7) that combines and confounds the effects of the specific weighting used with
those of clustering and stratification. The numerator var(¥) contains the weighted
variance from the input data. In the denominator the weighted s> merely estimates
S? in the population; thus 52 /n estimates the variance of an SRS sample of size n.
Since all statistics and variables have the same weights over the entire sample these
deft(y) values yield the proper Deff corrections for standard errors of the sample
for these weights and these weights only.

d2. Internal generalizations within the survey, such as conjectures from deft(y,) to
other statistics are possible, but only with caution. For example, the effects of weight-
ing on “‘crossclasses,” like age classes, will be similar (“inherited”), that is, they will be
about the same in the subclasses as in the total sample, unlike cluster effects which
decrease in subclasses. However, for subclasses correlated with the selection/alloca-
tion probabilities, the effects may be either increased or decreased. The effects of allo-
cations may also differ for diverse statistics. For example, for some of the means the
unequal selection rates may produce reductions of the variance; these may overcome
the clustering effects and thus result in deft < 1. However for some statistics, espe-
cially proportions, the same allocation may result in losses (increases of variances).
Thus, an “optimal allocation” for mean incomes resulted in losses for median
incomes. These results came from an investigation that used a simplified analysis,
which treated the first phase ratings of dwellings from a multistage sample, as if it
were a stratified element sample (Kish 1961).

d3. Deft for external use are difficult to fashion, though they would be highly desir-
able, since generalization is the chief reason for computing deft. First, one may wish
to design an EPSEM (equal f'rates) or a different allocation using the same sampling
frame. Second, one may wish to plan a survey for a different sampling frame. Separa-
tion of the effects of weighting from the effects of clustering is needed.

One approach is to compute values of unweighted

deff* = v‘;"—(y") (8.1)

without weights. This estimates the values of def’ in a population in which the fre-
quency distribution has been biased by the selection probabilities of the selection fac-
tors of the sample. The values of Deff in this distribution should differ some from
those in the actual population.

This population can be approached with a subsample selection that reduces the
oversampled portions in order to produce an EPSEM selection. The (unweighted)
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computation of values of deft* estimate Deff in the actual population. These can be
compared both to the deft* above and to the weighted estimates. This approach
requires a separate research project that will seldom be undertaken.

d4. Haphazard or Random Weights can be dealt with more easily. Weights due to
frame problems (a) and to nonresponses (b) may often be considered approximately
random. In these situations I assume that the variances are increased by a factor
1+ L= nEka / (Ekj)z, where L represents the “loss” due to the element weights k;.
This loss L is easily shown to equal the “relative variance” of the weights k; (Kish
1992). Then in deft* = var(7)/[1 + L)s*/n], both terms contain losses for random
weights, and we have estimates of deft without them.

9. Computing Deft

A. The most basic concept of “measurability,” for sampling errors for variances and
for deft, is random replication. In complex clustered samples, paired selections of
paired primary selections (i.e., ultimate clusters) from strata form most commonly
the bases for computations. But sometimes the a/2 pairs are actually “collapsed”
from single selections from a strata. Or a systematic selections are treated as al2
pairs; or as a — 1 nonindependent pairs. Larger strata with a = Xa, and a;, > 2 are
used less commonly. And “interpenetrating samples” of k independent selections
are rare in practice, I believe. When they occur, the variance computations should
be easy, but they may be highly unstable (variable) when k is not large.

Paired selections are not necessary (as has been stated sometimes in the past) but
they are convenient and also often efficient. They satisfy approximately three conflict-
ing needs in cluster sampling: (1) To restrict the spread of the sample to a primary
selections, because these are costly; (2) to use more strata for greater efficiency and
because information is available; and (3) two random replicates are needed for com-
puting variances.

The sizes of clustered samples should be judged not only in terms of the numbers n
of elements, but also in numbers of clusters at all stages. The numbers of primary
clusters is particularly important, not only for reducing the standard errors and
Deff of statistics, but also for reducing the instability of standard errors and of def?t.

There are many articles and books dealing with aspects of unbiased estimators
(“exact,” and “best”) of variances. Under practical conditions we generally must
use only approximately unbiased estimates, and we must avoid large biases, such
as SRS estimates of variances that ignore Deff. But, alas, too little is written about
the precision or stability of estimates of variances, standard errors, and deft. The
single basic fact is that the coefficient of variation of deft is no less than 1/,/2d, where
dis the number of degrees of freedom; a little more in practice because the clusters are
unequal, and the SRS denominators s?/n also contribute a little to the instability
(E.5). The famous jackknife design of ten replicates has 9 degrees of freedom, hence
cv(deft) > 1/4/18 ~ 0.25. But this 25% variation, or 50% for two sigmas, is of little
use for evaluating def?. Statisticians then fall back on averaging deft, but we saw that
deft vary greatly between variables. With a = 60 systematic selections, 30 paired selec-
tions yield d = 30 and cv(deft) > 1/,/60 ~ 0.13 and 2cv(deft) of 26%. If all (60-1)
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differences are used, d is about (4/3)(a/2) = 40, and cv(deft) > 1 /+/(80) 22 0.11 and
2cv(deft) of 22% (Dumouchel, Govindarajulu, and Rothman 1973).

For each primary selection (ultimate cluster) for valid computation of variances,
hence of deft, we need the sample totals yj,; = Y Vhaij for every variable i; for each
primary selection « (often only two, o = a or b), within each stratum #; Jj is the ele-
ment case count, which is commonly on the tape. However, the stratum and primary
selection identification numbers are carelessly omitted often from survey data and for
those surveys the computation of sampling errors and deft are not feasible. (Only
sampling code numbers are needed, and deliberate omission of names of units for
confidentiality can be pursued.) We may consider the existence on data tapes of data
for the covariance matrix of primary selections as necessary and sufficient for com-
puting var(y) for clustered EPSEM samples. For weighted data the element case
weight w; are needed also.

For the denominator s?/n, and generally for SRSvar(b), the element values y;and
w; are needed; but the identifications of the primary selections are not. This is also
true for the mean(¥) or p or r = y/x and for other descriptive statistics (Ex 9). The
computation of s*/n should cause no problems. Furthermore, for complex statis-
tics, like regression coefficients, I believe that computing programs automatically
print useable estimates of SRS standard errors.

Several good computing programs are available for computing sampling errors
that also compute deft values. I cannot attempt to be comprehensive; that would
be futile and also would soon become obsolescent. There are also many more being
used privately but not publicly available. In the Appendix the few best known in
the U.S.A. are checklisted [Ex 9]. (Francis 1981; Cohen, Burt, and Jones, 1986;
Cohen, Xanthopoulos, and Jones 1988.)

10. Appendix

(E.2A) For the SRS variance s* or §* = s*(n — 1)/n in the denominator of deft*, 1
am not concerned with small factors like (n — 1)/n, or whether pg/n or pg(n — 1)
should be used, or about sampling with/without replacement. But we should be con-
cerned about using §* = Eyj2 /n— (y/n)?, for samples that are clustered and stratified,
and §* = % W]y]2 [Zw; — (EW,y;/ ij)2 when they are weighted also. This is obvious to
a few, but unforeseen or surprising for most but in either case it is most important and

convenient, that for all data from probability samples, we have simply

Exp($®) = o* — Var(y)

that s* is an almost unbiased estimate of 0* = % Y?/N — Y2, the element variance in
the population. It is only a slight overestimate, since Var( )7)2 is smaller than ¢ by n™".
For any EPSEM we have (Kish 1965, 2.8)

Exp(y) = Exp(Zy;/n) =2Y;/N=Y
Exp(Ey}/n) = ZY,Z/N
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By definition

Var(7) = E(G — ¥)* = E(%) - YV

Then‘

Exp(§) = Exp(£y? /n) — Exp(5°) = ©Y7/N — Exp(7”)
= YY?/N = Y — Var(j) = o* — Var(p)

a. Dividing by random variables (not fixed) z results in approximate or conditional
expectations.

b. The same derivation holds for P; weighted samples that are not EPSEM (Kish
1965, 2.8).

c. The same derivations hold for Ty;x; terms in the covariance matrix; also for
higher moments. Therefore, also for estimates of b and SRS(b) of analytical
statistics in Section 10. From the above we deduce that § +var(y) =
$2(1 + deft/n) will give adequate estimates of o>. Also that £ =§1+1/n)
will suffice for the denominator when def?” is near 1.

(E.2B) A brief history of the background of Deff may be useful, before this name

was introduced (Kish 1965). Since then high speed computers and the spread of prob-
ability sampling have made Deffs well-known, widely computed, and used. The ear-
liest reference to a similar concept I found in earlier textbooks (Yule and Kendall
1965) under the name “Lexis ratio” (Kendall and Buckland 1982), traced to the pub-
lications of W. Lexis in German at the end of the 19th century. (This dictionary still
lacks ““design effects.””) The concepts of “intraclass correlation” by Fisher (1950) are
related through the within/between components in the analysis of variance. From the
late 40s and through the 50s there were a few of us computing “ratios of variances”
(Hansen, Hurwitz, and Madow 1953, 12D); and values of true var/srsvar are given for
five large scale samples (Kish 1957). The U.S. Census Bureau had computing pro-
grams in the 1950s, but the first published program with deft appeared in 1972
(Kish, Frankel, and Van Eck 1972).
(E.4A) An older alternative to deft for generalizing sampling errors are the coeffi-
cients of variation CV(y) = Ste(y)/Y and C V2(§) = Var(5)/Y?, called relvar-
iances. They also remove the units of measurement, and have the advantage of
being easily understood, as 100 CV(j) = percent variation in (¥). Thus CV’s for
means and totals of quantities (people, money, acres) can be compared and the tech-
nique has been used for proportions. The name Generalized Variance Function
(GVF) has been coined for fitting curves for generalizing to diverse statistics within
a survey (Hansen, Hurwitz, and Madow 1953, Vol. I, 12.B.15; Wolter 1985).

However, CV’s have several drawbacks compared to deft for generalizing and
inference. (1) CV’s are functions of \/n, but these are removed from deft. (2) CV’s
are also subject to Deff, but without explicit expression. (3) They are unstable when
the denominator is small; e.g., net change or difference, small or rare values. (4)
CV(p) > CV(1 — p) for small p, although Ste(p) = Ste(1 — p) (Kish 1965, 2.5).
(E.4B) The two tables are abstracted from two frequently quoted publications on
sampling errors of fertility related variables. Each contained the broadest set of
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sampling errors at its time (but a new “champion” will be presented by Verma and
Le to the ISI in August 1995). Each table represents tens of thousands of cases (n)
from hundreds of PSUs (a). Note the large variation between the highest and low-
est deft in each class of variables. The highest def? in each table 6.05 and 4.19 mean
increases of deff of 36.6 and 17.6 in actual/srs variances, and similar decreases in
the effective sizes of n. Even modest average values of 2> have drastic effect on
variances and effective sizes. Note some reasonable regularities by classes of vari-
ables, and by countries. Nevertheless, substantial differences are revealed between
variables, classes, and countries. Note also the rather regular ratios from 1.2 to 1.3
for roh, of the total sample over roh for subclasses (Table 4a).

(E.5) CV(x) = o,/ais directly proportional to the C¥ of the primary unit sizes X, '
and inversely proportional to the number a of those units in the sample. Therefore, it
can be reduced with better control of units size X,,, e.g., with stratification, PPS selec-
tion, redefinitions; or by taking more primary units a.

Reduction of C¥(x) is also needed to control the technical bias of ratio estimates,

and these estimates are common in surveys — though happily not the biases (Hansen,
Hurwitz, and Madow 1953, Vol II; Kish 1965, 6.6B).
(E6A) This (6.3) has been proposed as not only simpler, but also as giving a better fit
(Skinner, Holt, and Smith 1989, Ch 3). Skinner et al. present interesting discussions
about Deff in chapters 2 and 3, and show that their formula (3.12) (our 6.3) is better
than my (6.2) with k = 1.0, and their more complex (3.13) even a little better. But with
k = 1.2 my (6.2) would perform as well, and seems preferable theoretically, because it
will take Deft(y.) to 1, when n./a = 1, I believe.

Another technique for imputing def#(y.) from deft(y,) presents a novel and sophis-

ticated method for modeling def? for subclasses (Verma, Scott, and O’Muircheartaigh
1980). All three techniques have in common some model that roh, for subclasses will
be somewhat higher than ro#, for the entire sample, but also that the two are strongly
related. I believe that they all lead to useable values of deft(y.). Also that deciding
between their relative values will require some empirical investigation based on sev-
eral diverse surveys, because we lack a strong theoretical model for deciding between
them.
(E.6B) The need for computing deft(p;) separately, for each of the k categories
(i=1,2,...k) of categorical variables with k > 2, is illustrated in a recent article
(Kish, Frankel, Verma, and Kaciroti 1995). They found in eight surveys from five
countries that the values of deft(p;) as well as the ste(p;) = deft(p;)v/[p:(1 — p;)] var-
ied a great deal. Therefore, that choosing only one of the categories to represent as
“typical” the diverse categories of that variable was not sufficiently accurate.
This result has been found by others before, I believe, but not emphasized. The
variation between the variables was even greater than between categories of the
same variable. These are empirical results for which simple models would be diffi-
cult to construct.

In these eight surveys it was also found, surprisingly for most of us, that deft for the
differences (p; — p;) of two correlated proportions from the same variable is similar to
the average of the two deft(p;) and deft(p;). That is, deft(p; — p;) ~ (1/2)[deft(p;)+
deft(p;)] approximately. ‘
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Clusters SUPERCARP SUDAAN OSIRIS
Relative Cost Low Low High Moderate
Relative Simplicity =~ Easy? Complex Complex Easy?
Data Input - ASCII ASCII ASCII ASCIIL
or SAS or SAS or OSIRIS
S.E. Methods Taylor Taylor Taylor Taylor or
_ BRR, JRR
Analytical Stats Regression Regression Regression
Chi Square Log Regression
Chi Square
Survival

(E.7A) “A great need exists for mathematical bases of analytical statistics to deal with
data originating in complex sample designs. At present, these analytical statistics are
not computed or they are computed incorrectly under SRS assumptions. The latter
results in gross mistakes chiefly because of the effects of “clustering” on the sample.
Because of these mistakes the researcher often may be actually using confidence coeffi-
cients which are distorted (unknown to him or her) from P = .99 or P = .95 to P = .50!
These problems require the urgent attention of mathematical statisticians, particularly
to provide formulas — valid under complex clustered designs — for some of the most
important statistics. Examples of these are: 1. The coefficients of multivariate analysis
and their variances: . . .” From my talk Sept. 7, 1956 to a joint meeting of ASA and IMS.

Although right in calling attention to this important neglected problem (and in
some other aspects) I was wrong and naive in several others:

1. “First, mathematical statistics has not and will not give us complete distribution
theories that will be useful directly, because there are too many parameters in the
double complexity of analytical statistics from complex surveys. Second, model
builders cannot make those complexities vanish.” (Kish 1984).

2. The problems of inferential statistics should be more clearly separated from those
of descriptive statistics. Inferential (second order) statistics depend on pairwise prob-
abilities P; of selection, hence need ultimate cluster and stratum identifications of
“measurability”’; but descriptive (first order) statistics depend only on element prob-
abilities P; and the usual estimates suffice (E2) (Kish and Frankel 1974).

3. Several methods exist now for computing useful estimates of sampling errors and
deft. These depend on Taylor and repeated replication methods without mathemati-
cal distribution theories, and on computing developments (Section 9).

4. 1 failed to foresee that 40 years later only a score or two of mathematical statis-
ticians will pay any attention to the theoretical problems of survey sampling. Their
names are in 200 plus References (Skinner, Holt, and Smith, eds., 1989). There are
many more names of statisticians designing, operating, and analyzing the growing
body of probability samples around the world.

(E.7B) In Table 4 we related the average deft(b) for multivariate coefficients to the
average deft(%) of means. But after much empirical evidence about large differences
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between the deft(x;) for different means it would be better to find more specific rela-
tions of the deft(b;) to the respective deft(X;).
(E.9) These are but four outstanding examples of available programs from the Uni-
ted States. There will be others in the future, and some that we have missed. In other
countries there are still others. Also many more that have been and will be prepared
for internal institutional use but not easily available to the outside.

Each of the programs below can deal with case weights, more or less easily. Each of
them can handle means, proportions, and ratio estimates.
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