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In sample surveys where units have unequal probabilities of inclusion, associations between
the inclusion probability and the statistic of interest can induce bias in unweighted estimates.
This is true even in regression models, where the estimates of the population slope may be
biased if the underlying mean model is misspecified or the sampling is nonignorable. Weights
equal to the inverse of the probability of inclusion are often used to counteract this bias.
Highly disproportional sample designs have highly variable weights; weight trimming
reduces large weights to a maximum value, reducing variability but introducing bias.
Most standard approaches are ad hoc in that they do not use the data to optimize bias-variance
trade-offs. This article uses Bayesian model averaging to create “data driven” weight
trimming estimators. We extend previous results for linear regression models (Elliott 2008)
to generalized linear regression models, developing robust models that approximate
fully-weighted estimators when bias correction is of greatest importance, and approximate
unweighted estimators when variance reduction is critical.

Key words: Sample survey; sampling weights; weight winsorization; Bayesian population
inference; weight pooling; variable selection; fractional Bayes Factors.

1. Introduction

Population-based samples with differential probabilities of inclusion typically use case

weights equal to the inverse of the probability of inclusion to reduce bias in the estimators

of population quantities of interest (Horvitz and Thompson 1952). By replacing

unweighted sums in statistics with their weighted equivalents, bias can be removed from

linear estimators and reduced in nonlinear estimators (Binder 1983).

This bias reduction typically comes at the cost of increased variance. This increase can

overwhelm the reduction in bias, so that the mean squared error (MSE) actually increases

under a weighted analysis. This is particularly likely if (a) the sample size is small, (b) the

difference in the probability of inclusion is large, or (c) the association between the

probability of inclusion and the data (which drives the bias) is weak. Consider a population
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generated from

YijXi , BERNOULLIð piÞ for pi ¼
eAþBXiþCX2

i

1 þ eAþBXiþCX2
i

while the superpopulation model of interest is the conditional distribution of Yi given Xi

modeled by

YijXi , BERNOULLIð piÞ for pi ¼
eaþbXi

1 þ eaþbXi

The superpopulation model is correctly specified when C ¼ 0 and misspecified when

C – 0. We consider two sampling schemes: an ignorable sampling scheme that

oversamples large values of Xi, and a nonignorable scheme that oversamples large values

of Zi that are correlated with Yi. (In the regression setting, an ignorable sample scheme is

one in which the inclusion indicator Ii is independent of YijXi). We assume that the goal of

the modeler is to describe the association between Y and X using the regression slope b

from the superpopulation model. If the superpopulation model is correctly specified, the

target quantity of interest could be either the superpopulation slope or the population slope

defined by A, B such that
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(the “corresponding descriptive population quantity” in Pfeffermann (1993)). If the

superpopulation model is misspecified, then only the population slope makes sense as a

target quantity. The unweighted OLS estimator and case-weighted WLS estimator of (A,

B) are given by solving
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respectively, where Si is an indicator for inclusion in the sample, and wi ¼ 1=pi.

Table 1 shows the results of an evaluation from 500 simulations for equivalent

populations of N ¼ 10; 000, under correctly specified and misspecified models and

ignorable and nonignorable sample designs, for sample sizes of both n ¼ 50 and n ¼ 500.
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The target quantity of interest is a logistic regression slope linearly relating a covariate X to

the log-odds that Y ¼ 1 for a dichotomous outcome Y in a population of N ¼ 10; 000; bias

and mean squared error (MSE) are computed relative to this target quantity of interest. The

correctly specified model has a linear association between log PðY ¼ 1Þ=ð1 2 PðY ¼ 1ÞÞ

and X, while the misspecified model has a quadratic association. The probability of

selection is a function of X only for the ignorable sampling design, and a function of both X

and Z, where Z , NðY ; 1Þ, for the nonignorable sample design.

�
CorrðY ; ZÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðYÞ

VarðYÞ þ 1

r

which equals .41 for the correctly specified population model and .43 for the misspecified

population model.) We assume that both X and Z are available for the entire population,

but Y is only observable for the sampled elements. When the sample design is

nonignorable for the population slope, the weighted population slope estimator b w

accounts for the underrepresentation of smaller values of Y when X is small, reducing the

negative bias in the slope (though the bias remains in small sample settings, as Table 1

shows). Nonetheless, when the sample is small, the mean squared error of the weighted

estimator is larger than that of the unweighted estimator for both the correctly specified

and misspecified superpopulation models. When the sample design is ignorable for the

population slope (probability of selection depends only on X), use of the weighted

estimator provides protection against model misspecification, but can introduce so much

variability into the estimator that the MSE is larger than for the unweighted estimator

under all of the conditions considered.

This article develops an alternative approach to weight trimming that considers the

case weights as stratifying variables within strata defined by the probability of inclusion.

These “inclusion strata” may correspond to formal strata from a disproportional stratified

sample design, or may be “pseudo-strata” based on collapsed or pooled weights derived

Table 1. % Bias (MSE in parentheses) for population slope for population generated under

YijXi , BERNOULLIð piÞ for pi ¼ eAþBXiþCX2
i =ð1 þ eAþBXiþCX2

i Þ; i ¼ 1; : : : ; 10; 000, and superpopulation

model is given by YijXi , BERNOULLIð piÞ for pi ¼ e aþbXi=ð1 þ e aþbXi Þ: correctly specified (A ¼ 0, B ¼ 2,

C ¼ 0) and misspecified (A ¼ 0, B ¼ 2, C ¼ 21). Sampling design: ignorable for population slope

(PðSijYi;XiÞ / X:75
i ) or nonignorable for population slope PðSijYi;XiÞ / expð:5Zi=ðXi þ :25Þ2 1Þ, where

Zi , NðYi; 1Þ. Results from 500 simulations

Sampling ignorable?

Yes No

Superpopulation model correctly specified?

Yes No Yes No

n ¼ 50
b̂ 8.4(2.43) 212.3(1.82) 256.8(7.56) 2118.8(4.00)
b̂w 10.1(3.64) 3.3(2.83) 43.8(30.03) 211.8(37.09)

n ¼ 500
b̂ 1.2(.19) 213.3(.16) 250.3(1.21) 286.7(.93)
b̂w .7(.44) 2.4(.32) 6.9(.58) 5.8(.39)
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from selection, poststratification, and/or nonresponse adjustments. Ordering these weight

strata by the inverse of the probability of selection and collapsing together the largest

valued strata mimics weight trimming by assuming that the underlying data from these

combined strata are exchangeable (conditional on any covariates of interest). In a

regression setting, this model can be posed as a variable selection problem, where dummy

variables for the inclusion strata interact with the regression parameters; substracting from

or adding to the inclusion strata design matrix allows for a greater or lesser degree of

weight trimming. By averaging over all possible of these “weight pooling” models, we can

compute an estimator of the population parameter of interest whose bias-variance trade-off

is data-driven. By allowing for all contiguous inclusion strata to be considered for pooling,

we induce a high degree of robustness into our model, protecting against the “over-

pooling” from which models that crudely mimicked weight trimming suffered (Elliott

and Little 2000).

We embed this model in a Bayesian framework, as we believe it provides a natural

setting for model averaging, as well as a proper framework for population inference.

In particular, we consider an alternative Bayesian modeling approach that treats Y as a

random variable and focuses on population quantities of interest Q(Y), such as population

means QðYÞ ¼ Y or population least-squares regression slopes QðY1; Y2Þ ¼

minB0;B1

PN
i¼1ðYi1 2 B0 2 B1Yi2Þ

2. Inference is made about Q(Y) by considering the

marginal posterior predictive distribution (Ericson 1969; Holt and Smith 1979; Skinner

et al. 1989; Little 1993):

pðQðY ÞjyÞ ¼

ð
f ðQðY ÞjuÞpðujyÞdu ¼

Ð
f ðQðY ÞjuÞf ð yjuÞpðuÞduÐ

f ð yjuÞpðuÞdu
ð1:1Þ

If the sampling indicator I is independent of Y, as is the case in the probability sampling

design, then the sampling mechanism is said to be unconfounded or noninformative

(Little 2004), and inference about Q(Y ) can be made using pðQðYÞjyÞ alone. However,

in order to make the assumption of unconfoundedness in (1.1) reasonable, the sample

design needs to be accounted for in both the likelihood and prior model structures. For

more detail about Bayesian survey inference in the context of regression models,

see Elliott (2008).

Section 2 briefly reviews standard weight trimming methods. Section 3 develops our

weight pooling models for generalized linear regression models. Section 4 provides

simulation results to consider the repeated sampling properties of the weight pooling

estimators of logistic regression parameters in a disproportional stratified sample design

and compares them with standard design-based estimators. Section 5 illustrates the use of

the weight pooling estimators in an analysis of risk of injury to children in passenger truck

crashes. Section 6 summarizes the results of the simulations and considers extensions to

more complex sample designs.

2. Standard Weight Trimming Procedures

Standard weight trimming approaches pick a single cutpoint w0 at which all weights larger

than this value are to be fixed, with the remaining weights usually adjusted upward by a

constant so that the trimmed and untrimmed weighted sample sizes are equal. Typically w0
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is chosen in an ad hoc manner – say 3 times or 6 times the mean weight – without regard

to whether the chosen cutpoint is optimal with respect to mean squared error. Other

design-based methods have been considered in the literature. Potter (1990) discusses

systematic methods for choosing w0, including the weight distribution and MSE trimming

procedures. The weight distribution technique assumes that the weights follow an inverted

and scaled beta distribution; the parameters of the inverse-beta distribution are estimated

by method-of-moment estimators, and weights from the upper tail of the distribution, say

where 1 2 FðwiÞ , :01, are trimmed to w0 such that 1 2 Fðw0Þ ¼ :01. The MSE trimming

procedure (Cox and McGrath 1981) determines the empirical MSE at a variety of

trimming levels t ¼ 1; : : : ; T under the assumption that the true population mean is given

by the fully weighted estimate: MŜEt ¼ ðût 2 ûT Þ
2 þ V̂ðuT Þ, where t ¼ 1 corresponds to

the unweighted data and t ¼ T to the fully-weighted data, and ût is the value of the statistic

using the trimmed weights at level t. The trimming level is then given by the level l

minimized MŜEt over t. More recently, the calibration literature has developed methods

for adjusting design weights so that the adjusted weights equal known population totals

under a variety of minimizing distance constraints between the unadjusted and adjusted

weights, thus generalizing poststratification and raking procedures (Deville and Särndal

1992). Techniques have been developed that allow these adjustments to be bounded to

prevent the construction of extreme weights (Deville and Särndal 1992; Folsom and Singh

2000), but these bounds involve the winsorizing of extreme weights to a fixed cutpoint

value, with the choice of this cutpoint remaining arbitrary.

3. Weight Pooling Models

Weight trimming effectively pools units with large weights by assigning them a common,

trimmed weight. Suppose the population can be divided into H weight strata by the set of

ordered distinct values of the weights wh. Let nh be the number of included units and Nh

the population size in weight stratum h, so that wh ¼ Nh=nh for h ¼ 1; : : : ;H. We assume

here that Nh is known, as when the weight strata come from a stratified or post-stratified

random sample. The untrimmed (design-based) weighted mean estimator is then

yw ¼

X
h

X
i
whyhiX

h

X
i
wh

¼
X

h

Nh

N
yh

Weight trimming typically proceeds by establishing an a priori cutpoint, say 3 for the

normalized weights, and multiplying the remaining weights by a normalizing constant

g ¼

�
N 2

X
kiwo

�
X

ð1 2 kiÞwi

where ki is an indicator variable for whether or not wi $ w0. The trimmed mean estimator

is thus given by
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ywt ¼
Xl21

h¼1

gNh

N
yh þ

XH
h¼1

w0nh

N
yh ¼ g

Xl21

h¼1

Nh

N
yh þ

w0

XH

h¼l
nh

N
y ðl Þ
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g ¼
N 2 w0

XH

h¼l
nhXl21

h¼1
Nh

and

y ðl Þ ¼

 
1XH

h¼l
nh

!XH

h¼l
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Choosing

w0 ¼

XH

h¼1
NhXH

h¼1
nh

yields g ¼ 1 and

ywt ¼
Xl21

h¼1

Nh

N
yh þ

XH

h¼l
Nh

N
y ðl Þ

which corresponds to the estimate for a model that assumes distinct stratum means for the

smaller weight strata and a common mean for the larger weight strata, that is:

yhijmh , Nðmh;s
2Þ h , l

yhijml , Nðml;s
2Þ h $ l

mh;ml; logs/ const

Elliott and Little (2000) considered an extension of this model where we no longer

assume the cutpoint l is known:

yhijmh , Nðmh;s
2Þ h , l

yhijml , Nðml;s
2Þ h $ l

pðL ¼ l Þ ¼ 1=H

pðs2jL ¼ l Þ ¼ s2ðlþ1=2Þ

pðbjs2; L ¼ l Þ ¼ ð2pÞ2l

where m1 ¼ b0 þ b1; : : : ;ml ¼ b0 þ bl21. This “weight pooling” model averages the

estimators obtained from all possible weight trimming cutpoints, where each estimator

contributes to the final average based on the probability that the cutpoint is “correct.” This

posterior probability is determined via Bayesian variable selection models that determine

the posterior probability of each cutpoint model conditional on the observed data.
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Elliott (2008) extended this model to consider the conditional distribution of y given

covariates x (linear regression), and to allow for the pooling of all conterminous inclusion

strata. The latter extension greatly increased the robustness of the model, preventing

“overpooling” and increased MSE relative to the fully-weighted estimator due to bias.

Elliott (2008) also found that use of fractional Bayes factor priors (O’Hagan 1995)

could substantially increase the efficiency of the weight pooling models with little effect

on robustness.

3.1. Weight Pooling Models for Generalized Linear Regression

Generalized linear regression models postulate a likelihood for yi of the form

f ð yi; ui;fÞ ¼ exp
yiui 2 bðuiÞ

aiðfÞ
þ cð yi;fÞ

� �

where ai(f) involves a known constant and a (nuisance) scale parameter f, and the mean

of yi is related to a linear combination of fixed covariates xi through a link function gð�Þ:

Eð yijuiÞ ¼ mi, where gðmiÞ ¼ gðb 0ðuiÞÞ ¼ hi ¼ xTi b (McCullagh and Nelder 1989, p. 30).

We also have Varð yijuiÞ ¼ aiðfÞVðmiÞ, where VðmiÞ ¼ b
00

ðuiÞ. The link is canonical if

ui ¼ hi, in which case g 0ðmiÞ ¼ V 21ðmiÞ.

Indexing the inclusion stratum by h and allowing for the pooling of all conterminous

inclusion strata, we have

gðE½yhijbl;s
2; L ¼ l �Þ ¼ ZT

libl

where Zli ¼ Dhl^xhi and where Dhl is a vector of dummy variables that pool the

appropriate conterminous inclusion strata based on the lth pooling pattern.

Figure 1 shows the set of pooling patterns when H ¼ 4. (Note that patterns 2 and 5

correspond to a crude weight trimming procedure that simply cuts the maximum weight toXH

h¼l
NhXH

h¼l
nh

:
�

We assume priors of the form

bljL ¼ l , Nðb;S0Þ

pðL ¼ l Þ ¼ 22ðH21Þ

Our population quantity of interest B is the slope that solves the population score

equation UNðBÞ ¼ 0 where

UNðbÞ ¼
XN
i¼1

›

›b
log f ð yi;bÞ ¼

XH
h¼1

XN
i¼1

ð yi 2 g21ðmiðbÞÞÞxi
VðmiðbÞÞg 0ðmiðbÞÞ

The posterior predictive distribution of B is given by

pðBjy;XÞ ¼
l

Xðð
pðBjy;X; ulÞpðuljy;XÞdul
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for ul ¼ ðbl;f; L ¼ l Þ. Simulations from pðBjy;XÞ can be obtained by first obtaining a

draw from pðuljy;XÞ and then computing

XH
h¼1

Wh

Xnh
i¼1

ðŷhi2g21ðmiðB̂ÞÞÞxhi

VðmhiðB̂ÞÞg 0ðmhiðB̂ÞÞ
¼ 0

where Wh ¼ Nh=nh and ŷhi ¼ g21 ZT
libl

� 	
. Thus, in the example of logistic regression,

where VðmiÞ ¼ mið1 2 miÞ and g0ðmiÞ ¼ m21
i ð1 2 miÞ

21, a posterior draw of B can be

computed by solving for Bj, j ¼ 1; : : : ; p

XH
h¼1

Wh

Xnh
i¼1

xhij
expðxhijBjÞ

1 þ expðxhijBjÞ
¼
XH
h¼1

Wh

Xnh
i¼1

xhij
expðxhijbhjÞ

1 þ expðxhijbhjÞ

where bhj corresponds to the jth value of the bl parameter for the hth inclusion stratum as

a function of the lth pooling pattern. Thus bhj ¼ bj for all h when l ¼ 1 (i.e., bj ¼ Bj for

the unweighted estimator); bhj ¼ b1j for h ¼ 1, bhj ¼ b2j for h . 1 when l ¼ 2; and so

forth. This can be accomplished via simple root-finding numerical methods such as

Newton’s Method.

A direct draw of pðuljy;X Þ is not generally possible outside of the Gaussian setting. We

approximate a direct draw by using a Laplace approximation to obtain a draw from

pðL ¼ ljy;XÞ and a Metropolis step to obtain a draw from pðbljL ¼ l; y;XÞ; alternatively a

Metropolis step (Gelman et al. 2004, pp. 289–290) may be used to obtain draws from

Fig. 1. The set of {Dhl} when four weight strata are present: all patterns of pooling coterminous strata
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pðL ¼ ljby;XÞ and a Markov Chain Monte Carlo algorithm implemented instead. See the

Appendix for details.

3.2. Fractional Bayes Factors

In the absence of strong prior information to define P(ul), the Bayes Factors comparing

weight pooling model l with weight pooling model l
0

BFð y;X Þ ¼
pðL ¼ ljy;X Þ

pðL ¼ l
0
jy;X Þ

¼
pð yjL ¼ l;X ÞpðL ¼ l Þ

pð yjL ¼ l
0
;X ÞpðL ¼ l

0
Þ

¼

ÐÐ
pð yjbl;s

2L ¼ l;XÞdblds
2pðL ¼ l ÞÐÐ

pð yjbl
0 ;s2L ¼ l

0 ;XÞdbl
0 ds2pðL ¼ l

0
Þ

can be quite sensitive to the choice of p(ul) (Kass and Raftery 1995). We have a similar

issue in our weight pooling model, since our marginal pooling probabilities are simply

Bayes Factors converted from the odds to the probability scale. To counter this, we

consider the “fractional Bayes factor” approach proposed in O’Hagan (1995). A fraction b

of the sample is set aside so as to provide a data-based proper prior for ul. O’Hagan (1995)

shows that the resulting Bayes factor for comparing model l with model l
0

using the data-

based prior, which he terms a fractional Bayes factor (FBF), is of the form

BFbð y;XÞ ¼ qlð f ; y;XÞ=ql 0 ð f ; y;XÞ, where

qlð f ; y;XÞ ¼

Ð
pðulÞf ð yjulÞdulÐ
pðulÞf ð yjulÞ

bdul

Small values of b should be most efficient when choosing correct models, while larger

values of b are protective against outliers (data generated under a model not in the classes

considered). O’Hagan proposed n21logn and n21/2 as increasingly “robust” choices of b.

O’Hagan assumes a noninformative prior h(ul) in contrast to our proper prior, but very

weakly informative priors, such as we use in simulations and examples below, can be used

as well. The Appendix provides details describing the use of FBF in the weight pooling

application.

4. Simulation Results

Because we desire models that are simultaneously more efficient than design-based

estimators yet reasonably robust to model misspecification – and in general we feel that

even Bayesian models should have good frequentist properties – we evaluate our

proposed models in a repeated sampling context. We consider two settings where weights

can be utilized to reduce bias in generalized linear regression models: model

misspecification and informative sampling.
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4.1. Model Misspecification

We consider logistic regression under a correctly specified and then under an increasingly

misspecified model. We generate population data as follows:

PðYi ¼ 1jXiÞ , BERNOULLIðexpitð2 2 :4*Xi þ C*X
2
i ÞÞ

Xi , UNIFORMð0; 10Þ; i ¼ 1; : : : ;N ¼ 20; 000

where expitð�Þ ¼ expð�Þ=ð1 þ expð�ÞÞ. The object of the analysis is to obtain

an estimate of the logistic population regression slope, defined as the value B1 in the

equation

XN

i
ð yi 2 expitðB0 þ B1xiÞÞ

1

xi

 !
¼ 0

A disproportional sampling scheme is implemented as described in the linear regression

simulations. We consider values of C ¼ 0; :0158; :0273; :0368; :0454, corresponding to

curvature measures of K ¼ 0; :02; :04; :06 at the midpoint 5 of the support for X, where

KðX;CÞ ¼ j
2C

½1 þ ð2CX 2 :75Þ2�3=2
j

200 simulations are generated for each value of C. A noninformative, disproportionally

stratified sampling scheme sampled elements as a function of Xi (Ii equals 1 if sampled and

0 otherwise):

Hi ¼ dXie

PðIi ¼ 1jHiÞ ¼ ph / ð1 þ Hi=2:5ÞHi

A total of n ¼ 1; 000 elements were sampled for each simulation (maximum normalized

weight < 7.5).

For priors, we consider a nearly noninformative prior of the form

bljL ¼ l , N2ð0; 225IÞ, which assumes that the logistic regression parameters lie

between 230 and þ 30 with approximately 95% probability. We term the estimator of B1

obtained under this model PWT. We also consider the Fractional Bayes Factor data-based

prior as well; PWTF1, which uses a training fraction of n21/2, and PWTF2, which uses a

larger training fraction of 0.1. O’Hagan suggests that PWTF1 will be more efficient when

choosing the correct model when the true model is among the models considered, whereas

PWTF2 will be more robust (have better repeated sampling properties when the true model

is not among the models considered).

In addition to these two weight pooling models, we consider the standard designed-

based (fully weighted) estimator (FWT), as well as trimmed weight (TWT) and

unweighted (UNWT) estimators. The TWT estimator is obtained by replacing the weights

whi with trimmed values wt
hi that set the maximum normalized value to 3

wt
hi ¼

N ~wt
hiXH

h¼1
nh ~w

t
h
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where ~wt
hi ¼ minðwhi; 3N=nÞ, and the UNWT estimator is obtained by fixing whi ¼ N=n

for all h,i. We estimate their variance using the Taylor Series (linearization) approximation

(Binder 1983) that accounts for weighting and stratification.

Table 2 shows the relative bias, RMSE relative to the RMSE of the fully-weighted

estimator, and true coverage of the nominal 95% CIs or PPIs associated with each of the

six estimators of the population slope (B) for different values of curvature K,

corresponding to increased degrees of misspecification.

The undersampling of small values of X means that the maximum likelihood estimator

of B in the model misspecification setting will be unbiased for K ¼ 0 and biased

downward for K ¼ :02; :04; :06 unless the sample design is accounted for. The trimmed

estimator’s bias is intermediate between the unweighted and fully weighted estimator. The

weight pooling estimator with a noninformative prior, similar to the fully weighted

estimator, showed little bias. The weight pooling FBF estimator with the smaller training

fraction (PWTF1) had bias similar to the trimmed weight estimator, while the weight

pooling FBF estimator with the larger training fraction (PWTF2) had bias similar to the

fully weighted estimator.

The unweighted estimator had substantially improved MSE (40% reduction) when the

linear slope model was approximately correctly specified, but was highly biased with a

moderate to large degree of misspecification. The weight pooling estimator with a

noninformative prior had MSE very similar to the fully weighted estimator. The trimmed

weight estimator dominated the standard fully-weighted estimator over the range of

simulations considered, with MSE savings of 10–35%. The weight pooling estimators

with the fractional Bayes factors had MSE reductions of more than 40% when the linear

slope model was approximately correctly specified, and both were robust against model

misspecification.

The unweighted estimator had poor coverage except when the linear slope model was

correctly specified, or nearly so. Because of the modest sample size, the fully weighted

estimator had somewhat below nominal coverage both when the model was correctly

specified and when the model was badly misspecified; the trimmed weight estimator had

below nominal coverage only when the linear model was misspecified. The weight pooling

estimator with noninformative prior had below nominal coverage regardless of model

misspecification. The fractional Bayes factor estimators generally had correct to somewhat

conservative coverage for all ranges of model specification.

4.2. Informative Sampling

For the informative sampling setting, we consider a correctly specified mean model, but

allow the probability of selection to be related to a known covariate that is correlated with

the outcome Y. The stronger the association, the more informative the sample design will

be. We generated population data as follows:

PðYi ¼ 1jXiÞ , BERNOULLIðexpitð2 2 :4*XiÞÞ

Xi , UNIFORMð0; 10Þ; i ¼ 1; : : : ;N ¼ 20; 000

Elliott: Model Averaging Methods for Weight Trimming 11



Table 2. Relative bias (%), squared root of mean squared error (RMSE) relative to RMSE of fully-weighted estimator, and true coverage of the 95% CI or PPI of the population

logistic regression slope estimator under model misspecification

Relative bias (%) RMSE relative to FWT True coverage

Curvature K Curvature K Curvature K

Estimator 0 .02 .04 .06 0 .02 .04 .06 0 .02 .04 .06

UNWT 20.2 212.8 259.2 2217.9 .59 .87 1.51 1.72 96 86 32 22
FWT 20.1 3.9 20.1 16.6 1 1 1 1 86 96 92 86
TWT 0.3 23.4 221.4 283.9 .65 .71 .90 .91 92 96 92 88
PWT 1.5 2.5 0.3 7.0 .99 1.00 .99 1.04 84 84 84 82
PWTF1 0.6 25.4 219.3 2127.5 .57 .72 .79 .92 96 94 92 94
PWTF2 20.4 21.2 5.6 9.0 .75 .82 .98 .80 95 94 96 98 Jo
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As in the previous simulations, the object of the analysis is to obtain the logistic

population regression slope, defined as the value B1 in the equation

XN

i
ð yi 2 expitðB0 þ B1xiÞÞ

1

xi

 !
¼ 0

An unequal probability of selection scheme is utilized:

ðPðIijYi;XiÞ / expð:5Zi=ðXi=10 þ :25Þ2 1ÞÞ; where Zi , NðYi; 10lÞ

where l ¼ 20:5;20:25; 0; 0:25; 0:5. The resulting asymptotic correlations between Y and

Z are .664, .555, .447, .351, and .271. The maximum normalized weight ranges from

approximately 7 for l ¼ 2:5 to 50 for l ¼ 0:5. A total of n ¼ 1; 000 elements were

sampled for each simulation. The priors, including the fractional Bayes factors, are

identical to those used in the model misspecification simulations. The unweighted, fully

weighted, and trimmed weighted estimators are also considered along with the weight

pooling estimators. The FBF estimators again used training fractions of n21/2 for PWTF1

and .1 for PWTF2.

Table 3 shows the relative bias, RMSE relative to the RMSE of the fully-weighted

estimator, and true coverage of the nominal 95% CIs or PPIs associated with each of the

six estimators of the population slope. The results were overall similar to what was

observed in the model misspecification setting. The unweighted estimator had substantial

bias that was only relieved when sampling was more nearly ignorable (modest correlation

between Y and Z). The trimmed weight and weight pooling estimators both had very

modest degrees of bias, and had equal or improved MSEs as compared with the fully

weighted estimator with little reduction in coverage. Both the trimmed weighted and the

fraction Bayes factor weight pooling estimators had substantial reductions in MSE as

compared with the fully-weighted estimator when the sampling was more nearly

ignorable.

5. Application: Estimation of Injuries to Children in Compact Extended-Cab

Pickup Trucks

The Partners for Child Passenger Safety dataset consists of the disproportionate, known-

probability sample from all State Farm Insurance claims since December 1998 involving

at least one child occupant #15 years of age riding in a model year 1990 or newer State

Farm-insured vehicle (Durbin et al. 2001). Because injuries, and especially

“consequential” injuries defined as facial lacerations or other injuries rated 2 or more

on the Abbreviated Injury Scale (AIS) (Association for the Advancement of Automotive

Medicine 1990), are relatively rare even among children in the population of crash-related

vehicle damage claims, a disproportional probability-of-inclusion sample design is

utilized. The weights for this dataset are quite variable: 1 # wi # 50, where 9% of

the weights have normalized values larger than 3. Because the treatment stratification

is imperfectly associated with risk of injury (more than 15% of the population with

consequential injuries are estimated to be in the lowest probability-of-selection

category and nearly 20% of those without consequential injuries are in the highest

Elliott: Model Averaging Methods for Weight Trimming 13



Table 3. Relative bias (%), squared root of mean squared error (RMSE) relative to RMSE of fully-weighted estimator, and true coverage of the 95% CI or PPI of population logistic

regression slope estimator under informative sampling. Correlation between dichotomous outcome Y and probability of selection covariate Z

Relative bias (%) RMSE relative to FWT True coverage

Correlation Correlation Correlation

Estimator .66 .56 .45 .35 .27 .66 .56 .45 .35 .27 .66 .56 .45 .35 .27

UNWT 29.0 27.8 23.0 25.3 13.9 2.97 2.22 1.79 1.38 .72 4 7 22 18 69
FWT 2 .7 .2 .2 3.6 2.8 1 1 1 1 1 96 94 95 89 93
TWT 3.2 5.0 3.5 2.7 0.2 .96 .90 .81 .65 .52 95 91 95 92 97
PWT 3.3 5.4 3.8 3.4 29.0 .99 1.02 .92 .84 .96 93 91 96 96 93
PWTF1 3.8 4.0 4.1 3.5 2 .7 .98 1.01 .93 .82 .71 94 88 90 92 96
PWTF2 3.2 4.0 5.8 3.6 2.1 .99 .98 .94 .89 .89 92 92 92 94 98 Jo
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probability-of-selection category), the sampling design is informative, with unweighted

odds ratios biased toward the null (Korn and Graubard 1995).

Winston et al. (2002) determined that children rear-seated in compacted extended-cab

pickups are at greater risk of consequential injuries than children rear-seated in other

vehicles. However, quantifying degree of excess risk, and thus the size of the public health

problem, was somewhat problematic. The unweighted odds ratio (OR) of consequential

injury for children riding in compacted extended-cab pickups versus other vehicles was

3.54 (95% CI 2.01,6.23), versus the fully weighted estimator of 11.32 (95% CI

2.67,48.02). Because both injury risk and compacted extended-cab pickup use were

associated with child age, crash severity (passenger compartment intrusion and

drivability), direction of impact, and vehicle weight, a multivariate logistic regression

model that adjusted for these factors was also considered. The unweighted and fully

weighted adjusted ORs for injury risk in rear seated children in compacted extended-cab

pickups versus other vehicles are 3.50 (95% CI 1.88,6.53) and 14.56 (95% CI 3.45,61.40),

respectively. Utilizing the unweighted estimator was problematic because of bias toward

the null induced by the informative sample design; however, the fully weighted estimator

appeared to be highly unstable. In Winston et al. (2002), injured children with high

weights were deleted, yielding an estimated OR for injury risk of 3.87 (95% CI

1.42,10.57), close to the unweighted estimator.

Table 4 shows the unadjusted and the adjusted odds ratios of consequential injury risk

using the unweighted, fully weighted and pooled weighted estimators of OR of injury for

children in compact pickup trucks versus other vehicles. Pooled weighted estimators are

obtained using both the noninformative and fractional Bayes factor priors. The

noninformative pooled estimator generally falls between the unweighted and the fully

weighted estimator, and reduces the unrealistically larger 95% upper limit of the OR from

50–60 down to 19–20. The FBF pooled estimator with fraction n21/2 reduced unadjusted

OR to 6.75 (95% CI 2.51,17.99), intermediate between the unweighted and fully weighted

estimator, but provided an adjusted OR estimator similar to that of the unweighted

estimator. The FBF pooled estimator with fraction 0.1 reduced unadjusted OR to 7.6 (95%

CI 2.6,21.8) and the adjusted OR to 7.0 (95% CI 2.8,18.2).

An additional two years of data, which included an additional 4,091 rear-seated children

in passenger vehicles (44 in compact extended-cab pickup trucks), provided a fully

weighted unadjusted odds ratio for injury for children in compact extended-cab pickups of

6.3, and an adjusted OR of 7.0 – very close to the FBF pooled estimator results with

fraction 0.1.

Table 4. Estimated odds ratio of injury for children rear-seated in compacted extended-cab pickups (n ¼ 60)

versus rear-seated in other vehicles (n ¼ 8; 060), using unweighted (UNWT), fully weighted (FWT), and pooled

weight (PWFT2) estimators; unadjusted and adjusted for child age, crash severity, direction of impact, and

vehicle weight. Point estimates for PWT and PWTF2 models from posterior median. 95% CI or PPI in subscript.

Data from Partners for Child Passenger Safety

UNWT FWT PWT PWTF1 PWTF2

Unadj. 3.54(2.01,6.23) 11.32(2.67,48.02) 9.03(2.89,20.09) 6.75(2.51,17.99) 7.61(2.64,21.76)

Adj. 3.50(1.88,6.53) 14.56(3.45,61.40) 10.59(4.17,50.40) 3.46(1.80,6.36) 6.96(2.77,18.19)

Elliott: Model Averaging Methods for Weight Trimming 15



6. Discussion

The model discussed in this article generalizes the work of Elliott and Little (2000) and

Elliott (2008), where under the former population inference was restricted to population

means using a weight pooling model that mimicked weight trimming, and under the latter

where population inference was restricted to the estimation of population slopes under the

Gaussian error model. As in Elliott (2008), we consider a model that permits the pooling of

all conterminous inclusion strata, as well as utilizing the data-based “fractional Bayes

Factors” of O’Hagan (1995). Here we extend the weight pooling method to consider

population regression slopes under the generalized linear model, allowing for regression

models for binary, count, or other outcomes with nonnormal error terms. We obtained

robust estimators that can still gain considerable efficiencies as compared with standard

fully weighted estimators. The crude trimming estimators also performed well among the

simulations considered, although previous work (Elliott and Little 2000; Elliott 2007)

shows that these estimators are generally not robust.

We also applied the methods developed in this article to the Partners for Child

Passenger Safety data to determine the excess risk of injury in a crash to rear-seated

children in compacted extended-cab pickups relative to rear-seated children in other

passenger vehicles. It appears that the decision in Winston et al. (2002) to eliminate a low

probability-of-selection child from the analysis to stabilize the estimates led to an

underestimation of the effect of exposure. The pooled estimates suggested adjusted risks

of 7.2, versus the 14.6 obtained from the fully weighted sample – very close to the

estimate of 7.0 that was obtained using an additional two years of data.

More generally, the methods discussed in this article show the promise of adapting

model-based methods to attack problems in survey data analysis. However, because these

models rely on stratifying the data by probability of selection as a prelude to using pooling

or shrinkage techniques to induce data-driven weight trimming, there is a natural

correspondence between this methodology and (post)stratified sample designs in which

strata correspond to disproportional probabilities of inclusion. Developing methods that

accommodate a more general class of complex sample designs that include single- or

multi-stage cluster samples and/or strata that “cross” the weight strata remains an area for

future work.

7. Appendix: Obtaining the Posterior Distribution of Parameters from Weight

Pooling Models

To simplify notation, we assume that the generalized linear model of interest does not

contain an unknown scaling parameter f (i.e., logistic or Poisson regression models where

f ¼ 1 or is fixed at an overdispersion value treated as known). Straightforward extensions

of all algorithmic steps can accommodate f.

7.1. Simulations from the Generalized Weight Pooling Model Using Direct Draws

Draws from pðbl; L ¼ ljy;XÞ ¼ pðbljL ¼ l; y;XÞpðL ¼ ljy;XÞ can be made by drawing

first from pðL ¼ ljy;XÞ using a Laplace approximation (Tierney and Kadane 1986) to

obtain f ð yjL ¼ l;XÞ and then a Metropolis step for pðbljL ¼ l; y;XÞ.
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Note that

pðL ¼ ljy;XÞ ¼
f ð yjL ¼ l;XÞX
l
f ð yjL ¼ l;XÞ

ð7:1Þ

where

f ðyjX; L ¼ l Þ ¼

ð
f ðyjX;bl; L ¼ l ÞpðbljL ¼ l Þdbl <

ð
f ðyjX;bl; L ¼ l Þdbl

< ð2pÞð pH
*Þ=2jŜb̂l

j
1=2

f ðyjX; b̂l; L ¼ l Þ

where b̂l is the MLE of a GLM regressing y on Zl, where Zl consists of the stacked row

vectors of ZT
li , and Ŝb̂l

is the associated covariance matrix estimate for b̂l given by the

inverse of the expected information matrix. The first approximation follows from

assuming a noninformative or nearly noninformative prior on bljL ¼ l, and the second

from the Laplace approximation to the true marginal distribution of y.

Draws from pðbljL ¼ l; y;XÞ are made by running a Metropolis algorithm (Metropolis

et al. 1953; Gelman et al. 2004, pp. 289–290). Briefly, a Metropolis step is a single draw

from the Metropolis algorithm, which generates a draw from a general distribution pðujyÞ

by sampling a proposed u* from a “jumping” distribution Jtðu*ju ðt21ÞÞ, where Jt is

symmetric (JtðubjuaÞ ¼ JtðuajubÞ). The proposal draw is then accepted as a draw of ut with

probability minð1; pðu*jyÞ=pðu ðt21ÞjyÞÞ; otherwise u ðtÞ ¼ u ðt21Þ. In this setting

Nðb ðt21Þ; kŜb̂l
Þ jumping distribution, where k is a tuning factor designed to obtain an

acceptance rate of 20–30%. The algorithm starts at bð0Þ
l ¼ b̂l, and a proposal draw

b prop
l ¼ b̂l þ e; e , Nð0; kŜ

b̂l
Þ is made; bð1Þ

l ¼ ð1 2 uÞbð0Þ
l þ ubprop

l , where u is a

Bernoulli random variable with probability

min 1;
f ð yjX; {b prop

l ; L ¼ l Þ}

f ð yjX; {b prop
l ; L ¼ l Þ}

� �

The algorithm proceeds until a sufficient number of draws T have been made to

approximate the posterior distribution. In general k ¼ :1 and T ¼ 200 provided reasonable

acceptance rates and sufficient coverage of the posterior interval.

7.1.1. Fractional Bayes Factors

When using the FBF prior, we replace f ð yjL ¼ l;XÞ in (7.1) with

f *ðyjL ¼ l;XÞ ¼

Ð
f ðyjX;bl; L ¼ l ÞpðbljL ¼ l ÞdblÐ
f ðyjX;bl; L ¼ l ÞbpðbljL ¼ l Þdbl

for 0 , b , 1. Under a nearly noninformative prior, we have, using the Laplace

approximation,ð
f ðyjX;bl; L ¼ l Þbdbl < ð2pÞð pH

*Þ=2jb21Ŝb̂l
j
1=2

f ðyjX; b̂l; L ¼ l Þb
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so that

f *ð yjL ¼ l;XÞ < b ð pH *Þ=2f ð yjX; b̂l; L ¼ l Þð12bÞ

7.2. Simulations from the Generalized Linear Weight Pooling Model Using an MCMC

Algorithm

Draws from the posterior distribution of ðbl; L ¼ l Þ are obtained via the product space

series method of Carlin and Chib (1995). This approach assumes that y is independent of

{bk–l} given that L ¼ l. Assuming also that {bl} are independent for l ¼ 1; : : : ; L, we

have that

pðyjX; L ¼ l Þ ¼
Ð
f ðyjX;b; L ¼ l ÞpðbjL ¼ l Þdb ¼

Ð
f ðyjX;bl; L ¼ l ÞpðbljL ¼ l Þdbl

The form given to the “pseudoprior” pðbk–ljL ¼ l Þ is irrelevant, as it is chosen only to

completely define the joint model specification:

pðy;b; L ¼ ljXÞ ¼ f ðyjX;bl; L ¼ l Þ
Y2H21

j¼1

pðbjjL ¼ jÞ

 �

PðL ¼ l Þ

We can then develop a Gibbs sampler that draws from pðbljL ¼ l;bk–l y;XÞ and then

from pðL ¼ ljb; y;XÞ.

With the model fixed at L ¼ l, we obtain a draw of

pðbljL ¼ l;bk–l; y;XÞ ¼ pðbljL ¼ l; y;XÞ

using the Metropolis step described in 7.1.

The full conditional pðLjb; y;XÞ is given by

pðL ¼ ljb; y;XÞ ¼
f ðyjX;bl; L ¼ l Þ

Q2H21

j¼1 pðbjjL ¼ jÞ

 �

PðL ¼ l ÞX2H21

j¼1
f ðyjX;bj; L ¼ jÞ

Q2H21

i¼1 pðbijL ¼ jÞf gPðL ¼ jÞ

Because computing
Q2H21

j¼1 pðbjjL ¼ jÞ

 �

is prohibitive except when H is small, we

instead used a Metropolis step suggested by Dellaportas, Forster, and Ntzoufras (2002) to

obtain a draw from Ljb; y;X.

1. Propose new model l0 with probability h(l,l0).

2. Generate bl0 from the pseudoprior pðbl 0 jL – l0Þ.

3. Accept the new model l0 with probability

min 1;
f ð yjX;bl

0 ; L ¼ l
0

Þpðbl
0 jL ¼ l

0

ÞpðbljL ¼ l
0

ÞPðL ¼ l
0

Þhðl
0

; l Þ

f ð yjX;bl; L ¼ l ÞpðbljL ¼ l Þpðbl
0 jL ¼ l ÞPðL ¼ l Þhðl; l 0 Þ

� 

Carlin and Chib (1995) note that poor choices for pseudo priors pðbk–ljL ¼ l Þ can yield

slow convergence, and suggest matching them as closely as possible to the true model-

specific posteriors. Because of the large number of models to be considered, we simply set

the pseudo prior to be multivariate normal with mean b̂k given by the MLE of a GLM

regressing y on Zl, and covariance Sb̂l
given by the inverse of the expected information
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matrix. Jumping probabilities to the l0 models that exclude L were always given by the

uniform dicrete distribution with probability ð2H21 2 1Þ21.
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