
Model Averaging Methods for Weight Trimming

Michael R. Elliott1

In sample surveys where sampled units have unequal probabilities of inclusion, associations
between the inclusion probabilities and the statistic of interest can induce bias. Weights equal
to the inverse of the probability of inclusion are often used to counteract this bias. Highly
disproportional sample designs have highly variable weights, which can introduce undesirable
variability in statistics such as the population mean or linear regression estimates. Weight
trimming reduces large weights to a fixed maximum value, reducing variability but
introducing bias. Most standard approaches are ad-hoc in that they do not use the data to
optimize bias-variance tradeoffs. This manuscript develops variable selection models, termed
“weight pooling” models, that extend weight trimming procedures in a Bayesian model
averaging framework to produce “data driven” weight trimming estimators. We develop
robust yet efficient models that approximate fully-weighted estimators when bias correction is
of greatest importance, and approximate unweighted estimators when variance reduction is
critical.

Key words: Sample survey; sampling weights; Bayesian population inference; weight
pooling; variable selection; fractional Bayes Factors.

1. Introduction

Analyses of data from samples designed to have differential probabilities of inclusion

typically use case weights equal to the inverse of the probability of inclusion to reduce bias

in the estimators of population quantities of interest. An example is the Horvitz-Thompson

estimator (Horvitz and Thompson 1952) of a population mean �Y ¼ N21
PN

i¼1yi given by
�Ŷ¼ N21

P
ies wiyi, where wi ¼ 1=pi;pi is the probability of inclusion and s is the subset

of the population units sampled. This fully-weighted estimator is unbiased for the

population mean. For the wide class of nonlinear estimators such as ratio estimators or

linear regression slopes that are functions of linear statistics, bias can be reduced and

consistent estimates of population values obtained by replacing implicit means or totals

with their weighted equivalents (Binder 1983).

It is generally accepted that sampling weights should be utilized when considering

descriptive statistics such as means and totals, although even here, highly variable

probabilities of selection can give rise to bias-variance tradeoffs and the desire to employ
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weight trimming (Little et al. 1997). However, when estimating “analytical” models

(Cochran 1977, p. 4) that focus on associations between, e.g., risk factors and health

outcomes estimated via linear and generalized linear models, the decision to use sampling

weights is less definitive (cf. Korn and Gaubard 1999, pp. 180–182). Consider a

population generated from

Yi ¼ Aþ BXi þ CX2
i þ e i;Xi , Uð0; 1Þ; e i ind,Nð0; 1Þ ð1:1Þ

where the superpopulation model of interest is the conditional distribution of Yi given Xi,

modeled by

Yi ¼ aþ bXi þ e i; e i iid,Nð0;s2Þ ð1:2Þ

The superpopulation model is correctly specified when C ¼ 0 and misspecified when

C – 0. We consider two sampling schemes: an ignorable sampling scheme that

oversamples large values of Xi, and a nonignorable scheme that oversamples large values

of Yi at a given value of Xi. The sampling scheme is ignorable in the regression context

when the sampling probability is a function of Xi only and thus the inclusion indicator Ii, is

independent of YijXi because our goal is to determine the distribution of YjX;

nonignorable designs in the regression setting retain an association between Yi and Ii, even

conditional on Xi. Of course, designs in which Ii depends on Xi are nonignorable for

parameters that describe the marginal distribution of Yi, unless Yi ’ Xi (see Section 2).

We assume that the goal of the modeler is to describe the association between Y and X

using the regression slope b from the superpopulation model. If the superpopulation

model is correctly specified, the target quantity of interest could be either the

superpopulation slope or the population slope defined by B ¼
PN

i¼1AiðYi 2 �YÞ, where

Ai ¼ ðXi 2 �XÞ=
PN

i¼1ðXi 2 �XÞ2; �Y ¼ N21
PN

i¼1Yi; �X ¼ N21
PN

i¼1Xi (the “corresponding

descriptive population quantity” in Pfeffermann (1993)). If the superpopulation model is

misspecified, then only the population slope makes sense as a target quantity. The

unweighted ordinary least squares (OLS) estimator and (case-)weighted least squares

(WLS) estimator of a and b respectively are given by

â

b̂

 !
¼ ðXTSXÞ21XTSY

âw

b̂w

 !
¼ ðXTSwXÞ21XTSwY

where the ith row of X, XT
i , is given by (1XiÞ

T , S is a diagonal matrix of sample inclusion

indicators Si, and S w replaces Si in S with Si=pi. Thus, the WLS estimator replaces the

means and totals in the unweighted estimator with the Horvitz-Thompson equivalents.

Table 1 shows the results from 500 simulations for equivalent populations of

N ¼ 10; 000, under correctly specified and misspecified models and ignorable and non-

ignorable sample designs, for sample sizes of n ¼ 50 and n ¼ 500. When the sample

design is ignorable (probability of selection depends only on X) and the mean model

correctly specified, both the unweighted and fully-weighted estimators are essentially
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unbiased, and the larger variance of the weighted estimator results in a larger mean

squared error (MSE). When the sampling is ignorable but the mean model incorrectly

specified (linear instead of quadratic), the weighted estimator provides protection against

model misspecificiation, but can introduce large variability into the estimator (note the

larger MSEs for the weighted estimator when n ¼ 50). When the sample design is

nonignorable for the population slope, the weighted population slope estimator b̂w

accounts for the underrepresentation of smaller values of Y when X is small, reducing the

negative bias in the slope; in these simulations this bias in the unweighted estimator was a

greater contributor to MSE than the variance from the weighted estimator.

The fully-weighted estimators ðâwb̂wÞT are sometimes termed “pseudo-maximum

likelihood” estimators (PMLEs) (Binder 1983; Pfeffermann 1993) because they are

“design consistent” for the MLEs that would solve the score equations under the sampling

model defined in (1.2) if we had observed data for the entire population:

UðbÞ ¼
XN
i¼1

d

db
logf ð yijbÞ ¼

XN
i¼1

XiðX
T
i b2 yiÞ ¼ 0 ð1:3Þ

In brief, design consistency implies that the difference between the population target

quantity and the estimate derived from the sample tends to zero as the sample size and

population size jointly increase, or that this difference will on average tend to 0 from

repeated sampling of the population, where samples are selected in an identical fashion

from t!1 replicates of the population: see Särndal (1980) or Isaki and Fuller (1982).

1.1. Weight Trimming

While PMLEs are popular in practice for the reasons discussed above, their bias reduction

typically comes at the cost of increased variance. This increase can overwhelm the reduction

in bias, so that the mean squared error (MSE) actually increases under a weighted analysis,

as in the example in Table 1. Even in cases where disproportional sample designs do reduce

Table 1. % Bias (MSE in parentheses) for population slope for population generated under

YijXi , NðAþ BXi þ CX2
i ; 1Þ, i ¼ 1; : : : ; 10; 000, and superpopulation model is given by

YijXi , Nðaþ bXi;s
2Þ: correctly specified ðA ¼ 0;B ¼ 2;C ¼ 0Þ, misspecified ðA ¼ 0;B ¼ 2;C ¼ 21Þ.

Sampling design ignorable for population slope ðPðSijYi;XiÞ / X75
i Þ or nonignorable for population slope

ðPðSijYi;XiÞ / expð:5Yi=ðXi þ :25Þ2 1ÞÞ. Results from 500 simulations

Sampling ignorable?

Yes No

Superpopulation model correctly specified?

Yes No Yes No

n ¼ 50
b̂ 20.2(.168) 215.4(.203) 230.8(.511) 263.8(.518)
b̂w 0.7(.264) 23.8(.274) 25.1(.239) 210.5(.303)

n ¼ 500
b̂ 20.5(.015) 216.3(.040) 228.6(.339) 255.7(.321)
b̂w 20.8(.033) 20.3(032) 2 .7(.039) 0.0(.041)
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variance, as in “optimal allocation” where strata with more variable outcomes are

oversampled (Kish 1965), designs that are optimal for one outcome may not be optimal for

another, or for examination of associations (e.g., regression models).

Perhaps the most common approach to dealing with this problem is weight trimming or

winsorization (Potter 1990; Kish 1992; Alexander et al. 1997), in which weights larger

than some value w0 are fixed as w0. Thus bias is introduced to reduce variance, with the

goal of an overall reduction in MSE. This manipulation of the weights reflects a traditional

design-based approach to survey inference.

Other design-based methods have been considered in the literature. Potter (1990)

discusses systematic methods for choosing w0, including the weight distribution and MSE

trimming procedures. The weight distribution technique assumes that the weights follow

an inverted and scaled beta distribution; the parameters of the inverse-beta distribution are

estimated by method-of-moment estimators, and weights from the upper tail of the

distribution, say where 1 2 FðwiÞ , :01, are trimmed to w0 such that 1 2 Fðw0Þ ¼ :01.

The MSE trimming procedure (Cox and McGrath 1981) determines the empirical MSE at

a variety of trimming levels t ¼ 1; : : : ; T under the assumption that the true population

mean is given by the fully weighted estimate: M̂SEt ¼ ðût 2 ûYÞ
2 þ V̂ðûtÞ, where t ¼ 1

corresponds to the unweighted data and t ¼ T to the fully-weighted data, and ût is the value

of the statistic using the trimmed weights at level t. The trimming level is then given by the

level l minimized M̂SEt over t.

In addition to adjusting for unequal probabilities of selection, case weights are also used

to calibrate sample elements to known control totals in the population (Deville and Särndal

1992), either jointly (poststratification weights) or marginally (raking weights). In the

calibration literature, techniques have been developed that allow generalized

poststratification or raking adjustments to be bounded to prevent the construction of

extreme weights (Folsom and Singh 2000). Beaumont and Alavi (2004) extend this idea to

develop estimators that focus on trimming large weights of highly influential or outlying

observations. While these bounds trim extreme weights to a fixed outpoint value, the

choice of this cutpoint remains arbitrary. Another approach is to consider robust regression

estimates (Hampel et al. 1986) that downweight highly influential observations, although

applications which consider downweighting influence statistics as an alternative to weight

trimming in the context of survey designs are limited (Zaslavsky et al. 2001 considered

their use with ratio estimators).

This article develops an alternative approach to weight trimming that considers the case

weights as stratifying variables within strata defined by the probability of inclusion. These

“inclusion strata” may correspond to formal strata from a disproportional stratified sample

design, or may be “pseudo-strata” based on collapsed or pooled weights derived from

selection, poststratification, and/or nonresponse adjustments. Ordering these weight strata

by the inverse of the probability of selection and collapsing together the largest valued

strata mimics weight trimming by assuming the underlying data from these combined

strata are exchangeable (conditional on any covariates of interest). In a regression setting,

this model can be posed as a variable selection problem, where dummy variables for

the inclusion strata interact with the regression parameters; subtracting from or adding to

the inclusion strata design matrix allows for a larger or lesser degree of weight trimming.

By averaging over all possible of these “weight pooling” models, we can compute an
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estimator of the population parameter of interest whose bias-variance tradeoff is

data-driven. By allowing for all contiguous inclusion strata (strata whose weights are

closest in value) to be considered for pooling, we induce a high degree of robustness into

our model, protecting against the over-pooling that simpler models suffered from (Elliott

and Little 2000). We embed this model in a Bayesian framework, as we believe it provides

a natural setting for model averaging, as well as a proper framework for population

inference.

Section 2 reviews Bayesian finite population inference. Section 3 develops the weight

pooling models for linear regression models in a fully Bayesian setting. Section 4 provides

simulation results to determine the repeated sampling properties of the weight pooling

estimators of linear regression parameters in a disproportionally stratified sample design

and compares them with standard design-based estimators. Section 5 illustrates the use of

the weight-pooling estimator using data from the National Health and Nutrition

Examination Survey to consider evidence for “Barker’s Hypothesis” that low birth weight

babies are at greater risk for cardiovascular disease later in life. Section 6 summarizes the

results of the simulations and considers extensions to generalized linear models.

2. Bayesian Finite Population Inference

Let the population data for a population with i ¼ 1; : : : ;N units be given by

Y ¼ ð y1; : : : ; yNÞ, with associated covariate vectors X ¼ ðx1; : : : ; xNÞ and sampling

indicator variable I ¼ ðI1; : : : ; INÞ, where Ii ¼ 1 if the ith element is sampled and 0

otherwise. Similar to design-based population inference, Bayesian population inference

focuses on population quantities of interest Q(Y), such as population means QðYÞ ¼ �Y.

In contrast to design-based inference, however, one posits a model for the population data

Y as a function of parameters u : Y , f ðYjuÞ. Inference about Q(Y) is made based on the

posterior predictive distribution of pðYnobjYobs; IÞ, where Ynob consists of the elements of Yi
for which Ii ¼ 0:

pðYnobjYobs; IÞ ¼

Ð Ð
pðYnobjYobs; u;fÞpðIjY ; u;fÞpðYobsjuÞpðu;fÞdudfÐ Ð Ð

pðYnobjYobs; u;fÞpðIjY ; u;fÞpðYobsjuÞpðu;fÞdudfYnobs

ð2:1Þ

where f models the inclusion indicator. If we assume that f and u are a priori independent

and if the distribution of sampling indicator I is independent of Y, the sampling design is

said to be “unconfounded” or “noninformative”; if the distribution of I depends only on

Yobs, then the sampling mechanism is said to be “ignorable” (Rubin 1987), equivalent to

the standard missing data terminology (the unobserved elements of the population can be

thought of as missing by design).

Under ignorable sampling designs pðu;fÞ ¼ pðuÞpðfÞ and pðIjY ; u;fÞ ¼ pðIjYobs;fÞ,

and thus (2.1) reduces toÐ
pðYnobjYobs; uÞpðYobsjuÞpðuÞduÐ Ð

pðYnobjYobs; uÞpðYobsjuÞpðuÞdudYnobs

¼ pðYnobjYobsÞ

allowing inference about Q(Y) to be made without explicitly modeling the sampling

inclusion parameter I (Ericson 1969; Holt and Smith 1979; Little 1993; Rubin 1987;

Skinner et al. 1989). In the regression setting, where inference is desired about parameters
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that govern the distribution of Y conditional on fixed and known covariates X, (2.1)

becomes

pðYnobjYobs;X;IÞ¼

Ð Ð
pðYnobjYobs;X;u;fÞpðIjY ;X;u;fÞpðYobsjX;uÞpðu;fÞdudfÐ Ð Ð

pðYnobjYobs;X;u;fÞpðIjY ;X;u;fÞpðYobsjX;uÞpðu;fÞdudfdYnobs

which reduces to

pðYnobjYobs;XÞ¼

Ð
pðYnobjYobs;X;uÞpðYobsjX;uÞpðuÞduÐ Ð

pðYnobjYobs;X;uÞpðYobsjX;uÞpðuÞdudYnobs

if and only if I depends only on (Yobs, X), of which dependence on X only is a special case.

Thus if inference is desired about a regression parameter QðY ;XÞjX, then a noninformative

or more generally ignorable sample design can allow inclusion to be a function of the fixed

covariates.

2.1. Accommodating Unequal Probabilities of Selection

Maintaining the ignorability assumption for the sampling mechanism often requires

accounting for the sample design in both the likelihood and the prior model structure.

In the case of the disproportional probability-of-inclusion sample designs, this can be

accomplished by developing an index h ¼ 1; : : : ;H of the probability of inclusion (Little

1983, 1991); this could either be a one-to-one mapping of the case weight order statistics

to their rankings, or a preliminary “pooling” of the case weights using, e.g., the 100/H

percentiles of the case weights. Let nh be the number of included units and Nh the

population size in weight stratum h, so that wh ¼ Nh=nh, for h ¼ 1; : : : ;H. We assume

here that Nh is known, as when the weight strata come from a stratified random sample.

(If Nh is unknown, as would be the case when the weights are constructed from estimated

probabilities of inclusion via calibration or nonresponse adjustments, it can be replaced

with N̂h ¼ nhwh N̂h can be treated as known, or if the underlying within-stratum samples

are small, uncertainty in N̂h can be incorporated into the model by treating n1; : : : ; nH as a

multinomial distribution of size n parameterized by unknown inclusion stratum

probabilities q1; : : : ; qH with, e.g., a Dirichlet prior (Lu and Gelman 2003). Draws of

N*
h could then be obtained as Nwhq

*
h=n, where q*

h is drawn from the Dirichlet posterior for

q. If the weights within a stratum are not all equal, then wh can be approximated by the

inverse of the mean probability of inclusion with the stratum given by nh=
P

i[h w
21
hi Þ. The

data are then modeled by

yhijuh , f ð yhi; uhÞ; i ¼ 1 : : : ;Nh

for all elements in the hth inclusion stratum, where uh allows for an interaction between

the model parameter(s) u and the inclusion stratum h. Putting a noninformative prior

distribution on uh then reproduces a fully-weighted analysis with respect to the expectation

of the posterior predictive distribution of Q(Y).
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3. Weight Pooling Models

Weight trimming effectively pools units with large weights by assigning them a common,

trimmed weight. The untrimmed (design-based) weighted mean estimator in a

disproportionally stratified design is then �yw ¼
P

h

P
i whyhi=

P
h

P
i wh ¼

P
hðNh=NþÞ�yh,

where Nþ ¼
P

h Nh, the total population. Weight trimming typically proceeds by

establishing an a priori cutpoint, say 3 for the normalized weights, and multiplying

the remaining weights by a normalizing constant g ¼ ðNþ 2
P

kiwoÞ=
P

ð1 2 kiÞwi, where

ki is an indicator variable for whether or not wi $ w0. The trimmed mean estimator is thus

given by

�ywt ¼
Xl21

h¼1

g
Nh

Nþ

�yh þ
XH
h¼l

w0nh

Nþ

�yh ¼ g
Xl21

h¼1

Nh

Nþ

�yh þ
w0

XH

h¼1
nh

Nþ

�y ðl Þ

where g ¼ ðNþ 2 w0

PH
h¼lnhÞ=

Pl21
h¼1Nh and �y ðlÞ ¼ ð1=

PH
h¼lnhÞ

PH
h¼lnh �yh. Choosing w0 ¼PH

h¼lNh=
PH

h¼lnh yields g ¼ 1 and �ywt ¼
Pl21

h¼1ðNh=NþÞ�yh þ ð
PH

h¼lNhÞ=ðNþÞ�y
ðl Þ corre-

sponds to the estimate for a model that assumes distinct stratum means for the smaller weight

strata and a common mean for the larger weight strata, that is:

yhijmh , Nðmh;s
2Þ h , l ð3:1Þ

yhijml , Nðml;s
2Þ h $ l

mh;ml; logs/ const:

Elliott and Little (2000) considered an extension of this model where we no longer

assume the cutpoint l is known:

yhijmh , Nðmh;s
2Þ h , l

yhijml , Nðml;s
2Þ h $ l

pðL ¼ l Þ ¼ 1=H

pðs2jL ¼ l Þ ¼ s2ðlþ1=2Þ

pðbjs2; L ¼ l Þ ¼ ð2pÞ2l

where m1 ¼ b0; : : : ;ml ¼ b0 þ bl21. This “weight pooling” model averages the

estimators obtained from all possible weight trimming cutpoints, where each estimator

contributes to the final average based on the probability that the cutpoint is “correct.”

This posterior probability is determined via Bayesian variable selection models that

determine the posterior probability of each cutpoint model conditional on the observed

data.

3.1. Weight Pooling Models for Linear Regression

This manuscript extends Elliott and Little (2000) in two ways. First, we consider the linear

regression of Yi on fixed covariates xi. Thus the most general model must allow for

interactions between the probability of selection and the linear regression slopes; the full

interaction model (a different slope within each probability-of-selection stratum,
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equivalent to no pooling) approximately reproduces the fully-weighted estimator, while

the minimal model (a single slope across all probability-of-selection strata, equivalent to

full pooling) approximately reproduces the unweighted estimator. Pooling of some, but

not all, of the strata, reproduces the trimmed estimator where the degree of trimming is

determined by the degree to which the data suggest that distinct probability-of-selection

strata have similar linear regression slopes. Second, we allow for the pooling of all

conterminous inclusion strata. This increases the robustness of the model, by permitting

the lowest probability-of-selection strata to interact with the linear regression slopes even

when higher probability-of-selection strata are pooled. Thus

yhijxhi;bl;s
2; L ¼ l ind, NðZT

libl;s
2Þ ð3:2Þ

bljs
2; L ¼ l , Nðb0;s

2S0Þ

s2jL ¼ l , Iny 2 x2ða; s2Þ

pðL ¼ l Þ ¼ 22ðH21Þ

where Zli ¼ Dhl^xhi and Dhl is a vector of dummy variables that pool the appropriate

conterminous inclusion strata based on the lth pooling pattern.

Table 2 shows the set of pooling patterns when H ¼ 4. Under weak or noninformative

priors, the first four pooling strata mimic standard weight trimming estimators, with L ¼ 1

Table 2. The set of {Dhl} when four weight strata are present: all patterns of pooling coterminous strata

Pooling pattern index Dummy variable pattern Number of
pooled strata

L ¼ 1 (complete pooling) Dhl ¼ ð1Þ for all h H * ¼ 1

L ¼ 2 (pool highest three weight strata) Dhl ¼ ð1 0Þ for all h ¼ 1 H * ¼ 2
Dhl ¼ ð0 1Þ for h $ 2

L ¼ 3 (pool highest two weight strata) Dhl ¼ ð1 0 0Þ for h ¼ 1 H * ¼ 3
Dhl ¼ ð0 1 0Þ for h ¼ 2
Dhl ¼ ð0 0 1Þ for h $ 3

L ¼ 4 (no pooling) Dhl ¼ ð1 0 0 0Þ for h ¼ 1 H * ¼ 4
Dhl ¼ ð0 1 0 0Þ for h ¼ 2
Dhl ¼ ð0 0 1 0Þ for h ¼ 3
Dhl ¼ ð0 0 0 1Þ for h ¼ 4

L ¼ 5 (pool all but highest weight stratum) Dhl ¼ ð1 0Þ for h # 3 H * ¼ 2
Dhl ¼ ð0 1Þ for h ¼ 4

L ¼ 6 (pool first and last two weight strata) Dhl ¼ ð1 0Þ for h # 2 H * ¼ 2
Dhl ¼ ð0 1Þ for h $ 3

L ¼ 7 (pool middle two strata) Dhl ¼ ð1 0 0Þ for h ¼ 1 H * ¼ 3
Dhl ¼ ð0 1 0Þ for h ¼ 2; 3
Dhl ¼ ð0 0 1Þ for h ¼ 4

L ¼ 8 (pool lowest two weight strata) Dhl ¼ ð1 0 0Þ for h # 2 H * ¼ 3
Dhl ¼ ð0 1 0Þ for h ¼ 3
Dhl ¼ ð0 0 1Þ for h ¼ 4
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corresponding to an unweighted analysis and L ¼ 4 corresponding to a fully-weighted

analysis.

Our population quantity of interest B ¼ ðB1; : : : ;BpÞ
T is the slope that solves the

population score Equation (1.3) where

UNðbÞ ¼
XN
i¼1

›

›b
log f ð yi;bÞ ¼

XN
i¼1

2
1

s2
ð yi 2 xTi bÞxi ¼ 0

or

B ¼
XN
i¼1

xix
T
i

 !21 XN
i¼1

xiyi

 !

Note that the quantity B such that U(B) ¼ 0 is always a meaningful population quantity

of interest even if the model is misspecified (i.e., yi is not exactly linear with respect to the

covariates), since it is the linear approximation of xi to EðYijxiÞ.

The posterior predictive distribution of B is then given by

pðBjy;XÞ ¼
l

Xð ð
pðBjy;X; ulÞpðuljy;XÞdul

for ul ¼ ðbl;s
2; L ¼ l Þ. Simulations from pðBjy;XÞ can be obtained by first

obtaining a draw from pðuljy;XÞ, and then computing B ¼
PH

h¼1Wh

Pnh
i¼1ZliZ

T
li

� �21

£
PH

h¼1Wh

Pnh
i¼1ZliZ

T
li

� �
bl

� �
, where Wh ¼ Nh=nh for the population size Nh and sample

size nh is the hth inclusion stratum. Note that this preserves the distribution of the

covariates under the sample design while allowing the slopes to still be fully-modeled.

A direct draw from pðuljy;XÞ ¼ pðbljs
2; L ¼ l; y;XÞpðs2jL ¼ l; y;XÞpðL ¼ ljy;XÞ is

possible if H is of modest size; otherwise a Metropolis step can be run to obtain an

approximation to the marginal posterior of pðL ¼ ljy;XÞ, and direct draws obtained

accordingly. Details are provided in the Appendix.

3.2. Fractional Bayes Factors

In the absence of strong prior information to define p(ul), the Bayes Factors (BF)

comparing weight pooling model l with weight pooling model l0

BFð y;XÞ ¼
pðL ¼ ljy;XÞ

pðL ¼ l0jy;XÞ
¼

pð yjL ¼ l;XÞpðL ¼ l Þ

pð yjL ¼ l0;XÞpðL ¼ l0Þ
¼

Ð
f ð yjulÞpðulÞdulpðL ¼ l ÞÐ
f ð yjul 0 Þpðul 0 Þdul 0pðL ¼ l0Þ

can be quite sensitive to the choice of p(ul) (Kass and Raftery 1995). We have a similar

issue in our weight pooling model, since our marginal pooling probabilities are

simply Bayes Factors converted from the odds to the probability scale. To counter this, we

consider the “fractional Bayes factor” approach proposed in O’Hagan (1995). The concept

extends the training-sample idea first proposed in Spiegelhalter and Smith (1982).

A fraction b of the sample is set aside as to provide a data-based proper prior for ul.

O’Hagan (1995) shows that the resulting Bayes factor for comparing model l with model l0

using the data-based prior, which he terms a fractional Bayes factor (FBF), is of the form
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BFbð y;XÞ ¼ qlð f ; y;XÞPðL ¼ l Þ=ql 0 ð f ; y;XÞPðL ¼ l 0Þ, where

qlð f ; y;XÞ ¼

Ð
pðulÞf ð yjulÞdulÐ
pðulÞf ð yjulÞ

bdul

Small values of b should be most efficient at choosing correct models, while larger

values of b are protective against outliers (data generated under a model not in the classes

considered). O’Hagan proposed n 21log n and n 21/2 as increasingly “robust” choices of b.

O’Hagan assumes a noninformative prior h(ul) in contrast to our proper prior, but very

weakly informative priors, as we use in simulations and examples below, can be used as

well. The Appendix provides details describing the use of FBF in the weight pooling

application.

4. Simulation Results

4.1. Mean Models

We considered the repeated sampling properties of our proposed models for estimating

population means given by �Y ¼ N21
PN

i¼1Yi ði:e:; xi ¼ 1 for all i). We generated data

under the following model:

YijYi [ h;m;s2 , Nðmh;s
2Þ

The population size of the H ¼ 10 selection strata were as follows:

N ¼ ð800; 1;000; 1;200; 1;500; 2;000; 3;000; 5;000; 7;500; 10;000Þ

from which disproportional samples of size 500 and 100 were drawn:

n ¼ ð90; 80; 70; 60; 50; 50; 40; 30; 20; 10Þ

n ¼ ð18; 16; 14; 12; 10; 10; 8; 6; 4; 2Þ

(maximum normalized weight ¼ 13.9).

We considered two patterns for the means across 10 inclusion strata:

1: mC ¼ ð22:5; 14:4; 9:0; 4:8; 1:8;21:2;21:8;22:16;21:92;21:8Þ0

2: mD ¼ ð21:8;21:92;22:16;21:8;21:2; 1:8; 4:8; 9:0; 14:4; 22:5Þ0

and considered values of s2 ¼ 10l, l ¼ 21; 0; : : : ; 3; 200 simulations were generated for

each value of s 2. The mean pattern mC would generally be favorable for weight trimming,

since the means for the low probability-of-selection weight strata are approximately equal;

mD would generally be unfavorable for weight trimming, since the means for the low

probability-of-selection weight strata differ substantially. Generally, weight trimming

should be more favorable as s2 !1 and the effect of the bias correction is minimized; the

fully-weighted estimator will generally be favored as s2 ! 0, and bias correction is

paramount.

For priors, we considered m0 ¼ m̂ ¼ ð �y1; : : : ; �yHÞ
0,S0¼ c

PH
h¼1

Pnh
i¼1ð yhi 2 �yhÞ

2 and

a ¼ s ¼ 1028 (see (3.2)). This is a “data-based” prior that centers all the inclusion means
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at their unweighted sample values, with a variance scaled by the sample size n so that it is

equivalent to a variance estimate based on a single observation. We further scale this prior

by a factor c $ 1 to allow for reduced informativeness; we consider c ¼ 1,000 in the

simulations below, making the prior effectively noninformative. We term the estimator of
�Y obtained under this model PWT. We also consider the Factional Bayes Factor data-based

prior as well; PWTF1, which uses a training fraction of log n/n, and PWTF2, which uses a

larger training fraction, of n 21/2. O’Hagan suggests that PWTF1 will be more efficient at

choosing the correct model when the true model is among the models considered, whereas

PWTF2 will be more robust (have better repeated sampling properties when the true model

is not among the models considered).

In addition to these three weight pooling models, we consider the standard designed-

based (fully weighted) estimator (FWT), as well as two trimmed weight (TWT3, TWT7)

and unweighted (UNWT) estimators. The TWT3 estimator is obtained by replacing the

weights whi with trimmed values wt
hi that set the maximum normalized value to 3:

wt
hi ¼ N ~wt

hi=
PH

h¼1nh ~w
t
h, where ~wt

hi ¼ minðwhi; 3N=nÞ; this approximately corresponds

to the weight pooling model (3.1) with l ¼ 6. The TWT7 estimator uses trimmed values

that set the maximized values to 7, approximately corresponds to the weight pooling

model (3.1) with l ¼ 8. The UNWT estimator obtained by fixing whi ¼ N=n for all h, i.

We estimate their variance using the Taylor Series (linearization) approximation (Binder

1983) that accounts for weighting and stratification.

Table 3 shows the root mean squared error (RMSE) relative to the fully-weighted

estimator and nominal 95% coverage for the three design-based and three model-based

estimators of the population mean, as a function of the variance s 2, under mC, the structure

Table 3. Squared root of mean squared error (RMSE) relative to RMSE of fullt-weighted estimator, and true

coverage of the 95% CI or PPI of population mean estimator under the model mC that is consistent with weight

trimming

RMSE relative to FWT True coverage

n ¼ 100 Variance log10 Variance log10

Estimator 22 0 2 4 6 22 0 2 4 6
UNWT 358.35 37.72 2.90 0.54 0.42 0 0 0 93 98
FWT 1 1 1 1 1 93 92 85 92 88
TWT3 36.80 3.92 0.65 0.70 0.65 0 0 94 96 96
TWT7 3.65 1.62 0.88 0.84 0.84 6 77 93 92 96
PWT 1.01 0.94 0.92 0.91 0.89 95 98 90 96 95
PWTF1 1.06 0.89 0.83 0.81 0.80 94 97 91 96 95
PWTF2 1.04 0.89 0.86 0.85 0.83 94 97 92 96 94
n ¼ 500
UNWT 739.48 72.52 7.78 0.69 0.39 0 0 0 80 98
FWT 1 1 1 1 1 98 96 98 96 96
TWT3 76.14 7.56 1.02 0.64 0.63 0 0 88 97 98
TWT7 8.96 2.63 1.15 0.82 0.80 0 29 97 99 100
PWT 1.03 0.91 0.84 0.83 0.81 94 94 98 92 96
PWTF1 1.09 0.85 0.76 0.76 0.72 92 96 99 95 96
PWTF2 1.06 0.87 0.82 0.82 0.79 94 95 98 95 96
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that favors weight trimming. Table 4 shows the equivalent measures under m D, the

structure that is not consistent with weight trimming.

Even when the mean structure is favorable for weight trimming, the unweighted

estimator (UNWT) and crude trimming estimators (TWT3, TWT7) behave poorly when

s 2 is small, but have better MSE properties than the fully weighted estimator and

conservative coverage when the within-stratum variance is considerably larger than the

between-stratum variance. The trimmed estimator requires a smaller residual variance to

have better MSE properties than the fully weighted estimator, but the unweighted

estimator has the best MSE properties for the largest residual variance. The fully weighted

estimator is design-unbiased; coverage is approximately correct for n ¼ 500, but anti-

conservative when n ¼ 100 due to the poor asymptotic approximation. The pooled weight

estimator under the flat prior nearly dominates the fully-weighted estimator with respect to

MSE and has approximately correct coverage when n ¼ 100, since asymptotic

assumptions are not necessary for the Bayesian estimator. Similar results are found for

the pooled weight estimator using the fractional Bayes Factor priors, except that the

increase in efficiency is greater for larger s 2 (RMSE reductions of nearly 30%).

When the mean structure is not favorable for weight trimming, the UNWT and TWT

estimators both have larger MSE than the FWT estimator and very poor coverage except

for very large s 2. The pooled weight estimators are fairly robust, with slightly increased

MSE relative to the fully weighted estimator for intermediate values of s 2, and improved

MSE relative to the fully weighted estimator for large values of s 2. The true coverage of

the pooled weight estimator is somewhat less that the nominal coverage when n ¼ 100 but

is still better than that of the fully weighted estimator, again reflecting the lack of need for

asymptotic assumptions in the Bayesian paradigm.

Table 4. Squared root of mean squared error (RMSE) relative to RMSE of fullt-weighted estimator, and true

coverage of the 95% CI or PPI of population mean estimator under the model mD that is consistent with weight

trimming.

RMSE relative to FWT True coverage

n ¼ 100 Variance log10 Variance log10

Estimator 21 0 1 2 3 21 0 1 2 3
UNWT 471.23 37.73 4.37 0.56 0.39 0 0 0 94 98
FWT 1 1 1 1 1 94 88 88 93 90
TWT3 192.64 15.45 2.04 0.68 0.65 0 0 28 98 96
TWT7 23.49 7.83 2.74 1.09 0.86 0 0 30 82 94
PWT 1.00 1.01 1.08 0.90 0.91 96 88 90 94 96
PWTF1 1.00 0.99 1.17 0.82 0.81 96 88 88 96 96
PWTF2 1.00 1.00 1.13 0.85 0.84 95 90 89 94 96
n ¼ 500
UNWT 1015.9 92.02 9.81 1.01 0.45 0 0 0 58 98
FWT 1 1 1 1 1 96 96 98 95 98
TWT3 415.58 37.64 4.02 0.75 0.66 0 0 0 95 98
TWT7 56.42 17.71 5.79 2.03 0.91 0 0 0 70 96
PWT 1.01 1.00 1.08 0.91 0.80 96 96 94 95 94
PWTF1 1.00 1.01 1.15 0.88 0.70 95 94 92 94 96
PWTF2 1.00 1.00 1.11 0.89 0.80 96 94 93 94 96
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4.2. Linear Regression Models

For the linear regression model, we generated population data under a linear spline as

follows:

YijXi;b;s
2 , Nðb0 þ

X10

h¼1

bhðXi 2 hÞþ;s
2Þ

Xi , UNIð0; 10Þ; i ¼ 1; : : : ;N ¼ 20; 000:

where ðxÞþ ¼ x if x $ 0 and ðxÞþ ¼ 0 if x , 0. A noninformative, disproportionally

stratified sampling scheme sampled elements as a function of Xi (Ii equals 1 if sampled and

0 otherwise):

Hi ¼ ½Xi�

PðIi ¼ 1jHiÞ ¼ ph / ð1 þ Hi=2:5ÞHi

This created 10 strata, defined by the integer portions of the Xi values. A total of

n ¼ 1,000 elements were sampled without replacement for each simulation (maximum

normalized weight N < 14.9). The object of the analysis is to obtain the population slope

B1 ¼
PN

i¼1ðYl 2 YÞðXi 2 XÞ=
PN

i¼1ðXi 2 XÞ2.

We considered three patterns for b:

1. bC ¼ ð0; 0; 0; 0; :5; :5; 1; 1; 2; 2; 4Þ0

2. bD ¼ ð0; 11;24;22;22;21;21;2:5;2:5; 0; 0Þ0

3. bE ¼ ð0; 2; 0; 0; 0; 0; 0; 0; 0; 0Þ0.

and considered values of s2 ¼ 10l, l ¼ 1; : : : ; 5; 200 simulations were generated for each

value of s 2. The effect of model misspecification increases as s2 ! 0 as the bias of the

estimators becomes larger relative to the variance, and conversely decreases as s2 !1.

Under bC, weight trimming is likely to be a productive strategy under smaller values of s 2

than under bD, since the low probability-of-selection slopes are equal. Under bE, the linear

regression model for the population is correctly specified, and the unweighted estimator

should be most efficient.

We use priors equivalent to the “data-based” priors we used for population

means, extended to population slopes: b0 ¼ b̂ ¼ ðXTXÞ21XTy, S0 ¼ cnVarðb̂Þ

for Varðb̂Þ ¼ t̂2ðXTXÞ21, t̂2 ¼ ðn2 pÞ21ðy2 Xb̂ÞT ðy2 Xb̂Þ, a ¼ s ¼ 1028, and

c ¼ 1,000. We again consider Fractional Bayes Factor with training fraction of log n/n

and n 21/2.

As in the population mean evaluation, we consider the FWT, TWT3, TWT7 and UNWT

estimators, again estimating their variance using the Taylor Series (linearization)

approximation that accounts for weighting and stratification. As in the mean model TWT3

approximately corresponds to the weight pooling model (3.1) with l ¼ 6, and TWT7

approximately corresponds to the weight pooling model (3.1) with l ¼ 8.

Table 5 shows the root mean squared error (RMSE) relative to the fully-weighted

estimator and nominal 95% coverage for the three design-based and three model-based

estimators of the population slope (second component of B̂) as a function of the
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variance s 2, under bC, the structure that favors weight trimming for smaller values of s 2

Tables 6 and 7 show the equivalent measures under bD and bE, the structures that

respectively favor weight trimming for only larger values of s 2, and the correctly

specified linear model. Under all three models, the nominal coverage of the 95% CI of the

fully weighted estimator is approximately correct.

The unweighted and trimmed estimators are always biased because of model

misspecification, although the reduction in variance overwhelms bias correction for large

s 2, yielding approximately correct nominal 95% CI coverage and smaller MSEs relative to

the fully weighted estimator. When the model is correctly specified, the unweighted and

trimmed estimators reduce RMSE by 35–45%, and the Nominal 95% CI coverage is correct.

The weight pooling estimator with noninformative prior generally tracks the fully

weighted estimator in the presence of model misspecification, although for large s 2 there

is a 10% reduction in RMSE. Nominal 95% coverage is correct except for small values of

s 2 under bD, the model least favorable to weight trimming. Under the correctly specified

Table 6. Squared root of mean squared error (RMSE) relative to RMSE of fullt-weighted estimator, and true

coverage of the 95% CI or PPI of population mean estimator under the model bD that is consistent with weight

trimming.

RMSE relative to FWT True coverage

Variance log10 Variance log10

Estimator 1 2 3 4 5 1 2 3 4 5

UNWT 9.69 3.68 1.52 0.57 0.63 0 0 25 93 96
FWT 1 1 1 1 1 92 91 96 94 96
TWT3 5.40 2.22 1.00 0.65 0.68 0 7 88 98 99
TWT7 3.24 1.43 0.89 0.85 0.75 6 69 93 95 98
PWT 1.00 1.00 1.01 0.93 0.90 84 92 93 96 98
PWTF1 1.02 1.04 1.11 0.60 0.53 85 92 90 96 98
PWTF2 1.03 1.03 0.96 0.74 0.70 88 93 94 98 96

Table 5. Squared root of mean squared error (RMSE) relative to RMSE of fullt-weighted estimator, and true

coverage of the 95% CI or PPI of population mean estimator under the model bC that is consistent with weight

trimming.

RMSE relative to FWT True coverage

Variance log10 Variance log10

Estimator 1 2 3 4 5 1 2 3 4 5

UNWT 15.27 4.68 1.75 0.61 0.57 0 0 16 87 96
FWT 1 1 1 1 1 96 92 94 95 94
TWT3 5.45 1.83 0.80 0.61 0.57 0 22 95 98 98
TWT7 2.72 1.18 0.73 0.74 0.66 19 82 98 96 98
PWT 0.99 0.98 0.97 0.93 0.93 96 94 96 96 96
PWTF1 1.00 1.01 1.00 0.73 0.55 90 88 91 92 97
PWTF2 0.94 0.90 0.84 0.72 0.70 96 94 96 96 99
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model, the weight pooling estimator with noninformative prior has a 5–10% reduction in

RMSE, with correct nominal 95% PPI coverage.

The weight pooling estimator with the smaller training fraction FBF prior (PWTF1) has

equivalent RMSE to the fully-weighted estimator when s 2 is small under bC and weight

trimming is not warranted, but has equivalent RMSE to the unweighted estimator when s 2

is large and weight trimming is appropriate. A similar pattern is seen under bD except that

PWTF1 “overpools” somewhat for intermediate levels of s 2, leading to slightly larger

RMSE than the fully-weighted estimator. Under the correctly specified model bE, PWTF1

has RMSE properties similar to that of TWT3, with a 35–45% reduction in RMSE. There

is modest undercoverage of the nominal 95% PPI when s 2 is small and the model is

misspecified.

The weight pooling estimator with the larger training fraction FBF prior (PWTF2) is

more robust that PWTF1, with little increase in RMSE over the fully-weighted estimator

even when the model is misspecified and s 2 is small, but retaining substantial RMSE

reductions (over 30%) when bias correction is unimportant or the model is correctly

specified. Coverage properties of the 95% PPI are correct, except for modest

undercoverage under the “worst case” model (bD with small s 2).

5. Application: Consideration of the Barker Hypothesis Using NHANES Data

Barker et al. (1993) described an association between on the one hand low birth weight,

on the other adult cardiovascular disease and type 2 diabetes. It was postulated that in the

face of a nutritionally stressed fetal environment, the fetus adapts in a manner which

predisposes to the development of insulin resistance and increased CVD risk factors in

later life. This hypothesis has been evaluated by others (Curhan et al. 1996; Rich-

Edwards et al. 1997, among many), but usually in convenience samples. A few analyses

have considered whether evidence of the “Barker Hypothesis” exists in children

(Forrester et al. 1996; Matthes et al. 1994), again with convenience samples and limited

ethnic diversity.

Table 7. Squared root of mean squared error (RMSE) relative to RMSE of fullt-weighted estimator, and true

coverage of the 95% CI or PPI of population mean estimator under the correctly specified model bE.

RMSE relative to FWT True coverage

Variance log10 Variance log10

Estimator 1 2 3 4 5 1 2 3 4 5

UNWT 0.55 0.46 0.55 0.50 0.49 94 96 94 96 96
FWT 1 1 1 1 1 96 95 96 94 96
TWT3 0.64 0.54 0.66 0.60 0.59 96 100 98 98 98
TWT7 0.75 0.70 0.68 0.71 0.72 98 97 98 98 98
PWT 0.93 0.91 0.93 0.93 0.93 94 98 98 94 96
PWTF1 0.62 0.56 0.63 0.61 0.59 98 98 94 96 95
PWTF2 0.69 0.70 0.72 0.71 0.68 97 97 97 98 98
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To evaluate the Barker hypothesis in children using a population-based sample, we use

the National Health and Examination Nutrition Survey III (NHANES III). NHANES III

(U.S. Department of Health and Human Services 1997) is a U.S.-wide survey designed to

collect information about the diet and health status of the U.S. population. The survey was

conducted between 1988 and 1994 with 33,394 subjects, drawn from a probability sample

of the U.S. population with a complex sample design construction. The primary sample

units (PSUs) consisting of standard metropolitan statistical areas (SMSAs), counties, or

groups of counties were collapsed into strata. Strata containing a single large SMSA had

that PSU selected with probability 1. Two PSUs were selected from the remaining strata

using a “controlled selection” process that selected PSUs proportional to population while

assuring balance on key covariates such as region, socioeconomic status, etc. Within each

PSU clusters of dwelling units were sampled using controlled selection as well, and a

systematic sample of addresses were then selected from each cluster. Oversamples of

minorities (African- and Mexican-Americans) and the young (,6) and old (60 þ ) were

also obtained. The NHANES III sampling weights are highly variable: 215 ,wi ,79,382,

where 8% of the weights have normalized values larger than 3. The weights include a

nonresponse adjustment as well as a post-stratification adjustment to known Census age-

sex-geographic-ethnicity (non-Hispanic Caucasian, non-Hispanic African-American,

Mexican-American, and other) totals that also account for the age-ethnicity oversampling,

and included crude trimming adjustments at each step. (No detail is provided about the

weight trimming procedures except that fewer than 1% of the cases have trimmed weights

(Mohadjer et al. l996). In the analysis below, the weights were grouped into 10 strata for

the weight-pooling model.

To evaluate this hypothesis using the population-based estimates in NHANES, we

regress non-HDL cholesterol on birth weight and birth weight2 among 4–12 year olds,

unadjusted and adjusting for age, gender, age x gender, and current body-mass index

(BMI). Table 8 shows the unweighted, fully-weighted, weight trimming (to a maximum

normalized value of 3), pooled weight, and fractional Bayes factor pooled weight

estimators along with estimates of bias and mean squared error under the assumption that

the fully weighted estimator is unbiased for both the unadjusted and adjusted models.

Because a fully-weighted regression estimator b̂w is unbiased only in expectation, the

estimated squared bias of a regression estimator b̂* is given by maxððb̂
*
2 b̂wÞ

2 2 V̂01; 0Þ

where V̂01 ¼ dVarVarðb̂
*
Þ þdVarVarb̂wÞ2 2dCovCovðb̂

*
; b̂wÞ (Kish 1992). To account for the

effects of clustering and stratification in the multi-stage sample design, the variances

of the regression estimators were calculated using a bootstrap (Davidson and

Hinckley 1997, pp. 92–102) where PSUs were resampled with replacement within

strata. For each resampled dataset, the unweighted and fully-weighted estimates

were computed as Bu ¼ ðX 0XÞ21X 0y and Bw ¼ ðX 0WXÞ21X 0Wy respectively, where

W is the n x n diagonal case weight matrix. Point estimates under the weight

pooling method were computed as Bp ¼
PH *

l¼1B̂lPðL ¼ ljy;XÞ, where B̂l ¼PH
h¼1Wh

Pnh
i¼1ZliZ

T
li

� �21 PH
h¼1Wh

Pnh
i¼1ZliZ

T
li

� �
b̂l

� �
for b̂l ¼ ðZ 0

lZlÞ
21Z 0

ly where Zl

consists of the stacked vectors of Zli. To compute PðL ¼ ljy;XÞ we used a Fractional

Bayes Factor data-based prior with a training fraction of n 21/2 (PWTF2).

In this example, the unweighted estimator appears to have better RMSE properties

than the fully-weighted estimator, particularly for the linear term; the unweighted and
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weighted quadratic terms are approximately equal under both models. The weight

pooling estimator compromises between the unweighted and fully-weighted estimator

for the unadjusted linear term, but tracks the unweighted estimator in the adjusted

model. The weight pooling estimator tracks the unweighted estimator in the

unadjusted model and compromises between the weighted and unweighted estimator

in the adjusted model; the fractional Bayes factor weight pooling estimator

compromises between the unweighted and fully-weighted estimator for the unadjusted

linear term, but tracks the unweighted estimator in the adjusted model. The weight

pooling estimator has the best MSE properties, somewhat smaller than those of the

unweighted estimator; the variance of the fractional Bayes factor weight pooling

estimator is somewhat larger than that of the unweighted estimator. The crude

trimming estimator has the next-best MSE properties, with the fully-weighted

estimator having the maximum MSE for both the unadjusted and adjusted models.

Both the unadjusted and adjusted estimates suggest that a quadratic effect might be

present, with extremely underweight, and normal and above-normal weight children

having lower levels of non-HDL cholesterol than moderately underweight children.

However, the trends were not jointly significant using a Wald test with 2 degrees of

freedom using either the unweighted, fully-weighted, or weight-pooling estimators.

Table 8. Change in non 2 HDL cholesterol (mg/dL) associated with each 1 lb. change in birth weight, among

U.S.4–12 year-olds, using unweighted (UNWT), fully-weighted (FWT), trimmed weight (TWT3), pooled weight

(PWT), and fractional Bayes factor pooled weight (PWFT2) estimators; unadjusted and adjusted for age, gender,

and age x gender interactions. Point estimates for PWT and PWTF2 models from posterior median; 95% CI or

PPI in subscript. RMSE ¼ estimated root mean squared error, treating fully-weighted estimator as unbiased in

expectation. Data from National Health and Nutrition Examination Survey III

Unadjusted Adjusted

Birth weight Birth weight2 Birth weight Birth weight2

UNWT
Est.95%CI 0.2520.41,0.85 20.1920.42,0.03 20.0820.84,0.44 0.1520.45,20.01

Bias 0.38 0.02 0.42 0.06
RMSE 0.32 0.12 0.36 0.11

FWT
Est.95%CI 20.1321.39,1.04 20.2120.58,0.08 20.5121.75,0.40 20.2120.55,0.00

Bias 0 0 0 0
RMSE 0.61 0.15 0.57 0.13

TWT3
Est.95%CI 20.0621.00,0.81 20.1920.48,0.05 20.3521.06,0.32 20.2420.63,0.07

Bias 0.07 0.02 0.16 20.03
RMSE 0.46 0.12 0.34 0.18

PWT
Est.95%CI 0.2520.46,0.81 20.1920.40,0.01 20.1220.75,0.39 20.2820.45,20.00

Bias 0.38 0.02 0.40 20.07
RMSE 0.31 0.11 0.29 0.11

PWFT2
Est.95%CI 0.1821.24,0.92 20.192.46,0.03 20.1321.20,0.39 20.2120.52,0.02

Bias 0.31 0.02 0.38 0.00
RMSE 0.50 0.13 0.40 0.12
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6. Discussion

In this manuscript we have developed a “weight smoothing” methodology that allows

the data to make a principled tradeoff between bias and variance – approximating the

fully-weighted estimator when bias is of great importance, but moving toward the

unweighted estimator when variance overwhelms the squared bias correction factor. This

model generalizes the work of Elliott and Little (2000), where population inference was

restricted to population means using a weight pooling model that mimicked weight

trimming. A shortcoming of the previous model was lack of robustness: by considering

submodels that pooled only the largest weight strata, data structures that favored fully-

weighted estimators were “overpooled” and the resulting bias yielded MSEs that were

larger than the fully-weighted estimators’ MSEs. Here we consider a model that allows for

the pooling of all conterminous inclusion strata. This yields weight pooling estimators that

are protected against overpooling, but have limited efficiency gains over fully-weighted

estimators. By considering the “Fractional Bayes Factors” of O’Hagan (1995), in which a

fraction b of the sample is set aside as to provide a data-based proper prior, we showed

that our resulting estimators retained their robustness properties while gaining

considerable efficiencies over standard fully-weighted estimators. This article also

extends the weight pooling method to consider population linear regression slopes as well

as population means.

We also applied the methods to assess “Barker’s Hypothesis,” an association between

on the one hand low birth weight, on the other adult cardiovascular disease and Type

2 diabetes (Barker et al. 1993), using the nationally representative National Health and

Examination Nutrition Survey III. In this situation, the unweighted estimates of the

quadratic effect of birth weight on non-HDL cholesterol generally had the best RMSE

properties; however the weight pooling estimators outperformed the fully-weighted

estimators.

When sampling weights are used to account for misspecification of the mean in a

regression setting, it could be argued that the correct approach is to correctly specify

the mean to eliminate discrepancies between the fully-weighted and unweighted

estimates of the regression parameters. However, perfect specification is an unattainable

goal, and even good approximations might be highly biased if case weights are ignored

if the sampling probabilities are highly variable, even if the sampling itself is

noninformative. In the informative sampling setting, it may be impossible to determine

whether discrepancies between weighted and unweighted estimates are due to model

misspecification or to the sample design itself. Finally, even misspecified regression

models have the attractive feature in the finite population setting of yielding a unique

target population quantity. Consequently accounting for the probability of inclusion in

linear model settings continues to be advised, and methods that balance between a low-

bias, high variance fully-weighted analysis and a large bias, low variance unweighted

analysis remain useful.

The next logical extension of the weight pooling methods is into the generalized linear

model setting. The situation is complicated here by the lack of a closed form solution for

pð yjL ¼ l;XÞ outside of the Gaussian special case, making it difficult to compute a

Fraction Bayes Factor to enhance efficiency. One possibility is to utilize Laplace
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approximations (Tierney and Kadane 1986). In general, we have pðL ¼ ljyÞ ¼ Cl=
P

l Cl

where Cl ¼
Ð
f ð yjulÞpðulÞlul. By approximating the posterior with a normal distribution,

we estimate Cl with ð2pÞl=2j
P̂

j
1=2

f ð yjûlÞpðûlÞ where ûl is a value with high posterior

probability (a median or mode). DiCiccio et al. (1997) discuss improvements on this

approximation that may be utilized as well.

7. Appendix

From (3.2), we obtain a direct draw from the posterior of pðbl;s
2; L ¼ ljy;XÞ as follows:

(1) pðL¼ljy;XÞ¼pð yjL¼l;XÞPðL¼l Þ=
P

lpð yjL¼l;XÞPðL¼l Þ, where pðyjL¼l;XÞ/

jClj
1=2

½Dl2uTl Clul�
2ðnþaÞ=2 for Cl¼ððZT

l ZlÞþ
P

0Þ
21, ul¼ðZT

l ZlÞbþ
P

0b0,

Dl¼bT ðZT
l ZlÞbþbT

0

P21
0 b0þQ2

l þas2, b¼ðZT
l ZlÞ

21ZT
l y, and Q2

l ¼yT ðIpH*2HlÞy,

Hl¼ZlðZ
T
l ZlÞ

21ZT
l .

(2) s2jL ¼ l; y;X , Inv2 x2ðnþ a;Dl 2 uTl ClulÞ

(3) bljs
2; L ¼ l; y;X , NðGlAl;s

2GlÞ;Al ¼ ZT
l yþ S

21
0 b0;Gl ¼

�
S
21
0 þ ðZT

l ZlÞ
�21

We derive these marginal and conditional distributions in reverse order to simplify

computation and notation.

(3) is derived by noting that

pðbljs
2; L ¼ ljy;XÞ / f ð yjX;bl;s

2; L ¼ l Þpðbljs
2; L ¼ l Þ

/ exp 2
1

2s2
½ðb2 blÞ

T ðZT
l ZlÞðb2 blÞ þ ðbl 2 b0Þ

TS
21
0 ðbl 2 b0Þ�

� �
/ f ðbjbl;s

2; L ¼ l Þf ðbljs
2; L ¼ l Þ

for

bjbl;s
2; L ¼ l , Nðbl;s

2ðZT
l ZlÞ

21Þ

bljs
2; L ¼ l , Nðb0;s

2S0Þ

and thus by standard results (Gelman et al. 2004, pp. 85–86)

bljb;s
2; L ¼ l , Nð ~b; ~SÞ

where

~b ¼ ½ðs2S0Þ
21 þ ðs2ðZT

l ZlÞ
21Þ21�21½ðs2ðZT

l ZlÞ
21Þ21bþ ðs2S0Þ

21b0�

¼ ½S
21
0 þ ZT

l Zl�
21½ZT

l yþ S
21
0 b0�

and ~S ¼ s2½S
21
0 þ ZT

l Zl�
21.
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(2) is derived by

pðs2jy;X; L ¼ l Þ /

ð1
21

f ð yjbl;s
2; L ¼ l;XÞpðbljs

2; L ¼ l Þpðs2jL ¼ l Þdbl

/ ð2pÞ2ððnþpH* Þ=2Þðs2Þ2ðððnþpH*þaÞ=2Þþ1Þ

£

ð1
21

exp

�
2

1

2s2
½ðbl 2 bÞT ðZT

l ZlÞðbl 2 bÞ

þ ðbl 2 b0Þ
TS

21
0 ðbl 2 b0Þ þ Q2

l þ as 2�

�
dbl

Now

ðbl 2 bÞT ðZT
l ZlÞðbl 2 bÞ þ ðbl 2 b0Þ

TS
21
0 ðbl 2 b0Þ þ Q2

l þ as2

¼ bT
l ðZ

T
l Zl þ S

21
0 Þbl 2 2bT

l ½ðZ
T
l ZlÞbþ S

21
0 b0� þ bT ðZT

l ZlÞb

þ bT
0S

21
0 b0 þ Q2

l þ as 2

¼ ðbl 2CluÞ
TC21

l ðbl 2CluÞ þ Dl 2 uTl Clul

Thus

ð1
21

exp 2
1

2s2
½ðbl2bÞT ðZT

l ZlÞðbl2bÞþ ðbl2b0Þ
TS

21
0 ðbl2b0 þQ2

l þas 2Þ�

� �
dbl

¼ ð2ps2ÞðpH
*=2ÞjClj

1=2
exp 2

1

2s2
½Dl2uTl Clul�

� �

from the normalizing constant for N(m, S) distribution, and thus

pðs2jL¼ l;y;XÞ/ ð2pÞ2ðn=2Þðs2Þ2ððnþa=2Þþ1ÞjClj
1=2

exp 2
1

2s2
½Dl2uTl Clul�

� �

which is the kernel of a scaled inverse chi-square distribution with n þ a degrees of

freedom and scaling factor Dl2uTl Clul.

(1) then follows from (2):

pðL¼ ljy;XÞ/pð yjL¼ l;XÞpðL¼ l Þ
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where

pð yjL¼ l;XÞ ¼

ð1
0

ð1
21

f ð yjbl;s
2;L¼ l;XÞpðbljs

2;L¼ l Þpðs2jL¼ l Þdblds
2

/

ð1
0

ð2pÞ2ðn=2Þðs2Þ2ððnþa=2Þþ1ÞjClj
1=2

exp 2
1

2s2
½Dl2uTl Clul�

� �
ds2

/ð2pÞ2ðn=2ÞjClj
1=2

G
nþa

2

� �
nþa

2

� �2ðnþaÞ=2
Dl2uTl Clul

nþa

� �2ðnþaÞ=2

/jClj
1=2

Dl2uT
l Clul

� �2ðnþaÞ=2

from the normalizing constant for the Inv2x2ðn;s2Þ distribution.

7.1. Fractional Bayes Factors

To implement O’Hagan’s (1995) Fractional Bayes Factors for the marginal weight pooling

selection probability, we replaced

pðL¼ ljy;XÞ/pðL¼ l Þ

ð1
0

ð1
21

f ð yjbl;s
2;L¼ l;XÞpðbljs

2;L¼ l Þpðs2jL¼ l Þdblds
2

with

pðL¼ ljy;XÞ/pðL¼ l Þ

Ð1
0

Ð1
21

f ð yjbl;s
2;L¼ l;XÞpðbljs

2;L¼ l Þpðs2jL¼ l Þdblds
2Ð1

0

Ð1
21

f ð yjbl;s2;L¼ l;XÞbpðbljs2;L¼ l Þpðs2jL¼ l Þdblds2

where 0 , b , 1 represents a “training fraction” of the data set aside to provide prior

information for the parameters for the lth pooling model. From the derivation of (1) above

we haveð1
0

ð1
21

f ð yjbl;s
2;L¼ l;XÞbpðbljs

2;L¼ lÞpðs2jL¼ lÞdblds
2

/jCblj
1=2

Dbl2uTblCblubl
� �2ðbnþaÞ=2

for

Cbl ¼ ððbZT
l ZlÞþS0Þ

21;ubl ¼ bðZT
l ZlÞbþS0b0

Dbl ¼ b bT ðZT
l ZlÞbþQ2

l

� �
þbT

0S
21
0 b0 þas 2

Thus using FBF, we have

pðL¼ ljy;XÞ/pðL¼ l Þ
Dbl2uTblCblubl
� �ðbnþaÞ=2

jClj
1=2

Dl2uTl Clul
� �ðnþaÞ=2

jCblj
1=2

Elliott: Model Averaging Methods for Weight Trimming 537



8. References

Alexander, C.H., Dahl, S., and Weidman, L. (1997). Making Estimates from the American

Community Survey. Proceedings of the American Statistical Association, Social

Statistics Section, 88–97.

Barker, D.J.P., Gluckman, P.D., Godfrey, K.M., Harding, J.E., Owens, J.A., and Robinson,

J.S. (1993). Fetal Nutrition and Cardiovascular Disease in Adult Life. Lancet, 341,

938–941.

Beaumont, J.F. and Alavi, A. (2004). Robust Generalized Regression Estimation. Survey

Methodology, 30, 195–208.

Binder, D.A. (1983). On the Variances of Asymptotically Normal Estimators from

Complex Surveys. International Statistical Review, 51, 279–292.

Cochran, W.G. (1977). Sampling Techniques. New York: Wiley.

Cox, B.G. and McGrath, D.S. (1981). An Examination of the Effect of Sample Weight

Truncation on the Mean Square Error of Survey Estimates. Paper presented at the 1981

Biometric Society ENAR Meeting, Richmond, VA.

Curhan, G.C., Willett, W.C., Rimm, E.B., Spiegelman, D., Ascherio, A.L., and Stampfer,

M.J. (1996). Birth Weight and Adult Hypertension. Diabetes Mellitus and Obesity in

U.S. Men. Circulation, 94, 3246–3250.

Davidson, A.C. and Hinckley, D.V. (1997). Bootstrap Methods and Their Applications.

Cambridge: Cambridge Press.

Deville, J.C. and Särndal, C-E. (1992). Calibration Estimators in Survey Sampling.

Journal of the American Statistical Association, 87, 376–382.

DiCiccio, T.J., Kass, R.E., Raftery, A., and Wasserman, L. (1997). Computing Bayes

Factors by Combining Simulation and Asymptotic Approximations. Journal of the

American Statistical Association, 92, 903–915.

Elliott, M.R. and Little, R.J.A. (2000). Model-based Approaches to Weight Trimming.

Journal of Official Statistics, 16, 191–210.

Ericson, W.A. (1969). Subjective Bayesian Modeling in Sampling Finite Populations.

Journal of the Royal Statistical Society, Series B, 31, 195–234.

Folsom, R.E. and Singh, A.C. (2000). The Generalized Exponential Model for Sampling

Weight Calibration for Extreme Values. Nonresponse, and Poststratification.

Proceedings of the American Statistical Association, Survey Research Methods

Section, 598–603.

Forrester, T.E., Wilks, R.J., Bennett, F.I., Simeon, D., Osmond, C., Allen, M., Chung,

A.P., and Scott, P. (1996). Fetal Growth and Cardiovascular Risk Factors in Jamaican

Schoolchildren. British Medical Journal, 312, 156–160.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis,

(2nd edn.). Boca Raton, FL: Chapman and Hall/CRC.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A. (1986). Robust

Statistics: The Approach Based on Influence Function. New York: Wiley.

Holt, D. and Smith, T.M.F. (1979). Poststratification. Journal of the Royal Statistical

Society, Series A, 142, 33–46.

Journal of Official Statistics538



Horvitz, D.G. and Thompson, D.J. (1952). A Generalization of Sampling Without

Replacement from a Finite Universe. Journal of the American Statistical Association,

47, 663–685.

Isaki, C.T. and Fuller, W.A. (1982). Survey Design under a Regression Superpopulation

Model. Journal of the American Statistical Association, 77, 89–96.

Kass, R.E. and Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical

Association, 90, 773–795.

Kish, L. (1965). Survey Sampling. New York: John Wiley and Sons.

Kish, L. (1992). Weighting for Unequal Pi. Journal of Official Statistics, 8, 183–200.

Korn, E.L. and Graubard, B.I. (1999). Analysis of Health Surveys. New York: Wiley.

Little, R.J.A. (1983). Estimating a Finite Population Mean from Unequal Probability

Samples. Journal of the American Statistical Association, 78, 596–604.

Little, R.J.A. (1991). Inference with Survey Weights. Journal of Official Statistics, 7,

405–424.

Little, R.J.A. (1993). Post-stratification: A Modeler’s Perspective. Journal of the American

Statistical Association, 88, 1001–1012.

Little, R.J.A., Lewitzky, S., Heeringa, S., Lepkowski, J., and Kessler, R.C. (1997).

Assessment of Weighting Methodology for the National Comorbidity Survey.

American Journal of Epidemiology, 146, 439–449.

Lu, H. and Gelman, A. (2003). A Method for Estimating Design-based Sampling

Variances for Surveys with Weighting, Poststratification, and Raking. Journal of

Official Statistics, 19, 133–152.

Matthes, J.W., Lewis, P.A., Davies, D.P. and Bethel, J.A. (1994). Relation between Birth

Weight at Term and Systolic Blood Pressure in Adolescence. British Medical Journal,

308, 1074–1077.

Mohadjer, L., Montaquila J., Waksberg, J., Bell, B., James, P., Flores-Cervantes, I., and

Montes, M. (1996). National Health and Nutrition Examination Survey III: Weighting

and Estimation Methodology, Executive Summary. Prepared by Westat, Inc., for the

National Center for Health Statistics, Hyattsville, MD. At http://www.cdc.gov/nchs/-

data/nhanes/nhanes3/cdrom/NGHS/MANUALS/WGT E XEC.PDF

O’Hagan, A. (1995). Fraction Bayes Factors for Model Comparison. Journal of the Royal

Statistical Society, Series B, 57, 99–138.

Potter, F.A. (1990). Study of Procedures to Identify and Trim Extreme Sample Weights.

Proceedings of the American Statistical Association, Survey Research Methods Section.

225–230.

Pfeffermann, D. (1993). The Role of Sampling Weights when Modeling Survey Data.

International Statistical Review, 61, 317–337.

Rich-Edwards, J.W., Stampfer, M.J., Manson, J.E., Rosner, B., Hankinson, S.E., Colditz,

G.A., Willett, W.C., and Hennekens, C.H. (1997). Birth Weight and Risk of

Cardiovascular Disease in a Cohort of Women Followed Up Since 1976. British

Medical Journal, 315, 396–400.

Rubin, D.B. (1987). Multiple Imputation for Non-Response in Surveys. New York: Wiley.

Särndal, C.E. (1980). On p -inverse Weighting Versus Best Linear Unbiased Weighting in

Probability Sampling. Biometrika, 67, 639–650.

Elliott: Model Averaging Methods for Weight Trimming 539



Skinner, C.J., Holt, D., and Smith, T.M.F. (1989). Analysis of Complex Surveys. New

York: Wiley.

Spiegelhalter, D.J. and Smith, A.F.M. (1982). Bayes Factors for Linear and Log-linear

Models with Vague Prior Information. Journal of the Royal Statistical Society, Series B,

44, 377–387.

Tierney, L.J. and Kadane, J. (1986). Accurate Approximations for Posterior Moments and

Marginal Densities. Journal of the American Statistical Association, 81, 82–86.

Zaslavsky, A.M., Schenker, N., and Belin, T.R. (2001). Downweighting Influential

Clusters in Surveys: Application to the 1990 Post Enumeration Survey. Journal of the

American Statistical Association, 96, 858–869.

Received August 2006

Revised April 2008

Journal of Official Statistics540


