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Model-Based Alternatives to Trimming Survey Weights

Michael R. Elliott' and Roderick J.A. Little’

In sample surveys with unequal probabilities of inclusion, units are often weighted by the
inverse of the probability of inclusion to avoid biased estimates of population quantities
such as means. Highly disproportional sample designs yield large weights, which can result
in weighted estimates that have a high variance. Weight trimming reduces large weights to
a fixed cutpoint value and adjusts weights below this value to maintain the untrimmed weight
sum. This approach reduces variance at the cost of introducing some bias. An alternative
approach uses random-effects models to induce shrinkage across weight strata. We compare
these two approaches, and introduce extensions of each: a compound weight pooling model
that allows Bayesian averaging over estimators based on different trimming points, and a
weight smoothing model based on a nonparametric spline function for the underlying weight
stratum means. The latter method performs well in simulations as compared with alternative
estimators. Methods are also applied to estimates of depression using weighted data from the
National Comorbidity Survey.

Key words: Sample surveys inference; sampling weights; unit nonresponse adjustments;
random-effects models; nonparametric regression.

1. Introduction

This article concerns the analysis of sample surveys where units have differential probabil-
ities of inclusion. We use the term ‘‘inclusion’’ here to encompass both selection into the
sample and response given selection, so that a unit nonresponse is regarded as ‘selected’’
but not ‘‘included.”” The probability of selection may vary in stratified designs or samples
selected with probability proportional to size. The probability of inclusion also varies in
equal probability designs with nonresponse that is differential across unit characteristics.
In these settings, estimators like sample means that assign the included units the same
weight are biased when there is a correlation between the probability of inclusion and
the values of the sampled data. Unit i is usually weighted by the inverse of the probability
of inclusion to remove this bias. For example, the Horvitz-Thompson estimator (Horvitz
and Thompson 1952) of a population total T = Z{Ll y; from a sample is given by
T= > ies» WiYi, Wwhere w; = 1/m;, w; is the probability of inclusion and s is the subset of
the population units sampled. The probabilities of inclusion may be known in advance
for both sampled and nonsampled units of the population, as in stratified random
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sampling, or may be estimated from the sample, as when there is unit nonresponse and
the probability of response is estimated using observed sample characteristics.

Weighting often increases an estimate’s variance. This increase can overwhelm
the reduction in bias, so that the mean squared error actually increases under a weighted
analysis. This is particularly likely when the weights are highly variable, when the correla-
tion between the probability of inclusion and the data is weak, or when the sample size is
small. Perhaps the most common approach to dealing with this problem is weight trimming
(Potter 1990; Kish 1992; Alexander et al. 1997; Little et al. 1997), in which weights larger
than some value wy are fixed as wy and the remaining weights are adjusted upward by a
constant so that the weighted sample size remains unchanged. This manipulation of the
weights reflects a traditional ‘‘design’’-based approach to survey inference, which treats
the data values in the population y; as fixed and the assignment of the sampling indicators
I; as random.

An alternative strategy is to apply the model-based approach to survey inference, which
makes distributional assumptions about the y; and uses the model to predict the non-
sampled values of y. A useful way of providing protection against the effects of
model misspecification is to formulate a model for the survey outcomes within strata
defined by the probabilities of inclusion (Little 1983, 1991; Rubin 1983). Standard
weighted estimates are then obtained when the stratum means of survey outcomes
are treated as fixed effects, and smoothing of the weights is achieved by treating the
stratum means as random effects (Holt and Smith 1979; Ghosh and Meeden 1986;
Little 1991, 1993; Lazzeroni and Little 1998). We call these random-effects models
‘‘weight-smoothing models.”’

This article compares weight trimming and weight smoothing, and extends the earlier
modelling work in two directions. Classic weight trimming effectively pools all units
with weights higher than the trimming point into a stratum with a single (reduced) weight.
We extend this approach with a more general compound weight pooling model consisting
of a collection of simple weight pooling models with different pooling points. We then put
a prior distribution over the pooling points to achieve Bayesian averaging over the models
in the set. We also propose a weight smoothing model with a smooth non-parametric mean
structure, which is designed to be resistant to model misspecification. Empirical study by
simulation and by application to real survey data indicates that both proposed methods
have attractive properties, with the nonparametric weight smoothing model performing
best overall.

Background and extensions of weight trimming and weight smoothing methods are
considered in Section 2. Section 3 examines the root mean squared error and nominal
confidence interval coverage of estimators considered in Section 2 under a disproportio-
nately stratified sample design. Section 4 applies these estimators to data from the National
Comorbidity Survey (Kessler 1992), a U.S.-wide multi-stage, disproportionately stratified
survey of persons aged 15-54 concerning psychiatric disorders. Section 5 summarizes our
findings and suggests areas for future study. Throughout this article, we assume the
primary quantity of interest is the finite population mean Y. Our models assume
normally-distributed data, although extensions to non-normal distributions are possible,
and we consider both normal and non-normal outcomes in the simulations and real-world
examples.
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2. Weight Pooling and Weight Smoothing Models

2.1. Simple weight-stratum pooling models

Weight trimming effectively pools units with high weights by assigning them a common,
trimmed weight. Suppose the population can be divided into H weight strata by the set of
ordered distinct values of the weights wy,. Let n;, be the number of included units and N,
the population size in weight stratum 4, so that w, = N,/n, for h = 1,..., H. We assume
here that N, is known, as when the weight strata come from a stratified or post-stratified
random sample. The untrimmed (design-based) weighted mean estimator is then
Fw =D on D iWiVnid Son > iwn = n Ny/N,¥,. Weight trimming typically proceeds by
establishing an a priori cutpoint, say 3 for the normalized weights, and multiplying the
remaining weights by a normalizing constant v = (n — Y k;wo)/ > _(1 — &;)w;, where «;
is an indicator variable for whether or not w; = wy. The trimmed mean estimator is thus
given by
-1 H

Ywr = Z YNWIN Y, + Z Wolty/ N, ¥y
h=1 =

H
-1 Wo h;nh o -
7;Nh/N+yh ey, 7 @1
where vy = (Ny — wo Y_hoy )/ Yoit Ny and 30 = (1/ 357 my) S0 my

The choice of cutpoint wy is often ad-hoc. Potter (1990) discusses systematic methods
for choosing wy, including weight distribution, National Assessment of Educational Pro-
gress (NAEP), and MSE trimming procedures. The weight distribution technique assumes
that the weights follow an inverted and scaled beta distribution. The parameters of the
inverse-beta distribution are estimated by method-of-moment estimators, and weights
from the upper tail of the distribution, say where 1 — F(w;) < .01, are trimmed-to wy
such that 1 — F(wg) = .01. The NAEP procedure (Benrud et al. 1978) trims all weights
w; > c(l/n)Zw,-2 for a fixed c, then iterates the procedure until all weights are below
some factor of the mean of .the squared sum. The MSE trimming procedure (Cox and
McGrath 1981) estimates MSE at a variety of trimming levels and chooses the one at
which MSE is minimized. We prefer the latter procedure to the first two since it
relates the choice of trimming point to the survey outcome, although this property leads
to practical complications in a real survey setting with many survey variables.

To proceed, note that the choice of wy= S 4 Ny/ S0, n, yields y=1 and
Fur = St (NN L3 4+ CH, NIN,)IN, 3, which corresponds to the estimate for a
model that assumes distinct stratum means for the smaller weight strata and a common
mean for the large weight strata, that is:

Yniln ~ Nup, 0*) h <1
Ynilwy ~ N(uy, 02) h=1
Mhs B o< constant (2.2)

We call (2.2) the simple weight pooling model.
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2.2.  Compound weight pooling models

We extend (2.2) by treating the pooling level [ as a realization of the random variable L
with support (1,...,H). Assuming that the location of pooling level L is a priori equally
likely across the H weight strata, we obtain the compound weight pooling model:

Yhiltn ~ N(up, 0°) h <1

Yhilw ~ N(p, *) h =1

pL=1)=1/H (2.3)
Then
E(Yly) = E(EYly. D)
H N i Ny,
=> Z ! It —ya) p(L=1y) (2.4)

=1

That is, pooling is conducted at every possible level and the weighted average computed,
where the weighting is based on the posterior probability for the model that pools from the
Ith stratum onward.

To derive p(L = lly), we note that (2.3) is a special case of a Bayesian variable selection
problem (Halpern 1973; Atkinson 1978; Spiegelhalter and Smith 1982) with
y|8s, 1, o> ~N (X,8, *I), where X; is an n X [ matrix consisting of an intercept and dummy
variables for each of the first /[ —1 weight strata. Utilizing priors of the form
p(a*|) = (1/6%)"*! (Dempster et al. 1977) and p(8,]l) = (27)~" (Halpern 1973) yields

-1 H =12
[ [T 7 (Z ”h)] o

h=1 h=I

E[n(En)] o]

where OF = 3712} i — 9)’

Bayesian variable selection is a controversial topic, in part because of sensitivity of
inferences to the choice of priors. We discuss our choices and possible alternatives in
more detail in the Appendix.

pL=1]y) = 2.5)

2.3.  Weight smoothing models

Instead of mimicking the idea of weight trimming, we can simply model the weight-
stratum means directly as random effects. The general form of the weight smoothing
models we consider is

ind
Yhilttn ~ N, 0%)
p ~ Ny(¢,D) (2.6)

where p = (4y,...,pg), ¢ = (d4,...,05), 0,D, and o all have non-informative priors,
and & indexes the ‘‘weight strata,”” with constant inclusion probabilities. Unlike the weight



Elliott and Little: Model-Based Alternatives to Trimming Survey Weights 195

pooling models, the weight strata do not need to be ordered by probability of inclusion;
a more natural ordering may be used if available, e.g., if the weight strata represent
a disproportionately stratified sample by age. Under the model (2.6),

E(¥ly) = _[mdy + Ny — n)i N 2.7)
h

where fi, = E(Y),|y) = E(uy |y) )
The unweighted and fully weighted means are obtained as estimators of E(Y|y) as
D — 0 and D — oo, respectively. We consider the following special cases of the model:
Exchangeable random effects (XRE): (Holt and Smith 1979; Ghosh and Meeden
1986; Little 1991; Lazzaroni and Little 1998)

¢, = p forall h, D = 7*I (2.8)
Autoregressive (AR1): (Lazzaroni and Little 1998)

¢y, = p for all h, D =r*{p"'} 2.9)
Linear (LIN): (Lazzaroni and Little 1998)

¢y =a+ph, D=7y (2.10)
Nonparametric (NPAR):

o, =f(h), D=0 (2.11)

where f(h) is a twice differentiable smooth function of 4,
{f : f absolutely continuous, v = 0,1, J( f(z)(u))zdu < oo}

and f(h) minimizes the residual sum of squares plus a roughness penalty parameterized by
A

SO i —FWY + X J(f(z)(u))zdu (2.12)
h i

(Wahba 1978; Hastie and Tibshirani 1990).
All of these models can be written in the mixed-effect form (Laird and Ware 1982)

y = NXB + NZu + € (2.13)

where N is an n X H “‘incidence’” matrix relating the distinct weight strata to the data
(njx = 1 if y; is in stratum k and O otherwise), X is an H X p fixed-effect design matrix,
B is a p x 1 vector of fixed-effect parameters, Z is an H X g random-effect design matrix,
u~ Nq(O, G), and € ~ N(O, 021,1). This formulation yields the following replacements for
(2.13):

XRE:

X=143.Z=14,G=1Iy (2.14)
AR1:
X=14.Z=14G=7{"""} (2.15)
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LIN:
11
X=|: ! |.Z=14,G="Iy (2.16)
1 H
NPAR:
11
X= | |, Zyxu-1 such that ZZ' = Q.G = (6’ /HN)Iy_, 2.17)
1 H
where

Qe = J"O]((h -D/H-1) -0, ((k—1D/H—-1)—1),dt,(x), =xif x=0 and (x), =0
if x<0, h,k=1,...,H, and \ is the penalty parameter in (2.16) (Speed, in discussion
of Robinson 1991; Wang 1998).

Under these formulations,

i=XB+Zp (2.18)

where 8 = X'V 'X)"'X'V"'5 and it = GZ'V~'(5 — XB). Here V = ZGZ' + ¢°L, where
L = diag(1/ny), and § = (j;,...,7g) . In the case of XRE, ARI, and LIN, estimates of
G and 02, and thus of 8 and u, may be obtained by maximum likelihood (ML) or restricted
maximum likelihood (REML) methods. In NPAR the REML likelihood given by Model
(2.17) and the likelihood given by (2.11) differ by only a constant when f(h) = X},8 + Z,a
is a natural cubic spline with knots at (1,..., H) (Wahba 1985; Green 1987; Wang 1998);
hence we utilize ML estimates for (2.14)-(2.16) and REML estimates for (2.17) to obtain
mean and variance component estimates and thus f and .

These weight smoothing models allow compromises between weighted and unweighted
estimates. As an example, note that, under the XRE model, g, = w,y, + (1 — w},)¥,
where wj;, = Tznh/'rznh +0¢* and § is an overall weighted mean given by
7 + )7 S my/ (7 + 0°) Fp. As 77— 00, wy, — 1 so that i, — ;. Thus
a flat prior for p,, recovers the fully-weighted estimator, which can then be viewed as a fixed
effects ANOVA model. On the other hand, as 7> — 0, wy, — 0 so that iy, — ¥| 2o = ¥, which
estimates the excluded units at the pooled mean since the model now assumes that y,; are
drawn from a common mean. Similarly for NPAR, A — 0O implies yypsag — 3,, and A — o
implies Yypag — Viinearl2=0>» SO NPAR should be somewhat less effective than LIN when
the means are linear, but should have reduced bias when the mean structure is nonlinear.

3. Simulation Study

A simulation similar to that in Little (1991) was constructed to test these methods in a con-

trolled environment. Two populations of N = 36,000 were constructed consisting of 10

strata:

Stratum i 1 2 3 4 5 6 7 8 9 10

N, 800 1,000 1,200 1,500 2,000 3,000° 4,000 5,000 7,500 10,000
The values of Y),; were generated as

Yhi = Oy + €p;
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where
8¢ =(22.5,14.4,9.0,4.8,1.8,—1.2,—1.8,-2.16,—1.92, —1.8)
6" = (-1.8,—-1.92,-2.16,—1.8,—1.2,1.8,4.8,9.0, 14.4,22.5)
oF = (10.88,10.88,10.88, 10.88, 10.88, 10.88, 10.88, 10.88, 10.88, 10.88)
oL = (—12.09, —8.64, —5.20,—1.75,1.70, 5.14,8.59, 12.03, 15.48, 18.93)

and

; ind N(, 02) with probability a) 1 or b).9
" log normal(—log(o* + 1)/2,log(c® + 1)) — 1 with probability a) 0 or b).1

Disproportional samples of size 500 (90, 80, 70, 60, 50, 50, 40, 30, 20, 10) and size 100
(18, 16, 14, 12, 10, 10, 8, 6, 4, 2) were then drawn (maximum normalized weight = 13.9).
To save space, we concentrate on the n = 500 results here, while commenting on results
for n = 100 that are qualitatively different. Note that the mean structures 8¢ and 6° are
best- and worst-case scenarios for weight trimming, with C = close and D = distant
means in the high-weight strata. The E = equal mean structure 8 provides the best-case scen-
ario for the XRE and AR1 models, and the L = linear structure oF provides the best-case scen-
ario for the LIN model; parameters are chosen so that E(Y|6”) = E(Y|6%) = E(Y|8"). The
log-normal contamination is chosen so that the mean and variance equals the uncontaminated
normal distribution for a given value of 0%, but yields skewed and outlying values in data
otherwise assumed to be normally distributed, thus giving a simple check of the robustness
of the various weighting procedures to non-normality.

Two hundred stratified random samples were drawn as described from each population.
The two primary outcomes of interest are root mean squared error (RMSE) and coverage
of nominal 90% confidence intervals. RMSE is estimated as \/ (1/200 2,22? (9,- - 0)2),

where 0 is the population mean and 9,- is the estimate from the ith of the 200 samples.

3.1.  Stratum pooling methods

A 2 x 2 design was used to compare the stratum pooling methods: mean structures 6¢ and
8P , and normal and contaminated normal error distributions. For each design, we consid-
ered estimates from five weighting schemes: unweighted (WT = 1); fully weighted, y,,
(FWT); “‘crude’’ trimming, y,,, where the maximum normalized weight is 3 (WT < 3);
the MSE trimming method (MSET) where the trimming points are selected from all pos-
sible pooling values (in these simulations described, 10 distinct cutpoints are possible);
and the posterior mean from the compound weight pooling model given by (2.4) and
(2.5) (CWP). The variance estimates used to calculate 90% confidence intervals are given
in Table 1. Note that the second term in the variance estimator of y,,,, includes the variance
added for estimating L.

3.1.1. Performance when stratum means favor trimming

The top left panel of Figure 1 compares the RMSE ratio of the unweighted and three
other trimmed estimators to the fully weighted estimator, for normal data with a stratum
mean configuration 8¢ that favors pooling of the high-weight strata. The unweighted
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Table 1. Variance estimates of weight pooling estimators

Mean Estimator Variance Estimator
¥y (A —f)s*n

2
Fw <s,%,, ;(1 —fh)nhwﬁ/@ nhwh) ) = sﬁH;Pi(l — fidlny,

-1
Sy (1= fmywh, + s7(1 — f)mwi
h=1

Ywi> Yuser y] 2
(Z W + Wo”1>
h=
&, 2 2
=s,, > Pi(1 = fi)ln, + Pi(1 — fpsi/n
h=1

ul a4, 2
Yewe > Var G, |L = DP(L = l|y) + (E ViP(L=Ily)— )_’CWP>

= =1
Notation:

H H H
n1=Znh; NI=ZNh’ Pl= (ZN},)/N
h=l h=I h=I
f = l’l/N;fh = nh/Nh;fl = n,/Nl

H
¥, ¥, = overall and stratum mean;)‘)(l) = 1/n, Z Z Vhi
h=l i

H
2,57 = overall and stratum variance; s; = 1/(n; — 1) Z Z(yh,- — yDy?

h=l i
-1 “li_1 m,

Sp = (Z ny, — 1) Z Z@hi -3
h=1 h=1 i=1

P(L = l]y) is given by (2.5)

estimator (WT = 1) is poor when log ¢ < 2 and some form of weighting is needed to coun-
teract bias. ‘‘Crude’’ weight trimming (WT < 3) is an improvement, but fails badly when
log 0 < 0. The compound weight pooling estimator (CWP) works well in this setting:
when ¢ is small and weighting is needed to counteract bias, CWP mimics the fully
weighted estimator, and when o is large and variance is of primary concern, CWP behaves
more like an unweighted estimator. Figure 2 provides insight on how the estimator works
by plotting the posterior probabilities of pooling the L largest weight strata as a function
of o, for a single normal sample with stratum means 8. When o =~ 0, the differences
among the means are distinguished and pooling is prevented. As ¢ increases, the small dif-
ferences among the large strata are ignored and pooling proceeds. Eventually all but the
well-distinguished and most heavily sampled strata are pooled. The MSET estimator
behaves like CWP when log o is less than 2, but is inferior to CWP when o is relatively
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Fig. 1. Average RMSE relative to unweighted estimator and nominal 90% coverage (200 simulations) of
unweighted (WT = 1), crude trimming (WT < 3), minimum MSE (MSET), and compound weight pooling
(CWP) estimators, when stratum means favor trimming

large. The MSE savings of trimming are obtained at smaller values of ¢ and are somewhat
larger when n = 100.

The bottom left panel of Figure 1 shows the coverage of the nominal 90% confidence
intervals of each method over 200 samples, for the favorable mean configuration. The cov-
erage of the crude trimming estimator (WT < 3) is very poor when log ¢ <0, and the
method has unacceptable bias. For the smaller sample size, both FWT and CWP have
good coverage; for the larger sample size, CWP suffers coverage problems when the
between- and within-variances are approximately equal. The coverage of MSET is mark-
edly below the nominal level, because Var(y,,) in Table 1 does not account for the
variability in estimating the cutpoint. This variability is difficult to incorporate except
perhaps by bootstrapping or jackknifing the entire procedure for selecting the cutpoint.

The right panels of Figure 1 show results under the favorable mean configuration for
data generated using the contaminated normal model. As expected, CWP and MSET esti-
mators still yielded reduced mean squared error, although gains were somewhat less than
for normal data. Coverage for these methods is somewhat poorer than for normal data, as
might be expected.

3.1.2. Performance when stratum means do not favor trimming
The mean structure 8” is an unfavorable scenario for trimming, since the highest weight
stratum has a mean substantially different from the other strata. In this case pooling of the



200 Journal of Official Statistics

Sigma = 0.1 Sigma =1

L

L

A

12 3 45 6 7 8 910 12 3456 7 8 910
Weight Strata Weight Strata

.

Posterior probability of pooling
0.0 0.2 0.4 0.6 0.8 1.0
Posterior probability of pooling
0.0 0.2 0.4 0.6 0.8 1.0

Sigma =10 Sigma = 100

-t

L

0.0 0.2 0.4 0.6 0.8 1.0

L

1 23 456 7 8 910 12 3 456 7 8 910
Weight Strata Weight Strata

Posterior probability of pooling
0.0 0.2 0.4 0.6 0.8 1.0
Posterior probability of pooling

Fig. 2. Posterior probability of pooling the I largest weight strata as a function of variance when stratum means
favor trimming

strata is inappropriate, and will lead to biased estimators. This will increase RMSE unless
o is very large relative to the between-strata mean differences and the sample size.

The top left panel of Figure 3 gives the RMSE relative to the fully weighted estimator
under the assumption of normality, for this unfavorable case. The unweighted and crude
trimming methods perform very poorly unless ¢ is large. The CWP estimator behaves well
for small or large values of the variance. However, it is less satisfactory for intermediate
values of o, tending to overpool. The MSET estimator is more protective of overpooling,
although it is less effective than CWP at reducing RMSE for large values of o.

The CWP interval estimates have below nominal coverage when ¢ is moderate (bottom
left panel of Figure 3). The MSET estimator displays coverage rates closer to nominal levels,
but also has poorer coverage than the FWT estimator when variance is moderate. Both the
MSE and coverage of the CWP estimator are improved for the small sample case.

The right panels of Figure 3 show results for contaminated normal data with an unfavor-
able mean configuration. The weight trimming estimators generally perform poorly rela-
tive to the fully-weighted estimator in large sample sizes, and the problems of overpooling
for CWP are somewhat intensified.

3.2.  Weight smoothing methods

For weight smoothing models, mean structures of R 6L, and 6° were considered with
normal and contaminated normal errors. Five weighting schemes were considered: the
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Fig. 3. Average RMSE relative to unweighted estimator and nominal 90% coverage (200 simulations) of
unweighted (WT = 1), crude trimming (WT < 3), minimum MSE (MSET), and compound weight pooling
(CWP) estimators, when stratum means do not favor trimming

fully-weighted estimator ¥,, (FWT), and posterior estimate of ¥ from (2.7) where f, is
obtained under the XRE, AR1, LIN, and NPAR models. Results for the 8¢ mean structure
were similar to those for 6° for the weight smoothing methods considered, and hence are
omitted.

With regard to variance estimation, a standard empirical Bayes analysis based on (2.14)
through (2.17) yields

Var(Yly) = (N — n) Var(j — Y*)(N — n)IN%
= (N —n)(6°A + ZGZ' + A(6°L + ZGZHA' — 2AZGZ')(N —n)IN7  (3.1)

(Holt and Smith 1979; Lazzaroni and Little 1998), where Y* is the set of unobserved
values of Y, (N—mn) is an HX1 vector of counts of the unobserved population
(N, — ny,), A = diag(N;, — n,)~", and j = Ay is given by replacing B and @ in (2.18)
when G and o® are known. Specifically,

A=1-ZGZV hHxx'v )y 'xv' 4+ zGZ'v! (3.2)

The estimator of Var(Y|y) given by replacing G and o’ in (3.1) and (3.2) with G and 6% will
be biased downward, since it ignores uncertainty in the estimates of G and o® as fixed. A
fully Bayesian analysis accounts for this uncertainty and should yield better estimates of
Var(Y|y) and consequently better coverage properties of the posterior estimator of Y.
(See also Pfeffermann et al. 1998.) The r-type corrections suggested by Lazzaroni
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Fig. 4. Average RMSE relative to unweighted estimator and nominal 90% coverage (200 simulations) of
exchangeable random effects (XRE), autoregressive (AR1), linear (LIN), and nonparametric (NPAR) weight
smoothing estimators. Normally-distributed error terms

and Little (1998) to provide an approximate adjustment for variability in G and &> are
overly conservative when H is small and are not considered here.

Figure 4 compares the RMSE for yJxzrg, Var1> Yrn, and yypag relative to y,, when the
errors are normally-distributed. As expected, the XRE and ARI1 estimators do well
when the means are equal. Both these estimators perform poorly relative to y,, when
the means are unequal, although as expected the AR1 estimator is more robust than the
XRE estimator. The LIN estimator works well for both equal and linear mean structures,
although as expected it is less efficient than XRE or AR1 when the stratum means
are equal. For the nonlinear mean structure 8”, LIN performs poorly relative to FWT
for moderate o°. Since Ynpar — Y, as the roughness penalty A — 0 and yypar — Yy as
A — oo, NPAR can be viewed as a compromise between LIN and FWT; the simulations
suggest that this compromise works well. Specifically, NPAR performs nearly as well
as LIN for equal and linear mean structures. When the stratum means are nonlinear,
NPAR mimics FWT for small to moderate values of 02, and mimics LIN as o” increases
and the RMSE of LIN is lower than the RMSE of FWT.

Figure 4 shows the coverage of the various weight smoothing estimators for different
mean structures and variances. All estimators have good coverage properties when the
true superpopulation means are equal, since all models allow equal means. The XRE
and AR1 models yield intervals with poor coverage when the means follow a linear trend
and variance is moderate. The LIN model has moderate coverage problems when the trend
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is nonlinear. The NPAR and FWT procedures are close to nominal levels for all mean
structures and all values of ¢ considered.

Examining of RMSE and coverage when outliers are present and the mean structure is
nonlinear shows that results are similar to those obtained under the normal distribution,
with low variance yielding design-type estimators and large variances yielding trimmed
or unweighted estimators. For moderate variance, the XRE, AR1 and LIN models perform
somewhat more poorly with respect to coverage than for uncontaminated normal data,
while the NPAR estimator is more robust to contamination.

4. An Application: The National Comorbidity Survey

The National Comorbidity Survey (NCS) (Kessler 1992), conducted in 1990-1992, was a
national face-to-face survey of the noninstitutionalized U.S. population (excluding Alaska
and Hawaii) aged 15-54 regarding the prevalence, risk factors, and consequences of psy-
chiatric morbidity and comorbidity. The 8,098 respondents were selected using probab-
ility methods from 1,205 block-level segments, with a response rate of 82.4%. The
sample design included an oversample of persons aged 15-24, and a complex case weight-
ing scheme to adjust for this oversample of young persons, together with adjustments for
unequal household size, nonresponse, new construction, subsampling of difficult-to-reach
respondents (‘‘holdback’’), and poststratification to National Health Interview Survey
estimates in eight categories defined by various combinations of education, number of per-
sons in household, place of residence, and ethnicity. The final weight, after normalization
to sum to the sample size, ranged from 0.10 to 5.67, with a standard deviation of 0.97.
More details on the construction of NCS weights are provided in Little et al. (1997).

Data from the NCS was utilized to determine which subjects had experienced depres-
sion as defined by the American Psychiatric Association (1987); 18.0% of the subjects
were found to fit the criteria. We applied nine weighting methods to the estimated
mean of the depression indicator for the entire sample of subjects and for the subset of
African-American subjects. Estimates and associated estimated bias and mean squared
error are displayed in Table 2. The estimated RMSE was calculated under the assumption
that the fully weighted estimator y,, is unbiased. The true population mean is of course not
known here, and the assumption that the fully weighted estimator is unbiased and the use
of estimated RMSE as a criterion tends to favor the FWT and MSET methods. To
account for the effects of the multi-stage sample design and the fact that the population
strata sample sizes {N,} were estimated, the variances of the mean estimators were calcu-
lated using a jackknife repeated replications method (Wolter 1985). The estimated squared
bias of a mean estimator " is given by max(B* — Vo1, 0) where B = 3* — 3,, and Vy, is the
variance of f?, estimated using the jackknife (Little et al. 1997).

The number of weight strata H varied from 492 to 3,944, with 1 < n;, = 447, depending
on the sample under consideration. Because the stratum pooling estimators require n;, = 2,
some ‘‘pre-pooling’’ of weight strata was necessary to fit the stratum pooling models.
While not required, this prepooling was also done for the weight smoothing estimators,
both to allow direct comparisons of the methods, and to speed use of the jackknife estima-
tor. We present results where strata were prepooled at the fifth and first percentiles, creating
approximately 20 and 100 weight strata respectively.
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Table 2.  Estimated proportion of U.S. and African-American population aged 15-54 ever reporting symptoms
of depression, with associated bias and root mean squared error for various weighted estimators

Mean Est. Est. Est.
Estimator Mean (x107%) Bias (x10™% RMSE (x10™%)
H=20 H=99 H=20 H=99 H=20 H=99
U.S.-Wide
y 180 180 91 91 100 100
Yw 171 171 0 0 67 67
V<3 170 170 -3 -3 67 67
YMSET 173 172 21 11 80 65
Yewe 173 176 21 51 53 73
YXRE 173 174 25 30 62 65
Yar1 173 174 26 30 71 68
YL 168 169 23 —20 64 68
YNPAR 170 170 -8 -6 65 66
African-American
y 128 128 84 84 108 108
Yo 119 119 0 0 147 147
Vw3 111 111 -85 —85 141 141
YMSET 120 121 9 21 138 130
Yewp 125 122 57 28 128 121
YXRE 128 125 84 57 117 108
Yar1 126 125 72 57 105 107
Yun 114 116 —48 —34 126 131
YNPAR 114 115 —48 —47 126 128
Prepooling to 20 weight strata Prepooling to 99 weight strata
(=3 o
N XRE g f S . XRE
''''' Npar | -== Npar
O I L i
o
hE . {L

0.20
L

0.15
1
% Ever reporting depression

% Ever reporting depression

0.10
I

T T T T T
5 10 15 20 25 30
Weight stratum Weight stratum

Fig. 5. Percent ever depressed versus inverse of probability of selection. Circles represent relative size of esti-
mated population within each weight stratum, centered at sampled stratum mean. Lines represent posterior esti-
mates of weight stratum mean
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The proportion of the population N,/N, in each weight stratum was unknown, and esti-
mated from the fully-weighted sample by > _; wy/n,. for the normalized weights wy,;. Also,
because the sampling fraction was extremely small, the finite population correction was
negligible and was ignored.

4.1. Depression indicator

The relationship between ever reporting depressive symptoms and probability of inclusion
in Figure 5 indicates that pooling of the high-weight strata may be reasonable. Table 2
indicates that the CWP estimator of this quantity is quite effective in reducing RMSE.
The crude trimming and MSET estimators are similar to the FWT estimator. Note that
although the CWP and MSET estimators give similar point estimates when 20 weight
strata were utilized, the jackknife-estimated variance of the MSET method is larger, since
only a fixed trimming point could be selected for each jackknife sample. This difference
diminishes when 99 weight strata are utilized.

Table 2 shows that the smaller sample size and relatively weak correlation between the
weights and the depression indicator among African-Americans 15-54 gives MSE advan-
tage to the unweighted estimator, which the CWP estimator approximates better than the
other stratum pooling estimators. The approximate exchangeability of the means gives
preference to the XRE and AR1 models, with the smaller sample size enhancing their
MSE performance in the African-American subsample. The NPAR estimator approxi-
mates the LIN estimator as conditions are favorable for shrinkage, yielding substantial
savings over the FWT estimator when the sample size is smaller.

5. Discussion

Survey weights are generally trimmed in an ad-hoc manner, with little attention given to
the optimum degree of trimming. We have considered a number of methods that use the
data to determine adjustments of the weights that involve appropriate bias-variance trade-
offs. One approach is to obtain an estimate of root mean squared error and then choose a
trimming point that minimizes this estimate (Cox and McGrath 1981; Potter 1990).
This method performed reasonably well in our simulations, although model-based meth-
ods were more efficient for some problems, and confidence intervals that fail to reflect
uncertainty in the trimming point did not achieve nominal levels of coverage.

Our model-based procedures are divided into two classes, weight pooling models and
weight smoothing models. The compound weight pooling model is proposed as a
model-based analogue of weight trimming that allows Bayesian averaging over estimates
based on different trimming points. Bayesian methodology also allows the uncertainty
about the choice of trimming point to be included in the inference. In our empirical studies,
this model did well in terms of RMSE when the mean configuration was favorable towards
trimming, but tended to over-pool for some regions of the parameter space when the
mean configuration was not favorable towards trimming. The over-pooling is even
more problematic when confidence coverage, rather than MSE, is of interest, since the
resulting bias results in intervals that are systematically shifted away from the population
mean. An immediate extension of the CWP model would allow pooling of all possible
combinations of the weight strata, or all possible pairs of adjacent strata. The former
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involves considering

% ()

= \H-—I
pooling possibilities, and the latter 2H=1 possibilities, rather than the H — 1 possibilities of
our approach here. Since the number of possible pooling options quickly becomes large as
H increases, a Monte Carlo method may be needed to handle the computations.

There is no compelling need to mimic trimming methods, and we also consider weight
smoothing models that treat the unknown weight stratum means as random variables with
their own mean and covariance structure (Holt and Smith 1979; Little 1991; Lazzaroni and
Little 1998). Choosing between models in this class involves trade-offs between robust-
ness and efficiency. In particular, assuming exchangeable means and including
between-stratum variance components to induce shrinkage, as in the XRE and AR1 mod-
els, yields estimators that have good properties when the sample design is highly dis-
proportional and the data highly variable, but that are vulnerable to model
misspecification when the between-stratum and within-stratum variances are approxi-
mately equal. In contrast, adding parameters to the mean structure, as in the LIN and
NPAR models, reduces the problem of misspecification at some cost in efficiency. The
NPAR model has the advantage of being more ‘‘believable’’ when the strata are nominal
rather than ordinal, so there is less reason to believe a linear trend exists in the data. It
yields estimates that behave somewhat like the MSET estimator, but with more efficiency
and better confidence coverage properties. Indeed, this model was nearly as robust to alter-
native mean configurations as the fully-weighted estimator in simulations, yet approxi-
mates the efficiency of the LIN model estimator when variance overwhelms bias. It
also has the advantage of being more stable than other weight smoothing model estimators
when weight strata are combined to speed model fitting.

Our discussion has focused on the finite population mean and models with Gaussian dis-
tributional assumptions. However simplistic, these assumptions nonetheless encompass a
very substantial amount of survey analysis. The Central Limit Theorem renders the nor-
mality assumption for the stratum sample means tenable if the number of elements in
each weight stratum is moderate or large. Otherwise, extensions of weight smoothing
models to exponential family distributions via generalized linear mixed models
(Zhang et al. 1998) can also be envisioned. The use of weight smoothing models to esti-
mate parameters other than the mean, such as population regression coefficients, is another
important area for further research.

Finally, these methods are computationally more complex than the standard estimates with
full or crudely trimmed weights, and some practitioners may feel they are too complex for
survey practice. However, modern computing power has made these more complex methods
practicable on a production basis, and we feel that a robust model-based procedure such as
NPAR might be safely applied on a routine basis, with better inferences resulting.

Appendix

One difficulty with Bayesian variable selection models is that the posterior probability that
model / is correct is a Bayes factor transformed from an odds scale to a probability scale.
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Bayes factors are ill-defined if the prior distributions are weakly or non-informative, and
often have strange behavior if continuous alternative hypotheses exist, as in our model.
Spike and slab prior distributions for the regression coefficients (P(Blj =0|D)>0)
(Mitchell and Beauchamp 1988), a ‘‘natural’’ choice for variable selection models in
the regression context, require choice of an unknown latent hyperparameter, which is
an undesirable feature in our context. Assuming instead continuous proper priors for
B,/1 and ¢”|I of the form p(8,|) = N(0, o> 3°,) and p(c*|I) = Inv-x*(#;, V), it can be shown
(Halpern 1973) that

(rv)2)"PT()2) 15

L=lly)= :

pL=1y) V2T (0 2)| | 2
where

L=C+x7x)""

v=v+n

Vi = 1w +yTy — ul €D )
p=LX[y

Letting the prior degree-of-freedom parameters »; tend to O yields a relatively uninforma-
tive prior for the o’|l. However, letting Z; ' tend to 0 to create a relatively uninformative
prior for (3;|I can yield unstable estimates of the posterior probabilities due to the |z, |2
term in the denominator. Using standard noninformative priors p(o”|l) <o~ and
o(B,;|) o 1 yields a posterior estimator with bizarre degree-of-freedom behaviour (Atkin-
son 1978). In particular, if H = 2 and E(y;,) = E(y,;) = 8y, the posterior probability of
pooling will approach 0 as 0% — oo for fixed n. That is, unless 8; = 0 and there is sufficient
evidence to allow pooling in the form of a small variance relative to the sample size, pool-
ing will always be rejected in favor of the (incorrect) larger model. To counter the ten-
dency of the posterior probability to overly favor the larger model, we considered
Schwarz’s likelihood (Schwarz 1978). However, we found that in practice use of
this Bayesian Information Criterion (BIC) penalized likelihood overcorrected, yielding
overpooled estimates.

Halpern (1973) provides an argument for p(8;|]) = (211')_’ as a consequence of formu-
lating improper priors with different dimensions. Dempster (1977) includes without com-
ment p(azll) = (1/02)” 21 as one of the ‘57 varieties”’ of regression discussed. We
suggest its use on practical grounds: it removes the sensitivity of the posterior pooling
probability to o when the means are equal, and tends to favor pooling when the variances
are large and there is little ability to distinguish between the means. Halpern (1973) argues
that it is inappropriate to make the variances of different models different, but we think
the residual variance o” might be expected to be smaller when the number of different
means is known to be larger. Yet another prior that might bear further inspection is that
of Spiegelhalter and Smith (1982), who suggest inflating the probability of the Ith
model by a factor of (H — [ + 2)/2)1/ 2 based on a *‘minimum training sample’’ argument.
Given the lack of consensus in the literature, we believe our choice of prior is at least as
reasonable as others that have been suggested.
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