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Model-Free Curve Estimation:
Mutuality and Disparity of Approaches

Michael E. Tarter and Michael D. Lock'

Abstract: This paper is written to provide
methodological background for researchers
interested in applying curve estimation to
fields such as environmental health. Basic
approaches are introduced with special
emphasis on shared features which may be
of value in environmental and other investi-
gations. Completeness and generality from
the viewpoint of curve estimation are
described as are new applications to non-
parametric inference and mixture decompo-
sition. Series, kernel, and penalized likeli-
hood methodologies are compared as are
different metrics and methods of counter-
balancing representational complexity with
data availability.

Curve estimation methodology is illus-

1. Introduction

The distinction between the generalized,
model-free or nonparametric, and model-
based approaches to curve estimation can
be illustrated as follows: Suppose a
researcher were to base representations of
the curves or functions encountered in
environmental studies (for example, dose
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trated as a way of uncovering distributional
bimodality. The danger inherent in relying
on conventional parametric procedures is
demonstrated by the case of an anomalous
model, the log-Cauchy, which gives the false
appearance of being a mixture model. The
potential value of the new approach is illus-
trated by hybrid procedures which combine
nonparametric estimation and rank-based
inferential methodology.
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response regression curves), or clinical trials
(for example, survival curves), or in other
statistical studies (for example, estimated
probability density functions (pdfs), cumu-
lative distribution functions (cdfs) or
quantile-quantile (Q-Q) plots) on the
{exp (2mikx)},k = 0, +1, £2, . . . orthog--
onal sequence. Suppose a second investi-
gator were to base investigations either on
the normal model N(y|p, 6) = (2nc)~ 2
x exp {—1/2[(y — w/o]’} or a model like
the lognormal F(y) = ®[{log (y — n,) —
K, }/ol, where y > pu, and ®( y) represents
the partial integral of N(z|0, 1) from — co to
y. With sufficient data, the first researcher
will eventually get the right answer,to any
properly posed statistical problem. The
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researcher using the model-based approach
could also arrive at the right answer. But no
matter how much data were available, he/
she could still be misled by an initial choice
of the wrong model.

In today’s curve estimation literature,
there are almost as many alternatives to the
use of the {exp (2nikx)} system of orthog-
onal functions as there are alternatives to
the choice of lognormal or normal models
within the classical literature. For example,
in Good and Gaskins (1980), both the
{exp (2nikx)} and the Hermite system of
orthogonal functions were extensively
applied to the important problem referred
to by Good and Gaskins as series-based
“bump-hunting.” Anderson (1969), Diggle
and Hall (1986), and Hall (1980, 1982) have
considered various aspects of estimation
based on many different orthogonal systems
including the Laguerre, Legendre, and
cosine functions. The fields of spline as well
as kernel-based curve estimators also deal
with a large spectrum of choices for the
kernel function K or spline representation.

Given the diverse spectrum of choices,
why is the selection of one particular curve
estimation alternative different from the
selection of a single model in the conven-
tional model-based approach? The answer
to this question can be stated in one word:
“complete.” For example, the {exp (2nikx)}
system of functions forms a complete orthog-
onal sequence for L. Generally speaking, L?
includes almost all of the curves any practic-
ing statistician is likely to encounter. The
importance of completeness is established
through the following theorem:

Given a complete orthonormal sequence
{¥,(x)} in L% every element f(x) of the
space L? admits an expansion, convergent
in the mean (Sz.-Nagy 1965).

Thus, completeness is generality. However,
this is not to say that all methods, all choices
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of orthogonal function, kernel, spline, or
metric will yield identical estimators. Specifi-
cally, from a statistical point of view there
can be differences in data-use-efficiency and
bias. Nevertheless, the mathematical prob-
lem of representation is concerned with the
question: Can a specific function or curve
correspond to a given expression? Complete-
ness implies that the function or curve can
be adequately represented.

Lack of completeness leads to what Tapia
and Thompson (1978) refer to as “problems
of specification.” Such problems involve the
following two basic questions: (1) How likely
is it that the curve a scientist is actually
estimating can, like the normal density, be
expressed as an elementary function?
(Elementary functions are x*, exp (kx),
sin (kx), cos (kx), their inverses and com-
posites.) (2) Given that the curve can be
expressed as an elementary function, how
likely is it that the scientist will know what
particular elementary function represents
the curve?

For example, a mathematical proof that
the normal inverse cumulative, ® ', cannot
be expressed as an elementary function was
presented by Rosenlicht (1975). In contrast
to the normal inverse cumulative, com-
pleteness of an orthogonal system like
{exp (2mikx)} guarantees that a form of
representation will be adequate for any
given L? curve, where p > 1 (Carleson
1966). (That a curve is L” implies in practice
that the area under the pth power of the
curve is finite and well-defined.)

Besides most examples of what are now
called series methods, the generality of the
{exp (2mikx)} system applies to a distinct
and commonly used type of model-free
approach. For most applied purposes, ker-
nel nonparametric estimators (Silverman
1986) can be represented in terms of the
Fourier coefficients of the kernel K. Thus
the close connection between series rep-
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resentations based on {exp (2nikx)} system
on the one hand, and kernel representation
on the other hand, allows one to concep-
tualize problems using whichever of two
approaches is most suitable for a specific
application. As data availability increases,
either series or kernel curve estimators have
the potential to approach (in some clearly
defined sense) the estimated curve.

2. A Methodological Summary
of Model-Free Methods

Application of many model-free curve esti-
mators involves the following three choices:

1. A mathematical representation for the
curve is selected. Series and kernel rep-
resentations are commonly used, as are
sequences of splines joined so that a speci-
fied number of derivatives are equal at the
intersection of consecutive splines.

2. A metric, error function or roughness
criterion is chosen which defines the curve
estimator’s goodness-of-fit. An example of
such a metric is the mean integrated square
error (MISE):

JH* H,w) = E [{H*x) — H®Y

x w(x)dx

where H is some targeted curve, H* rep-
resents a curve estimator of H, and w rep-
resents a weight function designed to
emphasize or de-emphasize particular
regions of the underlying random variate’s
support.

When H* = f* represents the observed
proportions and H = f the expected pro-
portions of data points grouped within a
sequence of class intervals, the metric J(f*,
f, f7") can be interpreted as the property
estimated by the usual Chi-square good-
ness-of-fit test statistic. Alternatively, the
metric J(f*, f, (f*)~') corresponds to

: Mutuality and Disparity of Approaches 221

expression (77) of Neyman (1949), Ney-
man’s BAN alternative Chi-square.

In much of the curve estimation litera-
ture, the weight function w is chosen to be
one. This departure from the usual Chi-
square contingency table and goodness-of-
fit approach is motivated primarily by the
ease with which the metric J(f*, f, 1) can be
applied with both Fourier series and kernel
representation. For example, when w = 1
Parseval’s Theorem (Sz.-Nagy 1965) can be
used to show that for an extremely general
class of functions f, J can be expressed in
terms of the squared moduli of the Fourier
coefficients of individual series terms.

3. A bandwidth, class interval size, degree of
abridgement, multiplier sequence, method
of tapering, series term stopping rule, term
inclusion rule, or some other means is selec-
ted to counterbalance representational com-
plexity or smoothness with data availability.
The capability to systematically deal with
counterbalancing is critical to the curve
estimation approach.

The remainder of this section consists of a
brief comparison of choices of estimators
and forms of representation, for example,
kernel and Fourier series, and was written to
introduce some important concepts and ter-
minology. Suppose that X, . . ., X, are iid
random variables with probability density f.
One kernel estimator of the density f is
defined as

x — X

i) = 3 k()

where K is called the kernel function and A
is called the smoothing parameter or band-
width. The kernel function is commonly
selected a priori from a class of nonnegative
and symmetric elementary functions such that

j K(x)dx = 1and [xK(x)dx = 0

-

(Silverman 1986).
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In many instances (particularly in the early
curve estimation literature) K itself is a den-
sity function such as the standard normal,
N(x|0, 1). An estimate constructed with a
kernel satisfying these conditions will itself
be a density.

Assume f'is an L’ function with support
on [0, 1]. (For densities with support on
some other finite region, data can be
rescaled to lie within [0, 1] by a simple linear
transformation.) Then, under very general
conditions f'can be represented by a Fourier
series expansion:

f0 = 3 B

where W,.(x) = exp (2mikx), conjugate
YHx) = ¥_.(x), and
1
B, = [f()¥_(x)dx.
0

The Fourier series estimator of f can be
defined as

f(x) = kZM bkék'{"k(x)

where the kth sample Fourier coefficient,
B, = n7'Z_,¥_,(X), is an unbiased esti-
mator of B,, M is a set of indices (possibly
an infinite set), and {b,} is a sequence of
real-valued multipliers chosen to optimize
the estimator in some respect. For example,
a multiplier sequence might be chosen to
minimize the MISE, J(f, £, w).

There are so many different uses of multi-
plier sequences that applications of general-
ized statistical methods can often be inter-
preted in terms of a single problem: the
selection or estimation of a multiplier
sequence. That multipliers should play such
an important role in statistical practice is
indicated by the crucial role this topic plays
in both applied and theoretical mathemat-
ics. For example, Larsen (1970) contains an
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18 page bibliography which lists more than
300 papers on the topic of multipliers.

Both kernel and Fourier series estimators
belong to a general class of procedures
known as general weight function esti-
mators (Whittle 1958), which are of the
form

7)) = z WX, x)

where W satisfies | W(x)dx = 1. For kernel
estimators, W(X, x) = h™'K[(x — X;)/h],
and for Fourier series estimators W(X}, x) =
ZiembiWi(x — X)).

Ifb, = b_,and X7 __ b, < oo, then the
general weight function form of the Fourier
series estimator is

) = 1Y Y b — X)

j=1 keM

n 'Y K(x — X).
j=1
Hence, a series estimator of f'can be written
as a kernel estimator whose multipliers {5, }
are the Fourier coefficients of the kernel K.
Also, by using expressions for the charac-
teristic function of truncated densities given
by Kronmal and Tarter (1968) many kernel
estimators can be expressed as Fourier series
estimators.

Due to the periodicity of Fourier expan-
sions, it may seem surprising that so many
kernel estimators can be effectively expressed
as Fourier series with particular multiplier
sequences {b,}. For example, expansions
based on the {exp (2mikx)} system must
take on equal values at zero and at one. The
seeming contradiction between the cyclical
nature and the generality of Fourier series
was first posed by the mathematician Euler
with regard to the problem of representing
the instantaneous position of a vibzating
string stretched within the interval AB. In
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the literature of the history of mathematics
it is referred to as “‘the periodicity argu-
ment” (Grattan-Guinness 1970, p. 10).

In his basic text on the history of analysis,
Grattan—Guinness points out that the cur-
rent trend among mathematicians is to dis-
miss Euler’s periodicity argument. Only
representation inside the interval AB is
deemed to be critically important, so that
the representation repeats itself outside 4B
is irrelevant. The same reasoning applies to
the problem of nonparametically estimating
a curve outside the data range. While it is
not without some practical importance, the
statistical problem of model-free extrapol-
ation is speculative.

A frequently cited distinction between
kernel and Fourier series estimates is that
kernel estimates are always nonnegative
while series estimates can take on negative
values. However, kernel estimates are
guaranteed to be nonnegative only if the
kernel function is restricted to be non-
negative. Miiller (1984) investigated density
estimates with this restriction relaxed and
showed that they can take on negative
values. The condition that an estimator be
everywhere nonnegative has rarely been
emphasized by series researchers, possibly
because there may be support subregions
where one simply does not have sufficient
information to trust any general estimation
procedure. One could, however, assure
estimator nonnegativity if one requires
the multiplier sequence {b} to satisfy
2y ibe_;ByBF = 0, for the square summable
sequence { B, } (Anderson and de Figueiredo
1980). Thus, for both series and kernel
methodology, estimator nonnegativity is
within the control of the investigator and
is not a condition intrinsic to either
representation.

There is a subtle, yet crucial, distinction
between the kernel and the series estimator -
approaches. In the kernel density estimation
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process the smoothing parameter A is
explicitly defined to be a multiplicative scal-
ing factor of the kernel K. Thus, K and A
have distinct roles; K controls the shape of
the kernel and /4 determines its spread. It
is this duality which provides the rationale
for investigators who choose a kernel func-
tion a priori, and then rely on a data-based
procedure to choose the single bandwidth
or smoothing parameter, /4, subject to an
optimality criterion (Rudemo 1982).

In comparison to A-based kernel method-
ology, the goodness-of-fit of the Fourier
series estimator need not be determined by a
single parameter but can instead be
governed by the entire multiplier sequence
{b,}. This lack of dependence upon a single
explicitly specified smoothing parameter has
allowed researchers to experiment with a
wide variety of strategies for controlling the
smoothness of an estimate. For example,
Hart (1985) as well as Diggle and Hall
(1986) have suggested data-dependent
methods for choosing an optimal number of
terms, m, to include in the Fourier series
estimate (in the sense of minimizing MISE).
This corresponds to choosing the set of
multipliers defined by b, = 1, k| < m;
b, =0, |k| > m, and results in what
Wahba (1981) refers to as the “raw” Fourier
series estimator

m

f(x) = kz Bk\Pk(x)'
Here the truncation point m controls the
amount of smoothing, performing a role
analogous to that of the smoothing par-
ameter A of the kernel estimator.

An alternative multiplier sequence of the
form

1

b = (I + A2rk)?)

A= 0,p>1/2, k| < nf2;
be = 0, k| >nf2
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has been suggested by Wahba (1981). The
Wahba procedure fixes the number of terms
used in the curve representation and then
minimizes an estimator of the MISE weight
with respect to the dual parameters A and p.
Brunk (1978) proposes the multiplier b, =
n/(n — 1 + m,) where &, is a measure of
precision based on prior information. He
notes that the kernel resulting from the use
of this multiplier sequence depends on the
specification of a prior distribution.
Rather than specifying smoothness by
one, two or any fixed number of parameters,
Watson (1969) as well as Fellner and Tarter
(1971) have considered each term of the
multiplier sequence individually. Since a
multiplier sequence also defines a particular
kernel, this method simultaneously esti-
mates the shape, spread, and all other
properties of the kernel. How to shape or
smooth is of fundamental importance to the
field of curve estimation. This question has
been the focus of much research over the
last twenty years and has resulted in a myr-
iad of competing and interconnected criteria
and methods, several of which are discussed
in Silverman (1986). Comparisons by means
of computer simulation are made in Bow-
man (1985) and Scott and Factor (1981).
Many strategies and criteria for smooth-
ing can be categorized into the following
two basic classes: Class 1 is based on the
minimization of a predetermined measure of
error, such as MISE. Examples of such
methods include least squares cross vali-
dation (Bowman 1984; Hall 1983; Rudemo
1982) and the closely related generalized
cross validation procedures (Craven and
Wahba 1979; Wahba 1977), as well as an
iterative approach which seeks to estimate
[ f7(x)*dx, a quantity which appears in the
expression for the smoothing parameter
which theoretically minimizes the MISE of
the kernel estimator (Scott, Tapia, and
Thompson 1977). Class 2 is based on vari-
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ants of maximum likelihood. Two such
methods are likelihood cross validation
(Duin 1976; Habbema, Hermans, and van
der Broek 1974), and the penalized
approach (Good and Gaskins 1971, 1980;
Tapia and Thompson 1978).

Although most smoothing procedures are
applicable to both kernel and Fourier series
representation the {exp (2mikx)} Fourier
series estimator leads naturally to methods
based on minimizing MISE. For example,
for the case of an m-term truncated series
estimator the MISE can be simply expressed
in terms of the Fourier coefficients of the
unknown density:

JALLD = 0" Y b1 — |B)

[kl <m

+ |k|z>m (1 = b’ Bl

Since each individual Fourier coefficient B,
is easy to estimate, a natural estimator of
J(f. f, 1) can be readily constructed. Smooth-
ing procedures based on such estimates have
been described by Davis (1977), Diggle and
Hall (1986), Fellner and Tarter (1971), Hart
(1985), Kronmal and Tarter (1968), Tarter
(1979a), and Wahba (1981).

3. Bimodality and the Mixture Model

There is as close a relationship between
generalized statistical representation and
mixture decomposition. As described by
Sarndal (1971), it was investigations con-
ducted by Lexis (1877) and other pioneer
statisticians involving mixtures that first
shook the foundations of purely normal
density-based statistics. Therefore, it is not
surprising that one of the most interesting
and useful applications of model-free curve
estimation methodology is the problem of
bump-hunting (Good and Gaskins 1980).
This problem can be considered a special
case of mixture decomposition where the
mixing parameter p of some distributional
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component is of moderate size. Bump-hunt-
ing, cluster analysis, or mixture decompo-
sition methods are often used to investigate
the possible existence of dichotomous or
polychotomous “‘hidden” variates. Once the
existence of such a variate or variates is
suspected, one means of corroboration
involves the adding of this variate to one’s
model, and then a subsequent check upon
whether or not the bump disappears.

A weakness of this approach is the possi-
bility that one has chosen the correct variate
but, by using an overly simple covariate or
partialing model, one has failed to remove a
bump. This is a multivariate regression pro-
blem. Yet even with univariate data, curve
estimation investigations have uncovered
subtle, but important properties of bump-
hunting, cluster analysis and mixture
decomposition processes. As indicated
below, these features can be used to con-
struct improved curve estimators.

Consider the lack of conceptual identity
between bimodality and the two-component
mixture model. The former dates from Pear-
son’s analysis of crab frontal breadth
measurement data, whose distribution was
characterized by this statistical pioneer as
having a “double hump” (Kevles 1985,
p. 28). To analyze this type of data, Pearson
proposed the mixture model, which is pri-
marily used in the normal case (Henna
1985).

A special case of Pearson’s model is the
“parameter one-half mixture”

v(x) = 3N(x|—1/2,06) + N(x|1/2, 0)]

= Kle¥0* 4 e—¥/20']e—(P+1/4)/20°

where the constant K assures that
§Z_v(x)dx = 1. The derivative y'(x) equals
e.\'/202 _ e—x/202 e—(x2+l/4)/202
K[< )
20

2

(e.‘(/ZGZ + e~ X202 )E —(2+1/4)202
_ Kx .
(e3
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For the one-half parameter mixture, by
symmetry, the point at which the mode or
the local minimum between two modes
occurs must be x = 0. Thus, by evaluating
the second derivative y”(x) at zero one finds
that for any value of the parameter ¢ which
is greater than one-half, the density y(x) will
be unimodal, while for any value of the
parameter o which is less than one-half, the
density will be bimodal.

The relationship between the shape of
v(x) and o illustrates the distinction
between multimodality and the mixture
model. That a mixture model like y(x) need
not be multimodal was probably so obvious
to Karl Pearson that he did not bother to
make a point of this lack of identity.
However, the following simple example
demonstrates a slightly less obvious, but
equally important, point: Bimodality
need not be associated with some mixture
model.

Let the function g(x) be defined as

gx) = op(x — W)

y {1 N [log (x —Gu.) — Nz]z},

c > 0.

For x > p,, the log-Cauchy model, which is
analogous tu the lognormal model, can be
defined as f(x) = [g(x)]"". By taking the
first and second derivatives of g it can be
shown that whenever o is less than one,
there will be a trough between two modes of
the log-Cauchy density.

As discussed in detail by Sdrndal (1971),
the work of Lexis (1877), and as discussed
by Kevles (1985), the investigations of Pear-
son (1894) set the following pattern for
many statistical investigations: If a simple
elementary function model such as the
binomial or normal was deemed to be inad-
equate for the representation of a statistical
density then a mixture of such models



«

226

seemed called for. Put concisely, mixtures
were viewed as a means with which to
generalize statistical methodology. Such a
generalization seemed particularly relevant
when bimodal, or what Pearson called
“double-humped”, densities were estimated.

The log-Cauchy illustrates that it will not
necessarily be the case that positing a mix-
ture model or even dividing the support
region of a density into two contiguous sub-
intervals will improve representation capa-
bility. Unlike the danger of an approach
towards generalization and completeness
which relies on the mixture model, curve
estimation methodology can be used to
represent either separate parts, or the com-
posite whole, of any L? density.

Notice that the above claim uses the word
representation rather than the word esti-
mation. Separated parts of a mixture can be
individually estimated by curve estimation
procedures, and then the whole composite
density estimated by using a composition of
these modularly estimated parts (Tarter
19790, sec. 4). A similar modular approach
was used by Tarter, Freeman, and Polissar
(1990) to greatly enhance the long-term sur-
vival capabilities of life-table and Kaplan-
Meier procedures.

For statistics, the problem of mixtures
has played a role very similar to the role
played by the problem of discontinuous
function representation in mathematics.
Except for the point zero, in the case of
variates such as survival time, and some
artificially induced cut point, such as the
grade-point average required for admission
to a university, most densities are unlikely to
be discontinuous at a single fixed point.
However, many densities are likely to be
mixtures.

The mixture decomposition or bump-
hunting problem provides an excellent
example of the different applications of
three major classes of curve estimation
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methodology. Assume that the normal ker-
nel K(x) = N(x|0, h) has been chosen for
use with the conventional kernel approach
to curve estimation. The characteristic func-
tion of the normal N(x|0, #) which has
mean zero and scale parameter A, is pro-
portionate to a normal with mean zero and
scale parameter 1/h. Consider the series
curve estimator based on the orthogonal sys-
tem {exp (2nikx)} with multipliers b,, k = 0,
+1, +2,..., which are approximately
proportional to equally spaced evaluations
of N(x|0, 1/h); in other words, Fourier
coefficients of the expansion of N(x|0, h).
For all applied purposes this estimator is
identical to normal-Kernel curve estimator

1z x — X
wh & "’( h >
where ¢ represents the standard normal
density - N(x|0, 1) (Anderson and de
Figueiredo 1980; Tarter and Raman 1971).
If h is any positive value, then for a
sample of size n, the second cumulant of
the curve estimator f,, based on the nor-
mal kernel, will be (n — 1)/n times the
sample variance s* plus the quantity A%
Like the penalized-likehood approach which
emphasizes the smoothness of the estimator
through a roughness controlling constant f3,
for the above kernel method, the inflation of
the second cumulant by the constant A’
increases the smoothness of the estimator f,.
However, suppose that one substitutes the
value ih, where i = (—1)"2 for h in the
truncated series-multiplier form of the esti-
mator f,. One then obtains the procedure
developed by Doetsch (1936) and Kronmal
(1964), and then applied to biomedical
data by Gregor (1969), Tarter and Silvers
(1975) and Tarter (1979b). By means of
the Doetsch-Kronmal (DK) method, under
very general conditions one can estimate a
hypothetical distribution, which, if=one’s
original density is one of a large class of

S =
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mixture distributions, will also be a mixture,
but with the second cumulants of all com-
ponents reduced by the value 4 = A.

A major distinction can be made between
the Good and Gaskins (1980) series and the
above DK A-multiplier estimator. While the
former emphasizes the smoothness or
penalizes the roughness of the true underly-
ing density, the latter purposefully increases
roughness as a way of examining the place-
ment and verifying the existence of hidden
distributional components. For example,
the latter, in the case of the half-parameter
normal mixture model where o > 1/2, will
accentuate or heighten bumps or bimodal
structure.

The penalized likelihood and the DK
A-multiplier methods illustrate opposite
trends of generalized or nonparametric
application. For exploratory data analysis,
the DK method is a valuable way of search-
ing for clues concerning the nature of one’s
data, since it allows one to discern otherwise
hidden bumps. On the other hand, the
penalized likelihood method, because of the
penalty placed on roughness, is of value for
confirmatory applications. If a bump per-
sists as one increases the roughness penalty
setting B, the existence of the bump becomes
increasingly believable, in other words, one
obtains evidence for the claim that the bump
actually exists.

Consider the usual kernel approach to
density estimation which uses the choice of
bandwidth A4 as a means of assuring good-
ness of fit of the estimator to the estimated
density. Like the roughness penalty
approach, the kernel method provides con-
firmatory support for the existence of
bumps. However conversely, unlike the DK
method, it tends to obscure difficult-to-
discern mixture subcomponents.

The kernel method has been generalized
by allowing # to be functionally related
either to the data point X; or the running
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variate x. For example, Breiman, Meisel,
and Purcell (1977) consider A to be pro-
portionate to o, d;, where d;, is the distance
from the data point X to its kth nearest
neighbor and a, is a constant multiplicative
factor. Like the choice of 4 of the conven-
tional kernel estimator or the choice of
roughness penalty B, the choice of o, is
made in terms of the estimator’s goodness of
fit to the estimated density. To date, it is
only the user-selected constant A of the DK
method and not A, o, or B which can be
chosen to purposely increase the roughness
of the fitted function, to accentuate bumps
or hidden mixture components.

4. Nonparametric Inference
and Curve Estimation

There are many applications of the new
generalized forms of statistical represen-
tation besides mixture decomposition.
However, as its name implies, the field of
nonparametric inference merits special
attention with regard to its connections with
curve estimation. It will now be shown that
the {exp (2mikx)} form of representation
can be applied to rank-based ‘“‘nonpar-
ametric” inference. By employing one com-
mon form of expression, it is possible to
create a wide spectrum of nonparametric
inferential and curve estimation hybrids.
The power of the particular hybrid corre-
sponding to the two-sample rank test
described below can match and even slightly
surpass that of the conventional form of
implementation. That the improvement in
statistical efficiency is small is attributable to
the already highly advanced state of non-
parametric inferential methodology, rather
than to any limitation to curve estimation’s
potential to contribute to statistical
inference.

To explain how hybrid curve estimation-
nonparametric inferential procedures can be
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devised, note that the steps used to derive
current model-based tests are different from
those used for rank-based inferential
methods. Model-based inferential pro-
cedures are initially formulated in terms of a
population’s distributional model and a
hypothesis concerning one or more par-
ameters of the model. Only as a secondary
consideration is the problem of estimation
dealt with. On the other hand, rank-based
procedures are initially formulated in terms
of properties of a ranked sample (Hajek and
Sidak 1967; Kendall 1962; and Lehmann
and D’Abrera 1975).

From a computational point of view,
ranking is the equivalent of the estimation
of the population cumulative by means of
the sample cumulative F*. Specifically, if
one has access to a computer algorithm by
which the sample cumulative of a given
sample, {X;}, j=1,..., n, can be cal-
culated, one can proceed to determine the
ranks of one’s sample elements by comput-
ing nF*(X;) for each of the unranked obser-
vations within {X;}. Therefore, when one
bases a statistical investigation on a rank
test, one has in effect proceeded from the
assumption that the estimator nF*(X)) is in
some way superior to any alternative
estimator.

In reality F* is only one of many esti-
mators of the population cumulative F
available today, all of which can yield alter-
natives to F *. For example, one such
alternative can be constructed from the par-
tial integral of the Fourier series density
estimator  f(x) = Z,b,B, ¥, (x) where
{b,} is an estimated multiplier sequence
described in Section 2. (In Kronmal and
Tarter (1968, sec. 3), the raw estimator
special case of f(x) was shown to approach
F* as m - o0.) The availability of alter-
natives to F* makes it possible to greatly
generalize rank-based test calculation. One
can as a first step formulate functionals of
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the population cumulative which corre-
spond to particular rank tests. Then, as a
second step, one can investigate alternative
estimators of these functionals.

For example, consider that the usual rank
correlation statistic r, computed from a
sample of size n (Dixon and Massey 1983,
p. 402) is an estimator of the quantity

KI - K2Ef(x,y)[Fx(X)Ev(Y)]

where
K =1-2nrn+ 1)2n + )/(n — 1),
K, = 12n/(n — 1),

fis the joint density of the variate (X, Y)
while F, and F, are the cumulatives of the
variates X and Y, respectively. Here

Ep[F(X)E(Y)] =
{1 -2y YBy—1
X (By_, — B, ,[uv]}/4

for any variates X and Y whose support is
on the unit interval and whose means equal
one half, where the symbol B,, represents
the u,oth Fourier coefficient of f, and the
indices of summation range over all nonzero
integer values. If one uses an {exp (2nikx)}-
series penalized likelihood or MISE pro-
cedure, one can estimate E;, ,[F.(X)F,(Y)]
by substituting an appropriate series esti-
mator coefficient for each B,,. Provided
that the kernel bivariate density estimator
satisfies the conditions for series and kernel
identity described in Tarter and Raman
(1971) one can also base the above hybrid
statistic on any kernel bivariate density esti-
mator and, in this way, devise hybrid kernel-
based nonparametric tests.

As a second example of a hybrid test, let
X, and X, be the sample means of two ran-
dom samples of size n, and #n,=whose
elements have support on the unit interval.
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Define the statistic

_ _ m B(l)kB’(CZ)
T, = X — X, + —
m "1”2{ 1 2 k=z_m ik
+ n,(n, +2n2 + 1)

where each By, j = 1, 2, is the kth sample
Fourier coefficient calculated from the jth
sample,j = 1, 2. Asm — oo, T,, approaches
the two sample rank sum test statistic T
defined in Dixon and Massey (1983, p. 394).

In summary, by using the above pro-
cedures one can find hybrids between any of
the curve estimators which can be rep-
resented in series form and either the two
sample rank test, 7, or rank correlation, r.
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The following simulation study was per-
formed to provide an example of a hybrid
nonparametric inferential procedure’s per-
formance. In all trials which compared the
rank sum statistic T with 7,,, m was chosen
by applying the series term stopping rule
described by Tarter and Kronmal (1976) to
the series estimator described in Section 2.

Two studies were conducted. Study 1 was
designed to simply compare the numerical
values of the two alternatives, T and 7,,,
when both test statistics were computed
from the same sample. In Study 1, sixty
trials were conducted. Each trial involved
two samples which consisted of n, = 300
and n, = 100 random normal variates,
respectively. In all trials the variance of the
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Comparison of Series and Wilcoxon Test Statistics. O population means from which

the two samples were drawn are 0.0 and 0.0, respectively. O population means are 0.0, 0.2.
A population means are 0.0, 0.4. Each point represents one trial where the samples of 300 and
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normal distribution was chosen to equal 1.
In Fig. 1, values of the test statistics which
correspond to the mean pair (y,, p,) =
(0.0, 0.0) are depicted by the symbol “0.”
Values of the test statistic which correspond
to the mean pair (y,, p,) = (0.0, 0.2) are
depicted by the symbol “O’’; values corre-
sponding to (i, 1,) = (0.0, 0.4) are depicted
by “a.” The x-coordinate of each point
shown is the value of the series-equivalent of
the rank sum based on 7,,; the y-coordinate
is the conventional rank sum statistic 7.
Figure 2 summarizes the findings of
Study 2 which compared the power charac-
teristics of T and T,,. Here 800 trials were
conducted, where for each trial independent
n, = 300 and n, = 100 samples were
generated. The near identity of the esti-
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mated power curves shown in Fig. 2 indi-
cates that the power characteristics of tests
based on the T7,, and those based on T are
comparable. For certain alternatives, the
hybrid Wilcoxon statistic 7,, may slightly
improve the power of this test. This finding
is in accord with studies which show that the
Kaplan-Meier (1958) estimator, as well as
the conventional life-table (Shryrock and
Siegel 1973), may be substantially improved
by using series estimators based on the met-
ric J(f, f, w) (Tarter, Freeman, and Polissar
1990).

The brief study presented above illus-
trates only one potential use of inferential
hybrid procedures. Where previously only a
single estimator like F* was used for almost
all applications, there are today a wide
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variety of alternatives. Because most of the
new cdf estimation methods do not require
the ranking of data as a computational pre-
liminary, the field of rank statistics may need
to be reconsidered in the light of the com-
putational convenience and the power
characteristics of the new hybrid procedures.
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