Journal of Official Statistics
Vol. 5. No. 3, 1989, pp. 241-251
© Statistics Sweden

Modeling Childhood Mortality

Michael Hartmann'

Abstract: A new parametric model of child
mortality is introduced and it is shown that
it gives close fits to observed childhood
survival functions. The model can be used
for a variety of tasks including graduation
or representation of childhood mortality
and as an aid in indirect estimation of child

1. Introduction

Attempts to model mortality by means of
parametric functions can be traced back to
the beginning of the 18th century (see, e.g.,
Hooker and Longley-Cook (1953) p. 161).
For historic reasons such functions have
become known as “laws of mortality.”
While most laws are partial in the sense that
they only apply to a limited age range, a few
laws cover all ages (see, e.g., Hartmann
(1987)). Most partial laws of mortality
apply to adult ages and only a few to child-
hood ages (see, e.g., Hartmann (1980), and
Krishnamoorthy (1982)). The present paper
gives a new law of mortality which applies
to infant and childhood ages and which,
among other things, can be used in a Brass-
type process of indirect estimation of child-
hood mortality.
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mortality. The model is illustrated partly in
terms of the survival function partly in
terms of the mortality intensity.
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Here s denotes the survival function so
that s(x) is the probability for a child born
alive surviving to age x. The intensity p (also
known as the force of mortality or the hazard
rate) then becomes p(x) = —s'(x)/s(x).
The probability for a person aged x to die
before age x + 1 (the life table mortality
rate) is g, = 1 — s(x + 1)/s(x).

From a practical point of view, an import-
ant reason for modeling the survival func-
tion for young ages arose with the advent of
indirect, or Brass-type, estimation of child-
hood mortality in developing countries.
Without going into a detailed discussion of
Brass-type estimation of infant and child-
hood mortality (see, e.g., Brass (1975)
pp. 50-55, and Brass and Coale (1968)
pp. 104-122), the reason for creating a
parametric model of infant and childhood
mortality is that, subject to fairly light
assumptions, it enhances the estimation
process from the point of view of precision
as well as from the point of view of com-
putational flexibility (Hartmann (1982)).

In Brass estimation of infant and child-
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hood mortality, the observational plan is
one of utilizing retrospective reports from
women concerning their ever born children
and surviving children. Based on such
reports, the proportion of deceased child-
ren, tabulated by age of women, can be
used to infer the underlying survival func-
tion for children. Assuming stationary mor-
tality and fertility as well as a uniform age-
distribution of women, and by letting s
denote the survival function for both sexes,
and f the fertility function for women, the
proportion of deceased children theoreti-
cally reported by women aged x is

X—qg

[ fx = {1 = s(@)} da
H = 0

X

b (1)

X—ay

l f(x — a) da

where a, denotes the starting age of fertility
(see, e.g., Brass (1975) pp. 50-51). The basic
idea behind Brass estimation of childhood
mortality is that if the fertility function fin
(1) can be estimated, or specified in advance,
then corresponding to the observed statistic
H_ it is possible to estimate a survival func-
tion § so that (1) is satisfied with H, replaced
by H,. The solution § is then accepted as an
estimate of child mortality. The paper, how-
ever, does not discuss issues relating to
Brass-type estimation of child mortality but
merely discusses the new model of the sur-
vival function for childhood ages.

2. Theoretical Issues

In traditional parametric modeling of mor-
tality, the focus has been on the intensity p
or the mortality risk ¢, (see, e.g., Harper
(1936), Hartmann (1980), Hoem (1980) and
(1983), McCutcheon (1976), Pressat (1972)
pp. 90-100, Steffensen (1930), and Weibull
(1939)). The reasons for this are both theor-
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etically and empirically motivated. In fact,
because s(x) = [[;:Zg (1 — ¢), two dif-
ferent (observed) experiences {§,}, and
{G}s, say, may produce very nearly the
same survival function. It is clear, therefore,
that an estimation process which focuses on
the survival function does not necessarily
lead to good estimates of the underlying
intensity p, or of the risk ¢.. On the other
hand, because (1) is used to arrive at an
estimate of child mortality, there is obvi-
ously a practical need for modeling the sur-
vival function. The present paper shows
how the new model fits a selection of child
mortality patterns and the extent to which it
captures the underlying mortality intensity.

3. A New Model of the Survival Function
for Children

A study of the shape of many different sur-
vival curves during the first 15-20 years of
life reveals that these behave in a very simi-
lar manner (Hartmann (1980) pp. 20-22).
More specifically, when plotting the logits of
survival probabilities as a function of age, it
is seen that almost regardless of the shape
and level of the survival function, the trans-
formed probabilities follow a logarithmic
curve (Fig. 1). In other words, letting

logitp = 05 —2, 0<p<1,
p
it is noted that
logit s(x) = a + b1n x, )

where a and b are parameters, gives an
accurate representation of child mortality;
the corresponding model survival function
is

1

S

(©)

with parameter vector 6 = (a, b). The
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Fig. 1.

Logits of survival probabilities for the United States, both sexes, 1959-61,

Australian females 1960-62, Swedish males 1911-20, and Swedish females 1921-30

plotted against In x

model intensity is

2b exp (2a)x*!

nix; 0) = T7 exp Q™

“4)
In order to illustrate that logit s(x) very
nearly is a logarithmic function of age,
Fig. 1 shows logit s(x) plotted against In x
for a choice of four different survival
functions (see, Gross and Clark (1975)
pp- 27-30, Pollard, Yusuf, and Pollard
(1981) pp. 172-173, and Swedish Life Tables
for the Decades 1911-20 and 1921-30).
These plots are nearly straight lines. Exten-
sive studies of survival functions from
widely different time periods and societies
reveal similar graphs (Hartmann (1980) and
(1981)), that is, regardless of the level and
shape of the survival function for child-
hood, the logits of survival probabilities
very nearly follow a logarithmic curve. This

is also true of the survival functions in the
Coale-Demeny model life tables (Coale and
Demeny (1966), Hartmann (1980) and
(1981)).

Here it is not amiss to mention that
although log-linear models appear frequently
in statistical bioassay and that s(x; 0) to
some extent could be interpreted as a dose-
response model where the dose is time and
the response is survival (see, e.g., Finney
(1952), and Brass (1971)), the basic motiv-
ation for the model has its roots in several
empirical studies of survival curves (Hart-
mann (1980) and (1981)).

3.1. Estimation of parameters

If s(x; a) with parameter vector a is a model
of the survival function, the most common
method of estimating a is by means of least
squares, that is, by minimizing the sum of



244

squares

0 = Y o)) — s(x; a) (%)
with respect to a where §(x) is the observed
survival function and ®(x) a weight which
should preferably be proportional to the
inverse of the variance of §(x). Because (5)

leads to non-linear normal equations in the

case of s(x; 0), estimation of 0 requires an’

electronic computer and an algorithm for
non-linear least squares minimization. In
the present paper, the non-linear module in
Macintosh SYSTAT is used for minimiz-
ation of (5). With respect to the choice of
weights, it should be noted that in most
cases it suffices to work with the constant
weight o(x) = 1. In what follows it is
assumed then that o(x) = 1.

In passing it is proper to mention, of
course, that other criteria could be used for
fitting a parametric model to observed mor-
tality. Because it is the principal aim of the
paper to show that s(x; 0) is a reliable demo-
graphic model of the survival function for
young ages, is easy to fit to data, and can be
used in (1) as an aid in indirect estimation,
I abstain from discussing, e.g., a maximum-
likelihood approach (see, e.g., Gross and
Clark (1975), Lee (1980), and Miller (1981)).
For alternative approaches to estimating the
parameters in a parametric model of child
mortality see Choe (1981) and Luther
(1983).

3.2. Interpretation of parameters

With respect to the role of the parameters, it
will be seen that parameter a determines the
level of infant mortality since a = 0.5
In [(1 — s(1; 0))/s(1; 0)] and that parameter
b determines the shape or age-pattern of
child mortality. It has been shown elsewhere
(Hartmann (1980) and (1981)), that the esti-
mated parameters can be used to classify
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age-patterns of child mortality in terms of
the four families in the Coale-Demeny
model life tables (Coale and Demeny
(1966)).

3.3. Judging the goodness of fit

There is considerable difference between fit-
ting s(x; 0) to a survival curve calculated for
a large respectively a small population. In
the case of a large population, the empirical
survival curve is accurately determined, and
even if the fit provided by the model is excel-
lent the small (almost zero) variances in the
observed survival function automatically
lead to a rejection of a statistical test of
whether the model curve and the empirical
curve are in statistical agreement. In such a
situation it is reasonable to refer to the fitted
curve as a representation of the survival
function. In this situation, the absence of a
generally acknowledged standard for judg-
ing the fit necessitates an inspection of a
tabulation or diagram of observed and
fitted values. Consequently, the evaluation
depends on the given circumstances, and is,
of course, more or less subjective. Indeed, it
is in this spirit that Brass (1971) validates his
logit life table system.

When the survival curve is calculated for
a small population, a test of whether
observed mortality is in statistical agree-
ment with that of the fitted model is best
determined by studying the intensity func-
tions (or, alternatively, the probabilities g.).
More specifically, when there is visible ran-
dom variation in the observed mortality
intensities [i,, one may make use of the
result that if the intensities are considered
piecewise constant, then the i, are asymp-
totically independent and i, is asymptoti-
cally normally distributed with estimated
mean [i, and estimated variance [i, /R, where
R, is the observed number of person-years
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lived by those exposed to risk while at age x
(see, e.g., Brownlee (1965) pp. 217-218).

If u(x; b), with parameter vectorb = (b,
..., b,),1is amodel of the underlying piece-
wise constant mortality intensity, it may be
tested if the fitted intensities p(x; b) are in
statistical agreement with the observed ones
by studying the variable

R .
YN —n =Y u_ [A, — pix; P (6)

which, for a least squares estimate p(x; b), is
approximately Chi-square distributed with
N — n degrees of freedom where N is the
number of age groups. It should be noted
that since the intensity is considered piece-
wise constant over single-year intervals, x is
replaced by x + 0.5 for computational pur-
poses in (6). The exception is for age zero
where the intensity changes rapidly with age
and where, approximately speaking, it is
appropriate to let 0.1 represent the pivotal
age (see, e.g., Chiang (1968) pp. 194-202).

As already emphasized, an important
question is whether the fitted intensities
u(x; O) given by (4), where 0 has been
estimated by means of (5), lead to accept-
able results in terms of (6). In other words,
in the context of an experience with visible
random variation in the observed inten-
sities, it is important that the intensities
captured from the estimated model survival
function s(x; 0) are reasonably close to the
observed ones.

We now turn to numerical illustrations
where the focus is on the ability of s(x; 8) to,
on the one hand, represent the survival func-
tion in the case of large populations where
there is no visible random variation in the
observed intensities and, on the other,
model both the survival and the intensity
function in the case of populations where
there is visible random variation in the
observed intensities.
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4. Numerical Illustrations

4.1. Applications to observed survival
curves for large populations

As an illustration of the goodness of fit
given by s(x; 0) in the case of experiences
based on large numbers of person-years,
with the parameters estimated by means
of (5), it has been fitted to the survival
functions for the United States, 1959-61
(both sexes), Australia, 1960-62 (females)
Sweden, 1921-30 (females) and Sweden,
1911-20 (males) (see Gross and Clark
(1975) pp. 27-30, Pollard, Yusuf, and
Pollard (1981) pp. 172-173, and Swedish
Life Tables for the Decades 1911-20 and
1921-30). These survival functions are dif-
ferent both in level and shape (Fig. 1). It will
be seen (Table 1) that the fitted functions
are very close to the observed ones. Indeed,
if one were to show a diagram of fitted
and observed survival curves these would
more or less overlap. Hence, at least in
an impressionistic sense it can be concluded
that the model gives a reliable represen-
tation of the survival curves in Fig. 1. The
estimated parameters are given in Table 2.

4.2.  Estimation of the underlying
intensity: the case of a moderately large
population

To demonstrate the ability of s(x; 0) to
reproduce the underlying intensity in the
case of a moderately large population,
Table 3 shows observed and fitted survival
probabilities and corresponding intensities
along with the risk times for the total popu-
lation of children in California in 1960 (see,
Chiang (1968) p. 196). It will be noted that
the fitted survival function virtually coincides
with the observed one (Table 3).

It will also be noted that, except for age 0,
there is fairly close agreement between
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Table 1. Observed and fitted survival functions
Age  0,(x)  si(x0)  0,(x) S50 000 s060) 0.(x) s 0)
0 1.0000 - 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000  1.0000
1 0.9782  0.9765 0.9824  0.9824 0.9495  0.9488 0.9236  0.9215
2 0.9732  0.9741 0.9807  0.9808 0.9403  0.9416 0.9076  0.9092
3 0.9719  0.9726 0.9797  0.9798 0.9361  0.9370 0.9001  0.9012
4 0.9710  0.9715 09791  0.9791 0.9332  0.9335 0.8945  0.8952
S 0.9703  0.9706 0.9785 0.9785 0.9308  0.9307 0.8900  0.8903
6 0.9697  0.9699 0.9781  0.9780 0.9287  0.9283 0.8862  0.8861
7 0.9692  0.9692 0.9776  0.9776 0.9269  0.9262 0.8827  0.8825
8 0.9687  0.9687 09773  0.9772 0.9251  0.9243 0.8796  0.8793
9 0.9682  0.9681 0.9769  0.9769 0.9235  0.9227 0.8768  0.8764
10 0.9678  0.9677 0.9766  0.9766 0.9219  0.9211 0.8743  0.8738
11 0.9675  0.9673 0.9764  0.9763 0.9204 09197 0.8718  0.8713
12 0.9671  0.9669 0.9761  0.9761 09188  0.9185 0.8694  0.8691
13 0.9667  0.9665 0.9758  0.9758 09172 09172 0.8672  0.8670
14 0.9663  0.9662 0.9756  0.9756 09154 09161 0.8649  0.8650
15 0.9658  0.9658 0.9753 09754 09133 09150 0.8623  0.8632
Note:

0,(x) denotes the observed and s,(x; 0) the fitted function.

0,(x): United States, both sexes, 1959-61
0,(x): Australia, 1960-62, females

05(x): Sweden, 1921-30, females

0,(x): Sweden, 1911-20, males

observed and fitted intensities (Table 3). The
individual squared standardized residuals in
(6) are also given in Table 3. Whereas, as
noted, there is a considerable deviation
between the observed and fitted intensity at
age 0, the remaining observed and fitted
intensities agree reasonably well. In fact, for
the 11 single year age groups (I < x < 12),
%*(9) = 13.2 which is below the 5% limit.
Hence, for these ages the fitted and observed
intensities are not significantly different on

Table 2. Estimated parameters

the 5% level. With respect to age 0 it is
always difficult to compare observed and
fitted intensities because the assumption of a
constant intensity does not hold on account
of the rapid changes in mortality during
infancy. And, as already noted, the assump-
tion that the estimated model intensity
corresponds to age 0.1 is, of course, only an
approximation. It will be seen, however,
that the observed and fitted ¢,, for all practi-
cal purposes, are the same.

Survival function

Estimated parameters

Infant mortality

a b 9o
Australia, 1960-62, females —2.0108 0.0631 0.018
United States, 1959-61, both sexes —1.8636 0.0712 0.022
Sweden, 1921-30, females —1.4595 0.1001 0.051
Sweden, 1911-20, males —1.2312 0.1146 0.076
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Table 3. Observed and fitted survival probabilities and intensities for total California popu-

lation, 1960

Age Observed Fitted Person- Observed Fitted Goodness
Survival Survival Years Intensity Intensity of Fit

0 1.0000 1.0000 356,435 0.02430 0.01883 438.85
1 0.9762 0.9764 351,611 0.00150 0.00164 4.31
2 0.9748 0.9747 351,828 0.00097 0.00103 1.37
3 0.9738 0.9737 344,966 0.00079 0.00076 0.36
4 0.9730 0.9730 341,712 0.00060 0.00061 0.03
5 0.9725 0.9724 335,837 0.00052 0.00051 0.12
6 0.9720 0.9719 331,427 0.00043 0.00044 0.02
7 0.9715 0.9715 322,881 0.00044 0.00038 2.43
8 0.9711 0.9711 307,669 0.00041 0.00034 3.50
9 0.9707 0.9708 297,664 0.00034 0.00031 0.84

10 0.9704 0.9705 299,407 0.00029 0.00028 0.06

11 0.9701 0.9702 297,343 0.00025 0.00026 0.12

Note: The goodness of fit has been calculated by means of (6) for each of the 12 single-year
age groups. The intensities correspond to the middle of each age interval except for age 0
where the pivotal age is 0.1. The estimated parameters, obtained by minimization of (5), are

a@ = —1.86096 and 5 = 0.04993.

9
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Fig. 2. Observed and fitted intensities for total California population in

1960
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Table 4. Observed and fitted survival probabilities and intensities for total Swedish male

population, 1980

Age Observed Fitted Person- Observed Fitted Goodness
Survival Survival Years Intensity Intensity of Fit
0 1.0000 1.0000 49,860 0.00806 0.00785 0.28
1 0.9919 0.9922 48,676 0.00055 0.00076 3.81
2 0.9914 0.9914 48,836 0.00029 0.00049 6.55
3 0.9911 0.9909 50,372 0.00034 0.00036 0.09
4 0.9907 0.9906 52,400 0.00032 0.00029 0.12
5 0.9904 0.9903 55,471 0.00025 0.00025 0.00
6 0.9902 0.9900 56,952 0.00030 0.00021 1.42
7 0.9899 0.9898 57,214 0.00021 0.00019 0.12
8 0.9897 0.9896 58,149 0.00024 0.00017 1.21
9 0.9894 0.9895 57,255 0.00026 0.00015 2.48
10 0.9892 0.9893 55,848 0.00016 0.00014 0.13
11 0.9890 0.9892 57,003 0.00011 0.00013 0.22
Note: The estimated parameters, obtained by minimization of (5), are @ = — 2.42211 and
= 0.06880.

This result is encouraging and speaks in

favor of s(x; 0) as a sound model of child*

mortality, especially if one considers the
large number of person-years lived by those
exposed to risk (Table 3). In order to
enhance visible inspection of observed and
fitted intensities, Fig. 2 shows the trans-
formed intensities —In fi, and —In p(x; 0).

4.3. Estimation of the underlying
intensity: the case of a relatively small
population

The final illustration concerns survival data
for a relatively small population, namely
Swedish males in 1980 (Table 4). The
person-years of this experience (see Swedish
Life Tables for the Decade 1971-80) are
substantially fewer (and hence the variances
substantially larger) than in the case of
Table 3. First, it will be seen that the fitted
survival function gives a close fit to the
observed one; it is, among other things, for
this reason that it is sufficient to make use of
(5) for estimation of the parameters. Second,

because the variances in the observed inten-
sities are much larger than in Table 3,
the observed and fitted intensities agree
quite well in terms of (6). For the ages
0 < x < 12, ¥* (10) = 16.4 which means
that observed and fitted intensities agree on
the 5% level. The transformed intensities
—Inf, and —In p(x; §) are shown in
Fig. 3.

The basic requirements for the fitted
intensities to be a graduation of the observed
intensities is that (i) they are smooth, (ii) do
not deviate significantly from one another in
the sense of x*, and (iii) the sign changes
between fitted and observed values are suf-
ficiently many for a sign-test not to lead to
a rejection on the 5% level, say. These
requirements are all met in the case of
Table 4. In the case of Table 3 the small
variance in infant mortality, as well as the
choice of a pivotal age of 0.1, cause a highly
significant difference between the observed
and estimated infant mortality intensity.
However, as already noted, the observed
and estimated g, are in agreement.



Hartmann: Modeling Childhood Mortality 249
10
& :
o« °* 8
1 [ J ¢ 8 o o
8 - s 8 °
2 o
& o
g 7
g
S
6 - O -lnobs
1 ® _in fitted
5
4 LA | T T LENNS R T T T T T LI { T T LIS L |

Age

Fig. 3. Observed and fitted intensities for Swedish males, 1980

5. Conclusions

In the case of large populations, s(x; 0)
appears to give “close fits” to observed sur-
vival functions. However, because the esti-
mated variances in the observed intensities
are almost zero, it has little or no meaning to
test if the estimated model representations
agree with the observed ones. Instead, one
has to rely on common sense and the pre-
vailing circumstances when deciding if the
fit is adequate. Here it should be added that
the fits to survival curves for large popu-
lations shown in this paper are quite similar
to those shown elsewhere.

In the case of populations where there is
visible random variation in the observed
intensity (or in g,), s(x; 0) can also be seen
as function which graduates or represents
both the survival function and the observed

intensities. Previous findings (Hartmann
(1980) and (1981)) as well as the results given
in this paper suggest, therefore, that s(x; 0)
is a highly reliable parametric model of infant
and child mortality.

Perhaps the use of s(x; 0) with greatest
potential is in (1). Here s(x; 8) can be chosen
80 as to represent a first guess of the under-
lying survival function. Because the inten-
sities derived from s(x; 0) appear to give a
realistic picture of the true underlying inten-
sities, it is an ideal choice of parametric
function for fine-tuning a Brass-type process
of child mortality estimation. It will be
realized, however, that s(x; ) also may serve
as a useful model for graduating child sur-
vival data obtained in a survey where the
person-years are few and, hence, there is
clearly visible random variation in the
observed intensity function.
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