
Journal of Of®cial Statistics, Vol. 14, No. 4, 1998, pp. 437±447

Models and Methods for the Microdata Protection Problem

C.A.J. Hurkens and S.R. Tiourine1

Key words: Mathematical modeling; optimization algorithms.

1. Introduction

Statistical disclosure control in microdata is a relatively new problem for statistical of®ces.

The problem arises from contradictory objectives with respect to the public release of

microdata ®les. A microdata ®le consists of records with information collected from indi-

vidual respondents, typically by means of a survey. With the release of an anonymized

version of such a ®le, the statistical of®ce aims at providing the most detailed information

under the condition that no sensitive information from this ®le can be attributed with cer-

tainty to a particular respondent. Clearly, the dilemma is releasing very detailed informa-

tion at a high risk of misuse of this information versus providing much less detailed

information and guaranteeing the privacy of a respondent. For the de®nitions used and

the background of the problem we refer to the work of Willenborg and De Waal (1996).

Disclosure of information in the microdata ®le occurs when sensitive information in the

®le is identi®ed with a certain respondent. Therefore, there are two conditions for a disclo-

sure to occur. First, the ®le must contain sensitive information. Second, it should be pos-

sible to identify this information with a respondent. If one of these conditions is not

satis®ed, we assume that the ®le is safe from disclosure.

It is up to a statistical of®ce to judge whether the microdata contains sensitive informa-

tion. We assume that such information is indeed present and that the issue is to prevent its

identi®cation with the individuals from a population. In the absence of directly identifying

information like a name or an address, a record in the microdata can be identi®ed by a

combination of identifying variables, called a key. There are several scenarios described
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in the literature as to how this identi®cation can occur. The easiest one concerns the popu-

lation uniques. If someone is unique in a population on a certain key and the corresponding

record is present in a microdata ®le, the respondent can be identi®ed. A more subtle situa-

tion occurs when a group of people identical on a certain key also have similar scores of a

sensitive variable. In this case, the sensitive information about a member of this group can

be disclosed although no personal identi®cation occurs.

In practice, it is assumed that, if a record in the microdata ®le has a rare score for a low-

dimensional key, it is potentially unsafe. This is a natural extension of the concept of

uniqueness. Indeed, if someone is unique in the population on a key, then so is the

corresponding record in the microdata ®le, if present. On the other hand, if a group of indi-

viduals can be identi®ed on a low-dimensional key, then it is likely that either the members

of the group are unique on the higher-dimensional key or that the sensitive information

shared by the group is revealed.

Frequency tables are used to compute the set of the rare combinations. More precisely a

frequency table is set up for each potentially unsafe key. A cell in the table gives the

number of records that contain the corresponding combination of values of a key. If

this number is between one and a certain threshold, de®ned for each table, then the com-

bination is declared to be unsafe. These unsafe combinations have to be screened before

the microdata ®le can be released for public use. We will consider two protective measures

for microdata: local suppressions and global recodings, as suggested by Willenborg and

De Waal (1996). Global recoding is an operation de®ned for all records in the microdata

®le. If, for example, each record in the ®le contains a ®eld specifying the municipality of a

respondent, then a possible global recoding will be to replace the value of that ®eld by the

corresponding province for all records. Local suppression on the contrary is applied to a

single record by replacing the values of some of its ®elds by ``missing.'' The protective

effect of these techniques is determined from the updated frequency tables.

There is no consensus in the community of statistical of®ces as to what the measure of

information loss should be (Willenborg 1997). De Waal and Willenborg (1995) proposed

to use an entropy function, but the exact implementation of this function has yet to be

worked out. We model the information loss by a linear function. Under the assumption

of independence, most of the information loss functions known from the literature can

be represented in this way.

In the following sections we proceed by formulating the microdata protection problem

as an optimization problem. We will have to deal with the size issue, in particular, as the

microdata sets themselves may be of enormous magnitude.

2. Models for Microdata Protection

We base our modeling approach on the concepts de®ned by De Waal and Willenborg

(1995). Consider a microdata ®le as a collection R of records r. In the microdata protection

problem we are only interested in the part of the ®le containing identifying information.

We denote the index set of identifying ®elds in a record by F. Let U be a set of unsafe

combinations of identifying ®elds in the microdata. An unsafe combination u [ U has

the form u � �r; S�; with r [ R and S Í F. As we discussed in the introduction, the set

U of unsafe combinations is computed from the microdata ®le using the frequency tables.
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We distinguish between two types of critical unsafe combinations in our models: a

minimal unsafe combination (minuc) and a maximal unsafe combination (manuc), which

are inclusion-wise minimal, respectively maximal, unsafe combinations. An unsafe com-

bination u � �r; S� is minimal if there is no T Í F with T Ì S (we use the sign Ì for strict

inclusion) and �r;T� [ U. It is maximal if there is no T Í F with S Ì T and �r; T� [ U. A

minuc is protected by suppressing any of its entries and therefore is useful in the de®nition

of a model for local suppression. Manucs are used to formulate the global recoding

problem.

We have to protect the unsafe combinations from U using global recodings and local

suppressions and to do so with minimal information loss. We will give the examples of

the application of local suppressions and global recodings in Sections 2.1 and 2.2. We

will proceed by building our model gradually, starting with simple special cases.

2.1. A pure suppression problem

We begin by formulating the exact local suppression problem, following De Waal and

Willenborg (1998). For each record r with at least one unsafe combination we introduce

variables

xrf �

�
1 if the content of field f in record r is replaced by ``missing''

0 otherwise

where f [ F. By setting at least one value of an unsafe combination at ``missing'' the

combination becomes untraceable and therefore is considered protected. Hence, the local

suppression problem for a microdata ®le is

min
P

r[R;f [F crf xrf

s:t:
P

f [S xrf $ 1; "�r; S� [ U; (1)

xrf [ f0; 1g; "r [ R;"f [ F

Under some conditions, we may restrict the constraints to minucs only. This is because if

the set U is complete with respect to minucs, or in other words if for each u [ U the set U

contains all minimal subsets of u, then the set U is protected by local suppressions if and

only if the subset of minucs in U is protected. To prove necessity, suppose that all minucs

in U are protected by local suppressions. Let u � �r; S� [ U be any unsafe combination not

protected by local suppressions. Consider another combination de®ned by the not sup-

pressed ®elds of u : u0
� �r; S0

� : S0 Ì S, where S0 is a subset of not suppressed ®elds of

S. By construction, u0 is also an unsafe combination, not necessarily in U, not protected

by local suppressions. It is also clear that u0 must contain at least one minuc from U, which

contradicts the fact that none of the ®elds of u0 are suppressed and therefore the minuc is

not protected.

Note that there are variations of the local suppression problem that may connect the

problems for the records. For instance, one might want to bound the total number of sup-

pressions of ®eld f from above, by bf , say. Then the additional restriction
P

r xrf # bf turns

the overall suppression problem into one very big problem.

Example: Consider a collection of records and the corresponding list of minucs given in

Table 1.
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An unsafe combination in this example is any unique combination of record ®eld values.

The local suppression problem for this data is

min c11x11 � c12x12 � c21x21 � c22x22

s:t: x11 � x12 $ 1

x21 $ 1

x22 $ 1

x11; x12; x21; x22 [ f0; 1g

2.2. A restricted combination of local suppression and recoding

In the formulation below we require that every unsafe combination is protected by either

local suppression or global recoding. This can be done, because, in principle, for each

unsafe combination we can list all local suppressions and global recodings that protect it.

We introduce the following variables:

yfk �

�
1 if the content of field f is recoded according to rule k for every record

0 otherwise

for k [ Kf , where Kf is the set of possible recodings of ®eld f.

A constraint matrix B with columns corresponding to variables yfk and rows correspond-

ing to unsafe combinations u, characterizes the protection of unsafe combinations by glo-

bal recodings. The column corresponding to a variable yfk has an entry 1 in row u [ U if

any only if unsafe cell u is protected by the global recoding k of ®eld f. To construct this

column, we effectuate the corresponding global recoding. Consider an unsafe combination

u � �r; S�. If, in the recoded microdata set, there are enough records r0 with the same score

in the ®elds S, the combination u is considered to be protected. Note that we only apply

recoding of one speci®c ®eld f, and leave all other ®elds unchanged.

Matrix B constructed in this way characterizes protection effect of the global recodings.

This characterization is complete under the assumption that the combinations of global

recodings have no added effect. However, this is not always the case. Often a combination

of two or more global recodings protects unsafe combinations that are not protected by

either of the global recodings. We will illustrate this issue in the example below.

We de®ne a constraint matrix A as the incidence matrix of record ®elds and unsafe com-

binations. That is, the coef®cient in row u and column f of A is 1 if combination u contains

®eld f, and 0 otherwise.

Now our ®rst step is to consider local suppressions in a restricted combination with
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Table 1. Collection of records, with minimal unsafe combinations

record ®eld 1 ®eld 2

1 10 100
2 11 101
3 19 100
4 19 100
5 10 109
6 10 109

unsafe in protected by
comb. record minuc suppression

1 1 10 ´ 100 x11, x12

2 2 11 x21

3 2 101 x22



global recodings. In this approximation we neglect the possible effects of superpositions of

the global recodings. We will clarify this issue below. Then the restricted local suppression

and global recoding problem is

min cxx � cyy

s:t: Ax � By $ 1;P
k[Kf

yfk � 1 "f [ F (2)

xrf [ f0; 1g "r [ R;"f [ F

yfk [ f0; 1g "k [ Kf ;"f [ F

where cx and cy are the cost vectors corresponding to local suppressions and global recod-

ings, respectively. The equality constraints ensure that every ®eld is recorded in one way.

By convention we include the recoding ``leaving as it is'' as one possibility.

Example: (continued). We assume that the ®elds in the microdata ®le can be recoded as

shown in Table 2. The ®rst column of each table gives the original values of the

corresponding ®elds. The second one gives the recoded values. For example, variable

y12 corresponds to the replacement of the values of Field 1 from {10,...,19} by the range

10±19. The corresponding local suppression and elementary global recoding problem is

given by

mincx
11x11 � cx

21x21 � cx
12x12 � cx

22x22 � c
y
11y11 � c

y
12y12 � c

y
21y21 � c

y
22y22

s:t: x11 � x21 y12 � y22 $ 1

x12 � y11� y12 � $ 1

x22 � y21 � y22 $ 1

y13� y11� y12 � � 1

y23� y21 � y22 � 1

x11; x21; x12; x22; y11; y12; y13; y21; y22; y23 [ f0; 1g

This model, however, neglects the fact that some manucs which are not secured by ele-

mentary recodings may be protected by a combination of them. As an illustration consider

unsafe combination 1 of our example, which is protected by the combination of recodings

y11 and y21, but not by either of them.

2.3. A complete formulation

We now formulate a model that is complete in the sense that it combines the suppression

and recoding problem, and also takes the combined effects of recodings into account. Let
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Table 2. Recodings of Fields 1 and 2

Field 1

orig. recoded corresp.
value value variable

10,11 10±11 y11

18,19 18±19 y11

10..19 10±19 y12

10..19 10..19 y13

Field 2

orig. recoded corresp.
value value variable

100,101 100±101 y21

108,109 108±109 y21

100..109 100±109 y22

100..109 100..109 y23



k � f�k1; k2; :::; kjFj� jKf [ Kf g denote the set of all possible recodings. Then a vector

k [ k denotes a particular recoding of the entire microdata set.

We described in the introduction how the unsafe combinations are determined using fre-

quency tables. It is easy to see that for each unsafe combination there is a unique set of

unsafe cells C corresponding to the set U of unsafe combinations. Note that more than

one unsafe combination can be mapped to one cell a [ C. We therefore de®ne an unsafe

cell as a set of unsafe combinations mapped to it.

In addition to 0-1 variables xrf and yfk, we introduce 0-1 variables

za �

�
0 if unsafe cell a is protected by global recodings

1 otherwise

for a [ C. We introduce 0-1 parameters P�a; k�; where P�a; k� � 1 if the unsafe cell a is

protected by a recoding k � �k1; k2; :::; kjFj�; and P�a; k� � 0 otherwise. The problem is

now

min
P

r[R

P
f [F crf xrf �

P
f [F

P
k[Kf

df kyf k

s:t: za �
P

k[k P�a; k�Pf yfkf
$ 1 "a [ CP

f [S xrf $ za "�r; S� [ a; "a [ CP
k[Kf

yfk � 1 "f [ F

xrf ; yfk [ f0; 1g "r [ R;"f [ F;"k [ Kf

2.4. Discussion of the model

In principle, the coef®cients P�a; k� of the model are known. The same is true for the cost

coef®cients crf and dfk. A major problem is that it is rather hard to de®ne cost coef®cients

that suitably describe the overall information loss. Especially dif®cult in this respect is to

®nd a trade-off between the local suppressions and the global recodings.

Another point is that the model does not seem to possess any structure that suggests an

ef®cient solution technique. In particular, the product form of the recoding variables seems

hard to work with.

We will use these points to our advantage. We decompose the problem into two, one for

the global recoding and one for the local suppression. This is based on the following argu-

ment. Each cell in Model (3) has to be protected by either recoding or suppression. For an

arbitrary recoding k we determine the set Ck of cells not protected by k. z is the character-

istic vector of this set Ck � fa [ Cjza � 1g. For the cells in Ck we compute an estimate of

the cost of local suppressions. In our approach every cell a gets a weight pa, which can

roughly be interpreted as the cost of local suppressions necessary to protect the cell. There-

fore, an overall estimate of the suppression costs amounts to the sum of the weights over

the cells in Ck.

We prefer to see the uncertainty in the objective function as an extra degree of freedom.

One may think of an iterative setting, where the user may adjust the cost coef®cients to

re¯ect his or her preferences about the measure of information loss.

The structure of the model is also justi®ed by the required interface with the existing

software. As one of the results of this study, a solver has been developed and incorporated

in a decision support system for statistical disclosure control, called ARGUS (Willenborg

and Hundepool 1998). It implies extra limitations and certainly extra challenges for our
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approach. In the decision support system the information about a problem instance is

available to us via the coef®cients crf , dfk and P�a; k�.

Therefore, we think that the model we have chosen is a good compromise between the

phenomenon we are studying, the data available to us, and the solution techniques we have

in mind. We proceed by describing the solution techniques for this model.

3. Solution Approach

3.1. The relaxed recoding problem

We ®rst obtain a lower bound on the local suppression problem for each record. Let Cr

denote the projection of set C to record r : Cr � af[Cjgÿ�r; :� [ ag: Then the local sup-

pression problem for record r is

min
P

f [F crf xrf (3)

s:t:
P

f [S xrf $ za "a [ Cr

xrf [ f0; 1g "f [ F

The dual to the linear programming relaxation of this problem is

max
P

a[Cr
parza

s:t:
P

a[Cr :�r;S�[a; f [S par # crf "f [ F (4)

par $ 0, "a [ Cr

According to the duality theory of the linear programming, any feasible solution par to (4)

provides a lower bound on the value of (3).

In the following formulation, we obtain a lower bound on the complete formulation. Let

pa �
P

r[R par. We de®ne the relaxed recoding problem as follows:

min
P

a[C zapa �
P

f [F

P
k[Kf

dfkyfk

s:t: (5)

za �
P

k[k P�a; k�Pf [F yfkf
$ 1 "a [ CP

k[Kf
yfk � 1 "f [ F

yfk [ f0; 1g "f [ F;"k [ Kf

3.2. Strategy

Our strategy in tackling the original problem is as follows.

· Compute weights par for all-one vectors za (it corresponds to protection of the unsafe

cells by only local suppressions).

· Find ± by whatever method ± a recoding that together with the estimated costs of sup-

pression, yields a good solution to the relaxed recoding problem, and thereby gives a

good approximate solution to the overall problem.

· Given the recoding found in the previous set, compute or approximate the real opti-

mal solution to the suppression problem. If the value is close to the computed lower

bound, then we have a solution and an estimate of its suboptimality, and we stop.

· If we are not satis®ed with the solution at hand, we may recompute the weights par
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based on the outcome of the last step. That is, we solve (4) with za derived from the

last solution. We go back and repeat the solution procedure.

We consider two ways of ®nding good solutions to our relaxed recoding problem. The

®rst is based on Lagrangean relaxation, the second on local search. The methods are

described below.

3.3 Lagrange relaxation

The following method for solving the relaxed recoding problem is motivated by the size of

the problem. The idea is to solve the problem (6) to optimality, for each frequency table sepa-

rately. If this leads to a consistent overall solution, we are done. Otherwise, we will try to

enforce consistency by imposing Lagrangean type penalties. Note that the relaxed recoding

problem for each table is relatively small and could be solved by complete enumeration.

In the following, let T denote the set of frequency tables used to indicate unsafe com-

binations, and let Tf denote the set of tables that contain ®eld f as one of their dimensions.

For convenience we may view a table as a collection of cells. For table t, let It denote the

set of its coordinates. We introduce new variables for global recodings for each frequency

table:

yt
fk �

�
1 if the content of field f is recoded according to rule k for a table t

0 otherwise

Our intention is to use these variables to determine the best recoding for each frequency

table. In other words, if only one frequency table t was generated then yt
fk will represent the

alternative recodings for microdata. Clearly, there can be different recoding chosen based

on the different frequency tables. Therefore, these variables can take values inconsistent

with each other and our goal is to ®nd an iterative scheme to eliminate such inconsistencies.

First, we reformulate the problem in the following way:

min
P

t[T �
P

a[t paza �
P

f [It

P
k[Kf

dfkyt
fk

1
jTf j

�

s:t: (6)

za �
P

k[k P�a; k�Pf [F yt
fk $ 1 "t [ T ;"a [ t

yt
fk �

1
jTf j

P
t0: f [It 0

yt 0

fk "t [ T ;"f [ ItP
k[Kf

yt
fk � 1 "t [ T ;"f [ It

yt
fk [ f0; 1g "t [ T ;"f [ It;"k [ Kf

The ®rst equation demands that all table recodings yt
fk are consistent with respect to

common ®elds. In other words, a feasible recoding will have a form

yt
fk � yt

fk; "t; t0 [ T ;"f [ F;"k [ Kf : We obtain a Lagrangean relaxation of this problem

by bringing this equality system into the objective. For arbitrary l in �jTj
P

f [F jKf j�±

dimensional real space, let L�l� be de®ned byP
t[T

min
ÿP

a[t paza �
P

f [It

P
k[Kf

ÿdfkyt
fk

jTf j
� ltfk

ÿ
yt

fk ÿ
1
jTf j

P
t0: f [It0

yt0

fk

���
s:t: (7)

za �
P

k[k P�a; k�Pf [F yt
fk $ 1 "t [ T ;"a [ tP

k[Kf
yt

fk � 1 "t [ T ;"f [ It

yt
fk [ f0; 1g "t [ T ;"f [ It;"k [ Kf
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In principle, the minimization problems in this formulation have exactly the same

structure as the original problem, but it is hoped that they are small enough to be solved

by complete enumeration. The overall Lagrangean relaxation can be solved using the

classical subgradient algorithm (see for example Minoux 1986).

Although this method has not been implemented, it may be of interest. It can always be

used as a tool to ®nd lower bounds for the relaxed recoding problem. Moreover there may

be possibilities of using it as a means to ®nd approximate solutions.

3.4. A local search approach

The method that has been implemented is based on the principle of local search. Local

search algorithms are often chosen to tackle large-scale practical combinatorial optimiza-

tion problems. These are particularly suitable if there are a lot of feasible solutions. The

general idea of local search is to start with an initial solution and iteratively perform small

transformations of this solution in an attempt to improve it with respect to a given criter-

ion. The neighborhood of a given solution is de®ned as a set of solutions to which a given

one can be transformed in a single iteration. Various search strategies are used to continue

the search even when no immediate improvement is found in a neighborhood. An exhaus-

tive treatment of these techniques and their applications is given by Aarts and Lenstra

(1997).

We de®ne the neighborhood of solution y for problem (6) as the set of recodings y0 such

that

gÿ j �y0jk � yj;k61 � 1 and "i Þ j "k y0ik � yik�

In other words, we move from one solution to another by changing the recoding level of

one of the ®elds to an adjacent one.

We start with a random solution, or a solution constructed in some sensible way. We then

modify our solution to a neighboring solution. We recompute the solution value, and if the

change proves pro®table, we effectuate it, otherwise we try another one. A greedy imple-

mentation of this strategy will lead to a so-called iterative improvement algorithm. It

will ®nd better and better solutions, until it gets stuck in some local minimum.

We have implemented the following search strategies:

· Iterative Improvement starts from a randomly generated recoding, or a recoding given

by the user. At each step it modi®es the current solution to a neighboring solution of

lower cost. The method stops when no better neighbor exists.

· Repeated Iterative Improvement restarts the iterative improvement procedure from

random recodings.

· Tabu Search always moves to the best neighbor. In this way the cost of the solutions

generated is not necessarily decreasing. To prevent the method from cycling, the

reversal of several recently performed moves is disallowed. A stopping criterion is

a maximum number of iterations without improvement.

· Simulated Annealing modi®es a solution to a randomly generated neighbor. Improve-

ments are always accepted. Deteriorations are accepted with a certain probability,

decreasing during the run. The method stops when this probability reaches a certain

value.
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The right choice of a local search algorithm depends on the relative size of the neighbor-

hoods, the probability that a neighboring solution is better, and the effort it takes to evaluate

the new solution. The parameter settings of the various approaches are chosen automatically.

The ef®ciency and quality of the various procedures have to be evaluated by performing

experiments and judging the solutions within the context of the expected use of the microdata.

4. Conclusions

Statistical disclosure control in microdata gives rise to a constrained decision problem. We

work with a mathematical programming formulation of the problem. This approach yields

a huge optimization model, the formulation of which requires extensive computations. In

this model a set of unsafe combinations has to be protected by application of global recod-

ings and local suppressions at minimum information loss. Each global recoding is charac-

terized by a subset of unsafe combinations protected by it. Local suppressions are used for

the unsafe combinations left unprotected by the global recodings.

A practical dif®culty of our model lies in the de®nition of an objective function. Here

two different approaches can be used. One is based on the information loss, expressed for

example by an entropy function, resulting from global recodings and local suppressions.

The other is a subjective assessment by a user as to what the value of a resulting microdata

will be for his or her research purposes. These two criteria do not necessarily produce the

same result. Moreover, there is no consensus about the exact form of the information loss

estimate in the former approach.

This motivated us to construct a cost estimate, where we ®rst calculate the effect of the

global recodings and then we estimate the cost of the remaining local suppressions. The

estimate is based on the solution to a relaxation of the local suppression problem. In

this way we obtain a lower bound on the optimal solution value. We gave an iterative

procedure that can be used to strengthen this bound. We proposed a local search approach

to obtain a solution to this smaller and computationally less intensive model. Its imple-

mentation has been incorporated in a decision support system for statistical disclosure con-

trol. This still somewhat cumbersome routine spends about 99% of its run time on cost

calculations. Our tests show that the iterative improvement algorithm can be a useful

on-line navigation tool for a user to obtain a modi®ed microdata set. Tabu search can

perform the same task off-line, and simulated annealing provides a costly alternative.

A Lagrangean relaxation based solution technique as proposed in this article has yet to

be implemented and tested.
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