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Monthly Disaggregation of a Quarterly Time Series and
Forecasts of Its Unobservable Monthly Values

. 1
Victor M. Guerrero

The temporal disaggregation problem consists of deriving high frequency data from less fre-
quent observations of a time series. This problem usually occurs when carrying out analysis of
the economic situation. In this article, a direct solution is first proposed to disaggregate
historical values of an aggregated time series in one step. A recursive approach is then
used to estimate current disaggregated values of the series and a method is proposed to predict
future disaggregated values. The procedures are derived from a statistical model that links the
unobserved data with a preliminarily estimated series and with the series of aggregated values.
It is assumed that the preliminary series can be estimated from data on related variables. Some
results already established in the literature are employed to derive a theoretical solution
that produces the Minimum Mean Squared Error Linear Estimator of the unobserved series.
Mexico’s GDP is used as an illustrative example.

Key words: ARIMA models; compatibility testing; minimum mean squared error; preliminary
series.

1. Introduction

Several analysts have proposed methodologies to obtain high frequency data (say
monthly) from less frequent observations (say quarterly) of such an important economic
variable as Gross Domestic Product (GDP). Friedman (1962), one of the pioneers in
this area, suggested that we should use related variables to estimate the unobserved one
from observations of the others. However, his proposal was incomplete since that method
does not produce an estimated series satisfying the accounting restrictions that the
unobserved variable has to fulfill — the monthly GDP values, for example, must average
to the observed quarterly figure. Some other works did pay attention to the accounting
restrictions, but did not employ related variables. Such was the case of Lisman and Sandee
(1964) and Cohen, Miiller, and Padberg (1971).

The methods proposed by Chow and Lin (1971) and Denton (1971) are probably the
most frequently used in practice nowadays, because they take into account both the infor-
mation provided by related variables and the temporal restrictions on the unobserved
series. Nevertheless, those methods consider the autocorrelation structure of the time
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series variable in a subjective way. In contrast, the solutions of Guerrero (1990) and Wei
and Stram (1990) focused mainly on the use of the appropriate autocorrelation structure.
Some other works dealing with the temporal disaggregation problem are those of Hillmer
and Trabelsi (1987), Chen, Cholette, and Dagum (1997) and Nieto (1998). This article
presents a method that: (a) uses related variables to obtain a preliminary series, (b)
includes the appropriate autocorrelation structure (deduced from observed data) and (c)
disaggregates the series in a statistically optimal way.

Section 2 presents a statistical model that relates the preliminary series with the
unobserved one. Section 3 gives the solution to the direct temporal disaggregation
problem, first as a theoretical result and then as a feasible method. The recursive disaggre-
gation is studied in Section 4 as an extension of the results for the direct solution. From the
results in Section 5 a method to forecast future values of the unobserved series is derived.
Estimation of a preliminary series is given a detailed discussion in Section 6. The monthly
disaggregation of Mexico’s quarterly GDP is shown in Section 7. Section 8 concludes with
some recommendations.

2. A Statistical Model

Let {Z,}, for t = 1,...,mn, be an unobserved series, where n = 1 denotes the number
of whole periods (say quarters) and m = 2 is the intraperiod frequency (say months, in
which case m = 3). Let us suppose that {W,} is a possibly nonstationary series of
preliminary estimates of the unobserved data. Then, given {W,}, the following relation
holds:

Z,=W,+S,, with {S,} a zero-mean unobserved stationary process. 2.1

The model is complemented by the following assumptions.

Assumption 1. An Autoregressive and Moving Average (ARMA) model captures the
dynamic structure of {S,}, that is

bs(B)S, = O5(B)e, (2.2)

where ¢5(B) =1—¢5 B—...— 5 ,B” and 05(B)=1+05,B+...+05,B? are
polynomials in the backshift operator B such that BX, = X, _, for every variable X and
every index t. Those polynomials are assumed to be prime, with the roots of ¢¢(x) =0
and fg(x) = O outside the unit circle, in such a way that they correspond to a stationary
and invertible process. Besides, {e;} is a zero-mean Gaussian White Noise process with
variance a,l,2 .

Assumption 2. The series {W,} can be represented by the following Autoregressive
Integrated and Moving Average (ARIMA) model:

dw(BYd(B)W, = Oy (B)a, (2.3)

where d(B) is a differencing operator that renders {d(B)W,} stationary, whereas ¢y (B)
and Oy (B) are the corresponding autoregressive (AR) and moving average (MA) poly-
nomials whose roots are outside the unit circle. The process {a,} is zero-mean Gaussian
White Noise with variance 03 and is uncorrelated with {e,}.
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Model (2.2) can be written equivalently as
S, = ¥s(Be, 2.4

with Yg(B) =1+ 5 B+ 1//5’2B2 + ... the pure MA polynomial, obtained from the
relation Y5(B)¢pg(B) = O5(B) by equating coefficients of powers of B. Expression (2.4)
leads us to

S = Ve 2.5)

withS = (S,,...,S,,) and e = (ey,...,e,,), where the prime sign denotes transposition,
and ¥ is an mn X mn lower triangular matrix with 1’s on its main diagonal, ¥ | on its
first subdiagonal, 5 , on its second subdiagonal and so on. For (2.5) to be completely
equivalent to (2.4) we require that e, = 0 for t = 0.

On the other hand, the aggregated series {Y,..., Y, } can be written as

Yi=zcjzm(i—l)+j for i = 1,...,7’1 (26)
j=1

where the ¢;’s are known constants defined by the type of aggregation. For instance,
disaggregation means distribution if the Y; are flow values, in which case
¢ =(cy,...,c,) =(1,...,1). Tt also means distribution when the Y; are indices or
annualized flows, whereby the aggregation vector is ¢’ = (1/m, ..., 1/m). Similarly, when
the Y; are stocks, disaggregation means interpolation of the values and ¢ =(0,...,0,Dor
¢ =(1,0,...,0). Let us now define the matrix C = I ® ¢’ with ® denoting the Kronecker
product, Y = (Yy,...,Y,) and Z = (Z,,...,Z,,,), whereby the whole set of restrictions
(2.6) can be written as

Y=CZ 2.7
3. Direct Disaggregation

3.1. Optimal solution

Expressions (2.7) and (2.1), written in vector notation as Z =W+ S with
W = (W,,...,W,,), allow us to use the Basic Combination Rule derived by Guerrero
and Pefia (2000). To that end note that E(Z|W) = W, so that W is the minimum Mean
Squared Error Linear Estimator (MMSELE) of Z based on W. It should be mentioned
that rather than estimator we could have used the term predictor, but we reserve the
word predictor for the forecasting situation of Section 5. Moreover, (2.5) implies that
T = 02 ¥,¥§. Hence we get the following result that provides the theoretical solution
to the direct disaggregation problem.

Proposition 1. The MMSELE of Z, given W and Y, is given by
Z=W+A(Y —CW) (3.1)
with MSE matrix

MSE(Z) = oI, — AC) ¥ ¥ (3.2)
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where

A=V ¥C'(C¥s¥5C)! (3.3)

Remark. Because of the linearity of Relation (2.1), the MMSELE is provided only by
the first and second moments. Consequently there will be little loss of generality if we
assume multivariate normal distributions for S and W, in consistency with the Gaussian
assumption for the processes involved in (2.2) and (2.3).

An estimate of ¥g can be obtained from an estimated model for the aggregated
differences

D=CS=CZ-CW=Y-CW 3.4)
That is, we assume that {D;} admits the ARMA model

op(L)D; = 0p(L)e;, fori=1,...,n (3.5
with ¢p(L) =1—¢p L —...—dppLl’ and Op(L) =1+ 0p L+ ...+ 0p,L% poly-

nomials in the backshift operator L acting on the aggregated variable. In (3.5) we use
an ARMA model because the temporal aggregation of an ARMA process, in this
case the process {S,}, produces another ARMA process (see Engel 1984). Since data on
{D;} are obtained from {Y;} and {W,}, Model (3.5) can be built by applying standard
time series techniques.

We can now use Wei and Stram’s (1990) method to disaggregate Model (3.5). On
the one hand, if the aggregated series is nonseasonal and has no hidden periodicity
of order m, its ARMA(P, Q) model can be disaggregated into an ARMA(p, ¢) model.
The latter model is such that p = P, ¢ = p + 1 and its parameters can be obtained from
the P+ Q original ones. Besides, when calculating the estimated MA parameters, an
estimate of 03 is also obtained. On the other hand, when the aggregated series {D;}
follows a seasonal ARMA model, the seasonality length is given by E/m and
the seasonal AR and MA polynomials are ®,(L"™)=1—& L™ — —&,L"F"
and O,(LY™ =1 +®,LE/’”+...+®QLQE/’”. In order to obtain a model for the
disaggregated series they proposed the following procedure. Firstly, choose the seasonal
AR and MA polynomials as

®sB¥)=1-& B —... - &B"F and O5B") =1+ 0,B  +... + ©,B°F
(3.6)

with the same parameter values as those of the model for the aggregated series. Secondly,
deseasonalize both the aggregated and disaggregated series by means of the filters

FD; = ®p(L"™)O (L") ' D, and FS, = ®,(B%)O4(BF)"'S, (3.7
Then apply the procedure for nonseasonal series to obtain the model

¢s(B)FS, = 05(B)e, (3.8)
Thus the complete model for the disaggregated series of differences becomes

¢5(B)25(B")S, = O5(B")5(B)e, (3.9)

It should be noticed that the matrix MSE(i) of (3.2) will produce different
variances for the disaggregated values {Z,} because the elements in the diagonal of
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V¥ are different, due in part to the initial conditions e, = 0 imposed for t < 0. An
adjustment to correct for this nonstationarity situation consists in replacing those
diagonal elements by the theoretical variance of the model. For instance, if the model is
(1—-®B5S,=(1+6,B+...+ 0,B%)e,, with 0 = g =< E, then its variance is given by
Var(S) = (1 + 67 +... + 6o /(1 — ).

3.2. Validating the method

The assumption that { W, } is a true series of preliminary estimates of {Z,} can be validated
empirically via a compatibility test. Since {Z,} is unobservable, the test should be carried
out with the observed values of CW and CZ =Y. That is, given {W,} we know that

Y - CW = C¥ge ~N(0, 0’ C¥¥iC) (3.10)

then a test statistic for the null hypothesis that the two sets of observed data are compatible,
i.e., for Hy: E(Y|W) = CW, becomes

K=(Y—CW)(C¥¥:C)y (Y — CW)/52 @3.11)

whose asymptotic distribution, against which K should be compared, is Chi-square with n
degrees of freedom.

At first sight it seems reasonable to check also that the model for {S,} provides an
adequate representation for the estimated series {§,}. However, there is no reason for
this to happen since the series {¢,} in (2.4) is White Noise and {e,} in the model
S, = ¥ (B)e, does not have to behave like that. Moreover, the elements e, are
linearly dependent since they are generated as linear combinations of the elements of
7 — W, where 7 satisfies the linear restrictions imposed by (2.7). This fact makes the
mn X mn matrix MSE(Z) become singular, with rank mn — n, and it can be verified
that C-MSE(Z) = 0.

3.3.  Comparison with other methods

The present method has some features that make it better than other methods in current
use. Comparison of the new method with those of Chow and Lin (1971), Denton
(1971), Hillmer and Trabelsi (1987), Guerrero (1990), Chen, Cholette, and Dagum
(1997) and Nieto (1998), gives support to this statement.

Chow and Lin’s (1971) method stems from the idea that Z can be expressed as the linear
model

Z=XB+e (3.12)

where X is a matrix of observations on variables related to Z and ¢ is a random vector satis-
fying E(e) = 0 and Cov(e) = V. Chow and Lin obtained a result similar to our Proposition
1 that enables simultaneous estimation of Z and (3, in such a way that the restriction
imposed by Y is fulfilled. Their results are

Zon_ . =XB+VC'(CVC(Y — CXB) (3.13)
and

B=[x'c'«cvc)H'cx1'x'c’/(cvc) 'Y (3.14)
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with
MSE(Z¢,_;) = [X — vc'(cve) 'cxiix'c’«cvey'cx)™!
x|X —x'c'«cvc'y'cv] 4+ |V -vc'«cve) e (3.15)

By comparing these with (3.1) to (3.3), we see that Z and 2Ch 1 are equal when W = XB
and o, \I/S V¢ =V, ie., when the preliminary series comes from Model (3.12) and the
matrix V is postulated correctly, in the sense that it coincides with the variance-covariance
matrix of S. The latter point is what introduces subjectivity into this method because V
cannot be postulated from observed data. That is why some authors (e.g., Fernandez
1981 and Litterman 1983) have proposed some ways to postulate V. Furthermore, when
V is postulated correctly, (3.15) becomes

MSE(ZCh L) =0, ( mn AC)\I/S\IIé‘
+ 02, —AC)X[X'C'(C¥s¥iCH 'ex17'X'U,,, —AC)  (3.16)

where we recognize the first element of this sum as MSE(Z) while the second one
measures the variability associated with the discrepancy between ZCh . and Z. This
dlscrepancy arises because Z comes out by assuming that W = Xﬁ is a known vector,
whereas Zch 1 and B are estimated jointly.

Denton’s (1971) method arises from solving the following quadratic minimization
problem:

min(Z, — WY P(Z;, — W) subject to Y = CZp, (3.17)

where W is a known vector and P is a constant matrix defined as P = A’A, with A a square
penalty matrix to be specified by the analyst. A common choice for this function is

P(Zp, W)= [(1—B)Zp, — W)P (3.18)

from which a lower triangular matrix A is obtained, with 1’s on the main diagonal, —1’s on
the first subdiagonal and 0’s everywhere else. Then Lagrangean minimization yields

Z,=W+P'c/ccP~'c'y (Y- CW) (3.19)

This estimator is again a special case of Expression (3.1), when P! = 62 ¥ ¥}, Thus the
matrix P~' plays the role of V in the previous method and it has to be postulated on
subjective grounds.

Hillmer and Trabelsi (1987) suggested a procedure based on the assumption that the
vectors Y and W are linked to Z by way of

Y=CZ+uandW=Z+S (3.20)

with u a random vector distributed as N(0, X)) and S another random vector, independent
of Z and u, distributed as N(0, X ). Then a Bayesian argument led Hillmer and Trabelsi to
an optimal combination of the available information. Their solution when the a priori
distribution is noninformative and the restrictions imposed by Y are binding (i.e., when
Y, = 0) yields the following expression (see Guerrero 1990 for a proof):

Zy +=W+EI;C'(CZgCHY (Y - CW) (3.21)
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This solution is identical to (3.1)—(3.3) if L5 = o2 ¥ ¥§. Again, the specification of this
matrix is what poses practical difficulties. Chen, Cholette, and Dagum (1997) realised
these difficulties and proposed a feasible nonparametric solution to the problem of
selecting X in two particular situations. Their method, which is based on spectral
estimation and numerical techniques, is very well grounded in statistical theory, but its
complexity limits its use in practical applications.

Guerrero (1990) proposed a model-based approach to the disaggregation problem. His
solution can be written as

Zo=W+ V¥, PV, C(CYyPY¥,C)Y (Y —-CW) (3.22)

where ¥, contains the pure MA weights of the ARIMA model for {W,} and P is a positive
definite matrix defined implicitly by writing Equations (2.20)—(2.21) of Guerrero (1990) as

S =¥, v with E(v|W) =0 and E(vwv' |W) = o’P (3.23)
so that from (2.5) it follows that
ol ¥ V=0V, PV}, (3.24)

Thus (3.22) is again equivalent to (3.1)—(3.3). The main distinction between that method
and the present one concerns how to estimate (3.24), which is more theoretically sound
now.

Lastly, a method suggested by Nieto (1998) is based on the assumption that the dynamic
structures of {Z,} and {W,} admit the same AR model, with different variances in their
respective White Noise processes. Nieto’s solution is given by

Zy=W+¥,¥,C(C¥y¥,C) (Y- CW) (3.25)

It can be seen that the dynamic structure of {W,}, rather than that of {S;}, is employed.
This is due to the fact that Nieto’s assumptions, which are different from (2.1) to (2.3),
led him to derive the same AR structure for {S,} and {W,}.

4. Recursive Disaggregation

The interest now lies in estimating Z" = (Z,,; — 141, - - - Zy) forr=n+1,n+2,....
It is assumed that the following vectors are already given, namely Z = (Z", Z*', ..., 2",
VAR 1, Y A ' The unobservable vector Z can be estimated as indicated in the

previous section and 2" to Z"7 ! as will be shown now. We shall also employ W,
Wt W™ ! and W7 (defined analogously to the corresponding Z’s) as well as the
aggregated value

Y,=cZ’ “.1)

Following Guerrero and Martinez (1995), it is convenient to write (2.5) in terms of the
AR and MA parameters of Model (2.2) as

<I>SS = @Se (42)

where ®g is an mn-dimensional lower triangular matrix with 1’s on its main diagonal,
—¢g,; on its first subdiagonal, up to —¢g , on its p-th subdiagonal and 0’s everywhere
else. Similarly @ is defined in terms of the MA parameters 1, 6 i,..., 0 ,. Expression
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(4.2) leads us to use the original p + ¢ ARMA parameters. This is important when deriving
the disaggregation formula in order to avoid infinite sums. An immediate extension of
(4.2) yields

& | 0 0 S
______ o m—m— - = -
[
|
0 ... 0 &, 0 sT!
0 ... 0! o0 Py S’
O L0 0 e
______ b m -
[
= [ o (4.3)
0 0 6, ... 0 e !
0 ... 0, O Oy, e’
where the e’s are defined in a similar fashion as the Z’s and &; ; and O ;, fori =1,...,n,
are mxm matrices with —ég ,,i_1)4+j—r and O ,i_1)4j— in their respective (j, k)
entries, for j,k=1,...,m. Here we have —¢5o="050=1, ¢g5 ;=05 ;=0 if j<O,
¢s,; =0 if j>p and b5 ; =0 if j>g. Note also that &g;=... =P, =0 when
m@i—2)=p<m@—1) and Og,;=...=05,=0 when m(i—2)=g<m(—1).

Then, if we follow the same steps that led Guerrero and Martinez (1995) to obtain their
Expression (3.6), we get the following result.

Proposition 2. The MMSELE of Z", given Z"/ and W™/ for j=1,...,7— 1;
e " forh=1,...,7—1; W and Y,, is

[p/m] ) o lgm
72" =, — A*c’){WT — &) [Z &, (27T —WTH =) S,hﬂef’l} }
j=1 h=1
+ A*Y, (4.4)

where [x] denotes the integer part function of x and the sum involved is zero when the
upper limit of the sum is zero. Moreover, the MSE matrix is given by

MSE(Z") = 0., — A"¢))®5 05 05 &5} 4.5)
where
A" =85! 05,05 85 c(c' 5105, 05 851 0)”! (4.6)
The error appearing in (4.4) can be estimated as
A Lpm] o ) lg/im] Y
e’ =0y, Z D5 j (277 = W) — ZGS,h+1eT7 “4.7)
=0 h=1
where itis assumed that 6" “ = é" ! = ... = &' = 0foru = max{[ p/m), [g/m]} + 1.

It should be stressed that the variability, as measured by MSE( y/ "), stays constant for all
periods to be recursively disaggregated. On the other hand, the test statistic to validate
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compatibility between W™ and Z" becomes
K=, —c¢W)HG2e' 510,05 87 ¢) (4.8)

with

[ p/m] [q/m]
W =W {Z@sﬁl(z W'~ ’)—Z®5h+1e h} 4.9)

j=1

This statistic should be compared against a Chi-square distribution with 1 degree of freedom.

The recursive approach is useful to estimate the values of each complete period as soon
as another aggregated value Y; is observed. The fact that the previously disaggregated
figures remain unaffected by the recursive disaggregation results and its computational
efficiency, makes the recursive method a good complement to, rather than a competitor
of, the direct method. The recursion is appropriate to estimate current figures of the series,
whereas the direct method is adequate to estimate a historical record.

5. Forecasting Future Disaggregated Values

Once the vectors WN = (Wl,... W,.n) and SN = (Sl,... AmN) have been estimated,
WN as indicated in Section 6 and SN as in Sections 3 and 4, we relate them as in (2.1)
to obtain Z, = W, + S, for t = 1,...,mN, where mN = mn is the number of previously
disaggregated values.

The problem now is to forecast the vector Zp = (Zn41»---»Zmn+ 1) » With H = 1 the
forecast horizon, when there are no aggregate values {Y;} available for i > N. As in Nieto
(1998), we consider two situations concerning the availability of preliminary values: (1)

No preliminary observations exist for > mN; and (2) W,x 41, ..., Wyy 4, are available
for | =9y =H.
In the first case the forecast is defined as Z}l) = (Z(l,)v(l) Z(ll)v(H)) with
ZW(h) = EWpy nl W) + ESys4lSy) forh=1,...,H (5.1)

where E (WmN i h|WN) and E (.§mN+ al SN) are obtained from their respective Models (2.3)
and (2.2). Thus the forecasts satisfy

dwBYABYEW /I Wy) = 0y (B)apy 1 and  dsBYES,y 44l Sy) = 05(B)éyn 11

(5.2)
with E(WmNJrh j|WN) mN+h —J and E(SmNJrh j|SN) mN+h —J if J>h and
ApuNn = €un+n = 0 for h = 1. Now we have
Woansn — EWpy 4| Wy) = Z Yw, jAmn+n—j and
5.3)

Sunin —ESuv4lSy) = Z Vs, jCmN+h—j

with the Yy weights coming from Yy (B)dw (B)d(B) = 0y (B) and the ¥g’s from (2.5).
Expressions (5.3) can be written as

Wr— EWp Wy) = ¥4, and S — ES¢|Sy) = ¥Pé, (5.4)
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where the vectors with subindex F are defined analogously to Z, and \Ifg,i) is a lower trian-
gular matrix with elements 1, Yy 1, ..., ¥y g onits firstcolumn, 0, 1, ¥y 1, ..., ¥w y_»
on its second column and so on. \I’(SH ) is defined in the same way as \Ifg,i). From (5.4) it
follows that

Zp— 1) =Wp+Sp — EWWy) — ESp|Sy) = ¥ a, + ¥ ¢, (5.5)
Then, since {a,} and {e,} are uncorrelated, we get

MSE(Z") = Cov(¥{a, + ¥ ) = o2 WU WD 4 52 W) g’ (5.6)

In Case (2) we have

S {WmN+h+E(§mN+h|SN) ith=1,...,9 5.7)

mN+h — A 2 A A .
E(WmN+h|WN)+E(SmN+h|SN) 1fh:77+1 . H

with E(WmN+h j|WN) mN+h —J lf]>h—71 and E(SmN+h j|SN) mN+h—j if
Jj = h. Therefore

5 5 (2)
ZmN+h - ZmN+h
B {SmN+h — ESun-441Sw) if h=1,....7
WmN+I1 - E(WmN-&-h'WN) + SmN-&-h - E(SmN-&-hl SN) if h= n + 17 v ’N
(5.8)
so that
émN+1
n—1
Z l;bs,jémz\m,—j
j=0
A ~ (2
ZF — ;:) = n
AN 4y+1 + Z VS, jemN £n+1—j
j=0
—n- H-1
Z mN+H j+Z¢Sj €mN+H— —Jj
j=0 j=0
(H) » 07] O A~
= \I’S e + 0 \I/g'/lfn) arp (59)
with 0, the n X zero matrix. Hence, the MSE matrix of the forecast vector is
MSE(Z?) = o2 ¥ ¥ 4 On 0 (5.10)
- 0 \I/(H 1) ‘I’(H n/ '

In summary, the forecast of Z r 1s the sum of the forecasts of WF and §F obtained
separately. Its MSE matrix is the sum of the corresponding matrices for E(Wr|Wy)
and E(Sz|Sy).
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6. Estimating the Preliminary Series

In practical applications the preliminary series has to be estimated from variables related
to Z. Friedman’s (1962) original idea is still in use, as evidenced by the works of Braun
(1990), Abeysinghe and Lee (1998) and Nieto (1998), among others. The variables related
to Z will be denoted by Xi,...,X; where G = 1. These are chosen because their intra-
period (say monthly) movements are deemed to be correlated with those of {Z,}.
Stemming from this belief the following equation arises:

W, =06, Xy, +...+BcXg, fort=1,...,mn 6.1)
where the coefficients 3, ..., B should be estimated from the data. Thus we postulate the
multiple linear regression model

Z, =B Xy +...+066Xg +&, fort=1,...,mn (6.2)
from which a model for the aggregated variable is obtained, that is

Yi =B X{i+...4+BcXéi+¢€!, fori=1,....,n (6.3)
where X/, ..., X8 and & are linked to X, ..., X and &, as Y, is linked to Z. Thus we have

X5=> ¢ Xgmi-nsj forg=1....G (6.4)

j=1

and the same thing happens with &/ as a function of g,. The parameters 8 can be estimated
from (6.3) by ordinary least squares and the estimated coefficients can be plugged in (6.1)
to estimate the preliminary series.

In order to get a reasonable preliminary estimate, we suggest the following criteria to
choose a variable X,: (i) that it admits an adequate economic interpretation in its relation
to Z; (ii) that it satisfies Friedman’s (1962) assumption of high intraperiod correlation with
Z; (iii) that the length of the series {X,,} be long enough to cover data fromz = 1,...,mn
and that it be observed also for ¢ > mn; (iv) that it be observed timely, for the recursive
disaggregation to make sense; and (v) that its measurement method does not change
with time. From (2.1) it must be clear that there is no allowance for structural changes
or outliers in {S;}, hence not in {D;} either. This fact implies that the preliminary series
must reflect all the effects that the true series {Z,} is expected to have, including those
associated with structural breaks and outliers. Therefore when subject matter knowledge
of the variable Z indicates that such an effect must be present, we should consider its
presence also in W through an appropriate indicator variable X,.

7. Monthly Disaggregation of Mexico’s GDP

In Mexico, as in many other countries, GDP is measured only on a quarterly basis. If
monthly data were available, the basic need of analyzing the economic situation could
be satisfied more reasonably. A step in this direction was given by INEGI (Instituto
Nacional de Estadistica, Geografia e Informatica, Mexico) when it started to produce
figures of a monthly index of global economic activity (IMGAE, Base 1993 =100) in
January 1993. We thus have access to Y = GDP (quarterly) and X = IMGAE (monthly).
IMGAE is a general indicator that only takes into account the industrial sector and the
services sector of the Mexican economy, but its high intraperiod correlation with GDP
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will be evident below. Besides being calculated with the same methodology as GDP,
although with less coverage, it satisfies all the criteria mentioned in the previous section
so that it can be considered a reasonable indicator on a priori grounds. When this work
was carried out, the available data on IMGAE ran from January 1993 through December
1999. These data appear in Table 2 of the Appendix, while Table 1 contains the quarterly
GDP.

A quarterly indicator, INDIAGR, was built by averaging the monthly figures of IMGAE
and a linear regression model was fitted to the aggregated data, yielding the following
results for quarters i = 1,...,28 (that is, 1993: I to 1999: IV) with standard errors in
parentheses

GDP; =20311.79 4 12359.80INDIAGR;, R>=109938, DW =223 (7.1)
(20231.38) (188.04)

Then the monthly preliminary data were obtained for r=1,...84 (January 1993 to
December 1999) with the equation

W, = 20311.79 + 12359.80IMGAE, (7.2)

These figures were aggregated to the quarter to get the values of GDPAGR; for
i=1,...,28, as well as the differences D; = GDP; — GDPAGR;, also shown in Table 1.

Equation (7.1) shows a strong linear relationship between GDP and INDIAGR, as
measured by R?, and the Durbin—Watson statistic does not show evidence of inadequacy.
Since the estimated slope is more than 65 times its standard error, INDIAGR was con-
sidered a good predictor of GDP. Even though the intercept is not significantly different
from zero, it was included in Equation (7.2) to avoid possible biases when predicting
{W,}. The autocorrelations for series {D;} were calculated from the 28 data points of
the series and they allowed us to identify a seasonal ARMA model for {D;}. The
estimation results of such a model are

(1 —0.6001LYD, = 8, with &, = 6905.45 (7.3)
(0.1730)

The Ljung-Box statistic became Q’(5) = 4.95. When comparing this value against a
Chi-square distribution with 2 degrees of freedom, there is no reason to doubt the model’s
adequacy. In order to get a disaggregated model, the following seasonal AR polynomial
was defined:

d(B) = 1 — 0.6001B" (7.4)
and a deseasonalized series was obtained from {D;} by applying the filter

FD; = D; —0.6001D,;_4 fori=>5,...,28. (7.5)
Thus the nonseasonal AR and MA polynomials of the disaggregated series of differences
were identified by analyzing the sample autocorrelations of {FD;}. None of these auto-
correlations differed significantly from zero. Hence the polynomial orders were chosen

asp=0and g =p—+ 1= 1, following Wei and Stram’s (1990) method.
Since the aggregation involved in the present case is of the form

FD; = 1(1+ B+ B*FS;, (7.6)
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then the autocovariances of the aggregated and disaggregated series are

vip(0) = §(1 + B+ B> yp5(2)

= 3lvrs(=2) 4+ 2vps(—= D) + 37£5(0) + 2y (1) + 55 (2)] (7.72)
and
vip(1) = §(1 + B + B> y5(5)
= Slvrs(D) + 27v£5(2) + 37£s(3) + 2955 (4) + ¥£5(5)] (7.7b)

where it is assumed that yzp(k) = 0 = ygs(k) for k # 0, = 1. Thus the following system of
equations was obtained

('YFD(O)> _ (3/9 4/9> (ws(O)) (7.8)
Yrp(1) 0 1/9 Yrs(1)

which, given that ¥pp(0) = 47647902.75 and yrp(1) = Yrp(0)op(1) = 8187991.91,
yields

({/FS(O) ) _ (3 — 12) (47647902.75 > _ (44687805.38 ) (7.9)
Yrs(1) 0 9 8187991.91 73691927.91 '
This result is inadmissible because it leads one to estimate the first autocorrelation of
{FS,} as pps(1) = Yps(1)/4Es(0) = 1.6490, which does not make any sense, since the
absolute value of the first autocorrelation of an MA(1) model must not be larger than 0.5.
A possible explanation of the aforementioned result is that some hidden periodicity of
order m = 3 is present in {FS,}. Thus the MA polynomial was assumed of order ¢ = 3, so

that ypp(k) = 0 for k # 0, =1 and ypg(k) = O for k # 0, =3. The corresponding system of
equations became

(mm)) _ (3/9 0 >(7Fs(0)> 710,
Yrp(1) 0 319/ \ves(3)
with solution
(?FS(O)) _ (3 0) (47647902.75) _ (142943708.30) 7.11)
Yrs(3) 0 3 8187991.91 24563975.72

These autocovariances enabled us to estimate the MA(3) parameter of FS, = (1 + 6, B? )e,.
Since the theoretical autocovariances for that model are ~vpg(0) = (1 + 932)%2 and
vis(3) = 05 0 the estimator 6; came out by solving the equation

Yrs(3) — Y5 (0)03 + r5(3)83 = 0 (7.12)
That is,
6, = Yrs0) = VIE0) —47psB3)  Ars(0) VOO =1 (113)

2%rs(3) C 29ms(3)

By plugging the estimated values in this equation we obtained 531 =0.1772 and
03, = 5.6420. Then 65 was chosen as the former value, in order to ensure invertibility
of the model. Hence the estimated model for series {S;} is given by

(1 —0.6001B'%)S, = (1 +0.1772B%¢, with &2 = 55(3)/6; = 138589937.5
(7.14)
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Such a model has the form (1 — ‘I?BE)St =1+ 033)31, hence the weights for its pure
MA representation are obtained as

¢3+12(j*1) =<I>j_10 fOI'jZ 1,2,...,¢12]~=q>j fOI'j:O,l,...,
and y; = 0 otherwise. (7.15)

To correct for nonconstant variance, the diagonal elements of ¥ ¥ were modified so that
they take on the value of the variance Var(S,)/ae2 =1+ 02)/(1 — tI>2). Lastly, it can be
verified that the matrices required by the recursive disaggregation become

P51 =06, P5r=%P5;3="=PL54=03x3, P55=-P5 and
®S,l == 13, ®S,2 == —013 (716)

Once the estimated model for series {S;} is available, Proposition 1 can be applied to
disaggregate GDP directly. The corresponding results of this application are shown in
Table 2 and Figure 1. The figure shows that the preliminary and the direct disaggregated
series follow each other very closely, even in such periods as that of year 1995, when the
Mexican crisis took place. Standard errors of the estimates in the table serve to calculate
the 95% prediction band that has constant amplitude. The standard errors are given by
Se, = /Var(S,) and the 95% limits were calculated on the normality assumption for S,,
by means of

Z, + 1.963e, (7.17)

Table 2 also presents the annual rates of growth of the disaggregated series (in percen-
tages), which can be compared with those of IMGAE. The behavior of these two series
of rates is again very similar, as it should be. Besides, the direct disaggregation was
validated by the compatibility statistic whose value K. = 25.90 (with 28 degrees of

o
1,600,000 + Preliminary i /
‘ Disaggregated |

{—— — 95%Limts | P

1,500,000 1

1,400,000 +

1,300,000 1

1,200,000
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Fig. 1. Monthly disaggregation of Mexico’s Real GDP (in millions of pesos at 1993 prices). Preliminary series
and direct disaggregated series, with 95% limits
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freedom) yielded a significance level of 0.58. This result lent empirical support to the
assumption of compatibility between preliminary and disaggregated series.

In this case the direct disaggregation suffices to obtain the disaggregated figures of GDP
for the historical record of the series (1993—1999). Therefore the recursive procedure was
not applied at this stage. We then proceeded to forecast Mexico’s GDP. To that end, an
ARIMA model for the preliminary series {W,} was built, yielding the following results:

(1 —B)(1 —B*)W, = (1 — 0.3438B'")(1 — 0.8684B'%)d,, 6, =12346234  (7.18)
(0.1241) (0.0895)

where the Ljung-Box statistic Q' = 19.93, with 15 degrees of freedom, did not provide
evidence of inadequacy. We did look for an interpretation of this model, in particular of
the fact that a lag 10 appears in the regular MA part, because it will be employed only
as a forecasting tool.

Table 3 contains the GDP forecasts (that involve forecasts of the preliminary series),
together with their standard errors and annual rate of growth, when no preliminary obser-
vations are available for the forecast horizon (January through December 2000). The esti-
mated model (7.14) for series {S;} was used and 90% prediction limits were calculated
with standard errors given by the squared root of the elements on the diagonal of matrix
(5.6). Another set of forecasts was obtained when two preliminary observations were
available (January 2000: 1,516,028.82; and February 2000: 1,536,908.89). These forecasts
are shown both in Table 4 and in Figure 2 (together with their prediction limits). Figure 2
provides a visual summary of the results produced by the disaggregation and forecasting
methods. We should bear in mind that the forecasts of the disaggregated series have stan-
dard errors that take into account the uncertainty in the forecasts of the preliminary series
as well as that of the unobservable series of differences. Therefore the standard errors of
the forecasts shown in Table 3 are larger than those for the preliminary series. The present

1,900,000

1,800,000 1

1,700,000 +

1,600,000 +

1,500,000 1

1,400,000 t

1,300,000 +

1,200,000

1,100,000
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1993 1994 1995 1996 1997 1998 1999 2000

Fig. 2. Monthly disaggregation and forecasts of Mexico’s Real GDP. Disaggregated series (1993—1999) and
forecasts with two preliminary observations
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methodology also enables us to obtain forecasts for the quarterly and yearly averages of
the monthly GDP. Thus, as a complement of the monthly forecasts we also obtained
the quarterly and yearly forecasts shown in Tables 3 and 4. In particular, the standard
errors shown in those tables allow us to see clearly the gain in precision by having included
the preliminary observations.

Finally, to illustrate the use of the recursive procedure let us consider now the situation
where an additional whole period observation (GDP of the first quarter of 2000:
1,567,276.75) is available. Of course, the monthly values of IMGAE are also available,
hence also the preliminary estimates of the monthly GDP, calculated as in (7.2). In this
case the compatibility statistic yielded the value K. = 2.03, which, when compared
against a Chi-square distribution with 1 degree of freedom, provided a significance level
of 0.15, so that there was no reason to doubt the compatibility between preliminary data
and aggregated observations. The resulting estimated monthly values of GDP for the first
quarter of year 2000 appear in Table 5. There we can observe essentially the same beha-
vior as that of the estimates reported in Table 2.

8. Conclusions and Recommendations

The proposed procedures are supported by several intermediate and already known results
that are optimal when it comes to solving a specific part of the problem of temporal dis-
aggregation and forecasting of an unobservable time series. Each of those results is
derived on the basis of assumptions that must be empirically validated in order to maintain
its optimality. The most important assumptions were mentioned when deriving the theo-
retical results here employed. However, another assumption that must be taken into
account is that the series of differences {S,} is unaffected by structural breaks. Besides,
it should be clear that the ARMA model for the aggregated differences {D;} is obtained
with possibly a very small amount of data since only n whole periods are available.
Thus this model may change its structure gradually, but no sudden changes are allowed.
The statistical quality of the related variables employed by the preliminary series should
also be monitored, trying to detect possible inadequacies. Whenever possible they should
be improved to cover more economic sectors and geographic regions. Finally, it should be
mentioned that the application here detailed for disaggregating a Real GDP series may be
carried out also with a Current GDP series. Such an application would basically imply
working first with the GDP implicit deflator to disaggregate it and then deriving the dis-
aggregated Current GDP from the disaggregated figures of Real GDP and its implicit
deflator. Many other applications can be devised for this methodology when analyzing
national accounts, including simultaneous disaggregation of multiple time series.
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Appendix

Table 1. Mexico’s Real GDP (in millions of pesos at 1993 prices), aggregated preliminary series and estimated
series of differences

Quarter GDP INDIAGR GDPAGR D
1993 I 1,248,725.34 99.37 1,248,463.50 261.84
1I 1,260,351.97 100.60 1,263,707.25 —3,355.27
I 1,211,579.72 96.73 1,215,916.04 —4,336.32
v 1,304,126.86 103.27 1,296,666.70 7,460.15
1994 I 1,277,838.03 102.37 1,285,542.89 —17,704.85
II 1,331,435.05 105.93 1,329,626.16 1,808.89
I 1,267,386.31 102.30 1,284,718.90 —17,332.59
v 1,372,142.33 109.00 1,367,529.53 4,612.80
1995 1 1,272,241.55 101.62 1,276,321.16 —4,079.61
1I 1,209,052.70 96.51 1,213,147.06 —4,094.36
I 1,165,580.18 92.62 1,165,076.38 503.80
v 1,275,557.48 100.24 1,259,282.00 16,275.49
1996 I 1,273,078.05 100.81 1,266,356.12 6,721.92
II 1,287,401.28 102.22 1,283,766.66 3,634.61
I 1,248,655.10 99.53 1,250,431.75 —1,766.65
v 1,366,292.01 107.71 1,351,527.45 14,764.56
1997 1 1,331,526.94 105.64 1,325,992.75 5,534.19
I 1,395,247.46 110.66 1,388,018.61 7,228.85
I 1,342,047.95 108.06 1,355,948.87 —13,900.92
v 1,457,278.33 115.98 1,453,831.52 3,446.81
1998 I 1,430,820.67 114.01 1,429,452.38 1,368.29
I 1,454,490.59 115.82 1,451,850.95 2,639.63
III 1,411,536.62 113.81 1,426,933,67 —15,397.06
v 1,495,691.40 119.11 1,492,464.42 3,226.98
1999 1 1,457,161,35 115.95 1,453,470.11 3,691.23
I 1,500,167.45 120.05 1,504,081.03 —3,913.58
I 1,472,607.44 118.39 1,483,604.18 —10,996.74
v 1,574,096.55 125.41 1,570,398.65 3,697.90
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Table 2. Results of the direct disaggregation of Mexico’s Real GDP (1993—1999)

Year IMGAE  Annual Preliminary Disaggregated  Standard Annual
rate series series error rate
1993 97.10 - 1,220,447.96  1,220,709.80 12,203.63 -
97.30 - 1,222,919.92  1,223,181.76 12,203.63 -
103.70 - 1,302,022.61 1,302,284.45 12,203.63 -
99.20 - 1,246,403.53  1,243,048.26 12,203.63 -
100.90 - 1,267,415.19  1,264,059.91 12,203.63 -
101.70 - 1,277,303.02  1,273,947.75 12,203.63 -
97.70 - 1,227,863.84  1,223,527.52 12,203.63 -
96.60 - 1,214,268.06  1,209,931.74 12,203.63 -
95.90 - 1,205,616.21 1,201,279.89 12,203.63 -
103.20 - 1,295,842.72  1,303,302.87 12,203.63 -
102.70 - 1,289,662.82  1,297,122.97 12,203.63 -
103.90 - 1,304,494.57  1,311,954.73 12,203.63 -
1994 100.70 3.71 1,264,943.23  1,257,238.37 12,203.63 2.99
100.40 3.19 1,261,235.29  1,253,530.43 12,203.63 2.48
106.00 222 1,330,450.14  1,322,745.29 12,203.63 1.57
104.30 5.14 1,309,438.49  1,311,247.39 12,203.63 5.49
106.00 5.05 1,330,450.14  1,332,259.04 12,203.63 5.40
107.50 5.70 1,348,989.84  1,350,798.73 12,203.63 6.03
102.00 4.40 1,281,010.96  1,263,678.37 12,203.63 3.28
103.10 6.73 1,294,606.74  1,277,274.14 12,203.63 5.57
101.80 6.15 1,278,539.00  1,261,206.41 12,203.63 4.99
109.10 5.72 1,368,765.51 1,373,378.31 12,203.63 5.38
109.60 6.72 1,374,945.41 1,379,558.21 12,203.63 6.36
108.30 4.23 1,358,877.67  1,363,490.47 12,203.63 3.93
1995  103.76 3.04 1,302,774.88  1,298,695.27 12,203.63 3.30
98.24 —2.15 1,234,494.18  1,230,414.57 12,203.63 —1.84
102.86 —2.96 1,291,694.42  1,287,614.81 12,203.63  —2.66
94.13 -9.75 1,183,740.18  1,179,645.82 12,203.63 —10.04
97.72 —7.81 1,228,164.38  1,224,070.02 12,203.63  —8.12
97.67 —9.14 1,227,536.63  1,223,442.26 12,203.63  —9.43
91.93 -9.87 1,156,573.18  1,157,076.98 12,203.63 —8.44
94.14 —8.70 1,183,805.50  1,184,309.31 12,203.63  —7.28
91.79 —9.83 1,154,850.46  1,155,354.26 12,203.63  —8.39
99.33 —8.96 1,247,976.30  1,264,251.79 12,203.63  —7.95
100.20 —8.58 1,258,714.58  1,274,990.07 12,203.63  —7.58
101.20 —6.55 1,271,155.11 1,287,430.60 12,203.63  —5.58
1996  100.41 —-3.23 1,261,385.11 1,268,107.04 12,203.63  —2.36
99.17 0.95 1,245,979.55  1,252,701.48 12,203.63 1.81
102.87 0.00 1,291,703.70  1,298,425.63 12,203.63 0.84
99.83 6.05 1,254,174.01 1,257,808.63 12,203.63 6.63
103.46 5.87 1,299,047.68  1,302,682.30 12,203.63 6.42
103.38 5.84 1,298,078.29  1,301,712.91 12,203.63 6.40
100.36 9.17 1,260,800.10  1,259,033.45 12,203.63 8.81
100.61 6.88 1,263,800.36  1,262,033.71 12,203.63 6.56
97.61 6.33 1,226,694.79  1,224,928.13 12,203.63 6.02
107.55 8.28 1,349,608.33  1,364,372.89 12,203.63 7.92
106.26 6.05 1,333,678.56  1,348,443.12 12,203.63 5.76
109.30 8.01 1,371,295.45  1,386,060.01 12,203.63 7.66
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Table 2. Continued
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Year IMGAE  Annual Preliminary Disaggregated  Standard Annual
rate series series error rate
1997  105.41 4.98 1,323,136.78  1,328,670.97 12,203.63 4.78
103.71 4.58 1,302,174.16  1,307,708.34 12,203.63 4.39
107.80 4.80 1,352,667.32  1,358,201.51 12,203.63 4.60
109.41 9.60 1,372,628.54  1,379,857.39 12,203.63 9.70
110.38 6.69 1,384,574.20  1,391,803.05 12,203.63 6.84
112.18 8.51 1,406,853.10  1,414,081.95 12,203.63 8.63
110.35 9.95 1,384,238.33  1,370,337.41 12,203.63 8.84
107.35 6.70 1,347,103.58  1,333,202.67 12,203.63 5.64
106.49 9.10 1,336,504.69  1,322,603.77 12,203.63 7.97
116.50 8.32 1,460,242.84  1,463,689.66 12,203.63 7.28
114.30 7.57 1,433,064.70  1,436,511.52 12,203.63 6.53
117.14 7.17 1,468,187.02  1,471,633.83 12,203.63 6.17
1998  112.82 7.03 1,414,767.90  1,416,136.20 12,203.63 6.58
110.46 6.51 1,385,581.66  1,386,949.95 12,203.63 6.06
118.75 10.16 1,488,007.58  1,489,375.87 12,203.63 9.66
114.19 4.36 1,431,623.19  1,434,262.82 12,203.63 3.94
115.70 4.82 1,450,325.27  1,452,964.90 12,203.63 4.39
117.58 4.81 1,473,604.40  1,476,244.03 12,203.63 4.40
116.00 5.12 1,454,101.33  1,438,704.28 12,203.63 4.99
113.27 5.52 1,420,293.91 1,404,896.85 12,203.63 5.38
112.15 5.31 1,406.405.77  1,391,008.72 12,203.63 5.17
118.91 2.06 1,489,956.10  1,493,183.08 12,203.63 2.02
117.65 2.93 1,474,420.51 1,477,647.49 12,203.63 2.86
120.77 3.10 1,513,016.66  1,516,243.64 12,203.63 3.03
1999  113.23 0.37 1,419,871.07  1,423,562.30 12,203.63 0.52
112.58 1.92 1,411,746.61 1,415,437.85 12,203.63 2.05
122.05 2.78 1,528,792.66  1,532,483.89 12,203.63 2.89
117.42 2.84 1,471,635.44  1,467,721.85 12,203.63 2.33
119.38 3.18 1,495,806.96  1,491,893.37 12,203.63 2.68
123.34 4.90 1,544,800.71 1,540,887.12 12,203.63 4.38
120.62 3.98 1,511,154.39  1,500,157.65 12,203.63 4.27
118.75 4.84 1,488,002.94  1,477,006.21 12,203.63 5.13
115.81 3.26 1,451,655.21 1,440,658.47 12,203.63 3.57
124.23 4.48 1,555,787.23  1,559,485.12 12,203.63 4.44
125.33 6.53 1,569,325.21 1,573,023.11 12,203.63 6.45
126.68 4.89 1,586,083,52  1,589,781.42 12,203.63 4.85




234

Journal of Official Statistics

Table 3. Forecasting results for Mexico’s Real GDP (with 0 preliminary observations)

Year Month Forecasts Standard Annual Quarter Forecasts Standard  Annual
error rate error rate
2000 J 1,525,593.09 31,276.80 7.17
F 1,516,317.33 41,949.11 7.13
M 1,591,514.26 50,410.59 3.85 1 1,544,474.89 35,794.32 5.99
A 1,526,872.83 57,696.51 4.03
M 1,548,306.93 64,112.22 3.78
J 1,569,888.96 69,941.88 1.88 II 1,548,356.24 60,230.91 3.21
J 1,531,828.11 75,321.68 2.11
A 1,513,188.78 80,342.06 2.45
S 1,493,058.92 85,066.65 3.64 I 1,512,691.94 77,280.20 2.72
(0] 1,600,319.31 89,542.31 2.62
N 1,594,810.54 91,401.85 1.39
D 1,614,403.47 93,224.17 1.55 v 1,603,177.77 88,490.70 1.85
Total - - - 1,552,175.21 58,491.73 3.41
Table 4. Forecasting results for Mexico’s Real GDP (with 2 preliminary observations)
Year Month Forecasts Standard Annual Quarter Forecasts Standard  Annual
error rate error rate
2000 J 1,518,578.29 14,026.71 6.67
F 1,539,458.36 14,026.71 8.76
M 1,614,655.29 31,276.80 5.36 1 1,557,563.98 12,345.65 6.89
A 1,550,013.86 42,022.71 5.61
M 1,571,447.97 50,471.75 5.33
J 1,593,029.99 57,696.51 3.38 II 1,571,497.28 45,439.88 4.75
J 1,554,969.14 64,112.22 3.65
A 1,536,329.82 69,941.88 4.02
S 1,516,199.96 75,321.68 5.24 11T 1,535,832.97 66,402.19 4.29
(0] 1,623,460.35 80,342.06 4.10
N 1,609,994,60 85,066.65 2.35
D 1,629,587.53 89,542,31 2.50 v 1,621,014.16 82,181.02 2.98
Total - - - 1,571,477.10 45,940.68 4.69
Table 5. Results of the recursive disaggregation of Mexico’s Real GDP (Quarter 2000: 1)
Year/Month IMGAE Annual Preliminary  Disaggregated Standard  Annual
rate series series error rate
2000 Jan 121.01 6.89 1,516,028.82 1,530,301.62 12,203.63 7.50
Feb 122.70 8.99 1,536,908.89  1,551,181.69 12,203.63 9.59
Mar 128.30 5.12 1,606,074.13  1,620,346.93  12,203.63 5.73
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