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Multiple-Objective Optimal Designs for the
Hierarchical Linear Model

Mirjam Moerbeek’ and Weng Kee Wong?

Optimal designs are usually constructed under a single optimality criterion. Such designs
are not very realistic in practice because a researcher seldom has just one objective in
mind when designing an experiment. This problem can be overcome by multiple-objective
designs. Here, we extend previous work and construct multiple-objective designs for
situations where the data are correlated using a hierarchical linear model. We present a
graphical method for constructing multiple-objective designs and investigate their robustness
properties.
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1. Introduction

Data obtained from educational, social, and behavioral studies often have a hierarchical
structure, which means that individuals are nested within clusters. Examples are employ-
ees nested within work-sites, pupils nested within schools, and students nested within
universities. Traditional regression models assume that the outcomes of individuals within
a cluster are independent. This assumption, however, is not very realistic, because indi-
viduals influence each other’s behavior, attitude, and health by direct communication
and shared group norms. Furthermore, their outcomes may be influenced by, for example,
cluster environment, cluster policy, or cluster leaders. It is therefore reasonable to assume
that outcomes of individuals within the same cluster are correlated, while outcomes of
individuals within different clusters are independent. An appropriate model for the analy-
sis of such data is the hierarchical linear model (Bryk and Raudenbush 1992), which is
also referred to as the multilevel model (Goldstein 1995; Hox 1994; Kreft and De Leeuw
1998; Snijders and Bosker 1999), or random coefficient model (Longford 1995). This type
of model contains both fixed and random effects and thus is a mixed-effects model. The
assumption is that the clusters represent a random sample from a larger population of
clusters so that the results of the study may be generalized to this larger population if their
effects are treated as random in the model.
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The design of educational, social, and behavioral studies is more complicated for
hierarchical data structures because not only the total number of individuals needs to be
established, but also the number of clusters and the number of individuals per cluster.
During the last decade, a number of papers on sample size calculations for hierarchically
structured populations has been published. Some of these assume that either the number
of clusters, or the number of individuals per cluster is fixed (Donner 1998; Feng and
Grizzle 1992; Hsieh 1998; Lee and Dubin 1994; Liu and Liang 1997; Shih 1997). Another
approach is to calculate optimal designs under the restriction that there is a fixed budget
for sampling clusters and individuals, which may not be exceeded by the costs of the study.
This approach was used by Cohen (1998), Moerbeek, Van Breukelen, and Berger (2000,
2001a, 2001b), Raudenbush (1997), and Snijders and Bosker (1993). Simulation studies
to derive the optimal sample sizes have been done by Afshartous (1995) and Mok (1995).

Most of the papers mentioned above use the variance of the treatment effect estimator
as the sole design optimality criterion and so the optimal design is called a single-objective
optimal design. In practice, there are usually multiple objectives in the study and it is
desirable to consider their multi-faceted goals simultaneously in the design stage. An opti-
mal design so constructed is called a multiple-objective optimal design and such a design
is especially appropriate when there are competing interests in the study. Recent research
on multiple-objective optimal designs focused on models for uncorrelated outcomes
(Huang 1996; Huang and Wong 1998a, 1998b; Zhu and Wong 2000a,b). There is hardly
any research on multiple-objective optimal designs for correlated outcomes. An exception
is Cohen (1998), who briefly discussed a seminal approach to multiple-objective optimal
designs for hierarchical linear models.

The aim of our article is to derive multiple-objective optimal designs for hierarchical
linear models. In the next section we give a summary of the results on optimal sample sizes
for single-objective optimal designs given by Cohen (1998), as well as an account of the
robustness of such designs. In the following section we show that a design that is optimal
for a certain optimality criterion may be far from optimal if another optimality criterion
is used. In such cases, one may want to select a design that has high efficiency for the
more important optimality criterion, and at the same time does as well as possible under
the other criterion. Such a design is called a constrained optimal design, and we will show
how it can be obtained graphically using efficiency plots. Efficiency plots make use of the
fact that under certain conditions a constrained optimal design is the same as an optimal
design which minimizes a convex combination of the objectives. The latter optimal
designs are called compound optimal designs. We show how the weights of the compound
optimal design can be chosen to obtain the ‘‘desired’’ constrained optimal design. We will
also discuss the robustness of multiple-objective optimal designs. The last section of this
article contains a discussion and our conclusions.

2. Single-Objective Optimal Designs

2.1. Results on single-objective optimal designs

Cohen (1998) derived optimal designs for the model which relates the outcome y;; of
student  within school j to a dummy variable at the student level, x;;;, and one at the school
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level, x,;. Both dummy variables were coded by the values 0 and 1. In total, there were m
schools with n pupils each in the sample. The student-level dummy variable was assumed
balanced within schools, that is, x;; =0 for half of the students within each school, and
x1;;=1 for the remaining pupils in the school. The school level dummy variable was
assumed balanced overall (i.e., %m schools have x,;=0 while the other schools have
X;=1). A dummy variable may represent an experimental condition (intervention versus
control group) or a dichotomous demographic variable (e.g., gender). In the first case it
is balanced if randomization is done to treatment groups of equal size, in the second
case if samples of equal size are obtained from both values of the demographic variable.
We use balanced dummy variables and non-varying school sizes because then the maxi-
mum likelihood estimators of the regression coefficients associated with these dummy
variables have smallest variance, and the optimal sample size formulae are of practical
use.

Because no interaction between schools and the student level dummy variable was

assumed, the hierarchical linear model was given by:
Yii = Yo + Y1X1; + v2Xo; + Ugj + 1y (D

where the random student-level variables r; are independently and normally distributed
with zero mean and variance ¢>. The random school level variables ug; are independent
of each other and the r;;, and have a normal distribution with zero mean and variance
72. The intra-school correlation coefficient o measures the amount of variance at the
school level and is calculated as:

2
T
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Choosing a single-objective optimal design means finding a design £* among all the
designs £ such that an optimality criterion ®(£) is minimized. In this article the optimality
criterion O(£) is the variance of the estimator of a regression coefficient or a variance
component. For the hierarchical linear model, the optimal design £* minimizes this
variance, and gives the optimal number of schools and the optimal number of students
per school to be included in the study. Cohen (1998) derived optimal designs given the
precondition that the costs for measuring and sampling do not exceed the budget. If C;
denotes the cost to include a school into the study, C, denotes the cost to include a student
(“kid’’), and C is the budget, then the cost function is given by

Cinm + Cyn = C A3)

Here and throughout we assume C > C,. Five different optimality criteria were used
by Cohen; each of these seeks to minimize the variance of one of the five parameter esti-
mates. These optimality criteria are a special case of the c-optimality criterion because
the parameters to be estimated all have the form ¢’0 where 0 = (vy,v1, 2, 0%, 7%). The
c-optimal design gives the minimum variance of the estimator of a linear combination
of the parameters. When, for example, var(j,) is to be minimized, the first entry in the
vector ¢ is equal to one and the others are equal to zero. Table 1 gives a summary of
the results in Cohen’s paper; the subscripts in the optimality criteria refer to the parameter
of which the variance of its estimator has to be minimized. Thus, a cq-, ¢;-, or c,-optimal
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Table 1. Optimality criteria and optimal number of students per school

optimality criterion (01¢3) optimal 7
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€1 var(§,) = 42 coloc,

€2 var(q,) = #2740 \/@
Cs Var(az = mzzojm CIOIC(‘)f *

~ 4
c var(7?) ~ 2 ("; +27%6° + n74)

20, —

[}

design minimizes the variance of 4, 41, or 4,, respectively, and a c,- or c,-optimal design
minimizes the variance of 8” or 72, respectively. The optimal m can be derived by sub-
stitution of the optimal n in Formula (3). Note that an approximation to the var(3*
was used in order to avoid a formula for the optimal n that is too cumbersome to be of
any practical use.

The optimal sample sizes for estimating 7o, >, and 7> with minimal variance depend
on the intra-school correlation coefficient, which is generally unknown in practice. The
optimal design may be calculated for several realistic values of p so that the uncertainty
when deriving an optimal design may thus be averaged out.

The var(y,) and var(4%) are minimized by sampling just one school with as many
students per school as possible such that the costs do not exceed the budget. However,
a sample of just one is too small to use the hierarchical linear model. Snijders and Bosker
(1999, p. 44) give a rule of thumb for regarding effects of schools as fixed statistical
parameters or random variables. With the first approach the school effects are represented
by dummy variables and the effects of school level covariates cannot be tested since
all between-school variability is already explained by the dummy variables. This is not
the case when schools are represented by random variables (i.e., when the hierarchical
linear model is used), and for this approach the results from the study may be generalized
to a larger population of schools. The rule of thumb says that a minimum of ten schools
should be sampled for the hierarchical linear model, and the optimal number of students
per school for criteria ¢; and ¢, as given in Table 1 satisfy this rule of thumb.

It may happen that the number of students in some of the sampled schools is smaller
than the optimal 7 as given in Table 1. In this case, all students within these schools should
be used and the unused part of the budget may be used for sampling extra students from
the other schools. Of course, this design is less optimal since it leads to larger variances
of the estimated regression coefficients and variance components.

Figure 1 shows the optimal n for criteria ¢, c,, and ¢, as a function of the intra-school
correlation coefficient for the parameter values C= 10,000, C;=30, and C;,= 1, which
were also used by Cohen. The optimal value of n is n =970 for p = 0. The optimal sample
sizes for criteria ¢; and ¢ do not depend on the intra-school correlation coefficient and
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Fig. 1. Optimal number of students per school for cy-, c>-, and c,-optimality. The optimal number of students
per school is equal to 970 for c;- and c,-optimality

the optimal value of n is n =970. As is clear, the optimal sample sizes for criteria c; and c;
are far from optimal for the other three criteria. This suggests optimal sample sizes can
vary substantially from one optimality criterion to the other. The robustness of optimal
designs against other optimality criteria will be discussed in the next subsection.

2.2.  Robustness of single-objective optimal designs

Robustness properties of optimal designs are generally evaluated by their relative effi-

ciency. The efficiency of design £ relative to the optimal design £* for the criterion
O(£§) is given by

¢

lﬂ%®@>==7if§f 4

This ratio is a constant between zero and one. The interpretation of the relative efficiency
is that if N observations are used in design £, the same amount of information can be
obtained from design ¢ by taking N/Effg;, observations. Of course, high efficiencies
are preferable. In this section we discuss two types of robustness: robustness of optimal
designs against an incorrectly specified intra-school correlation coefficient, and robustness
of optimal designs against other optimality criteria.

2.2.1. Robustness against an incorrectly specified intra-school correlation coefficient
This is an essential consideration because the optimal sample sizes for most optimality
criteria in Table 1 depend on the intra-school correlation coefficient p, which is generally
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Fig. 2. Robustness of optimal designs for the ‘‘cq, ¢, and c; optimal’’ designs against an incorrectly specified
intra-school correlation coefficient p when the true p =0.167

not known in practice. Thus, a prior estimate obtained from a pre-study or a reasonable
guess has to be specified in advance to calculate the optimal sample sizes. Figure 2 shows
the relationship between the efficiency and the specified p for the “‘cy, ¢,, and c,~optimal’’
designs, when the assumed parameter values are C = 10,000, C;=30, and C; =1, = 5,
and 72 = 1. This implies that the true p = 0.167. Because the optimal sample sizes for cri-
teria ¢; and ¢, do not depend on p, the efficiency for the optimal designs for these two cri-
teria is always equal to one. The optimal designs under the criteria ¢y, c,, and ¢, have
efficiencies equal to one if the specified p is equal to the true p. For these criteria the opti-
mal designs are more sensitive to underspecification of the p than to overspecification, but
another relationship may probably hold for other parameter values. Of these three criteria,
the optimal design for criterion c; is less sensitive to incorrectly specified p, whereas the
optimal design for criterion ¢, is most sensitive.

2.2.2. Robustness of optimal designs under different optimality criteria

Figure 3 shows the c;- and the c,-efficiency of optimal designs for the other optimality
criteria as a function of the intra-school correlation coefficient. The c;-efficiency of
c,-optimal designs is always equal to one, because the optimal sample sizes for both
optimality criteria are equal and independent of p. The c-efficiencies of cy-, ¢,-, and
coptimal designs, however, are very small because their optimal sample sizes are
much different than those for a c¢,-optimal design. For the same reason, the c,-efficiency
of ¢;- and c,-optimal designs is very low, whereas the c,-efficiency of cy- and c,-optimal
designs is quite high.



Fig. 3. Robustness of optimal designs against other optimality criteria. Left: c-efficiencies of cyp-, c,-, and croptimal designs. Right: c,-efficiencies of co-, ¢;-, ¢ and cg-optimal
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3. Two-Objective Optimal Designs

3.1. Constrained and compound optimal designs

When designing a study a researcher mostly has more than one objective in mind. In this
section we will focus, for simplicity, on two-objective optimal designs. The construction
of designs with two or more objectives is straightforward in principle. In principle we
denote the two objectives by @ and ®, and assume O, is the more important objective.
The design sought is the one that does best under the objective ®, subject to the con-
straint that this design has a ®, value smaller than a user-specified constant c. Thus, the
optimality criterion is

minimize ©,(£) subject to O () =c¢ (5)

and is called a constrained optimal design. For convenience, the criterion (5) is often
rewritten as

minimize ©,(£) subject to Effy, ) =e (6)

where Effg, ) is the design efficiency of £ under O, alone. Thus, the less important objec-
tive is minimized under the restriction that the efficiency of the more important objective
is at least equal to a user-selected constant e. Designs that satisfy (6) are constrained
optimal designs and such a design is sometimes called a 0 -restricted ®,-optimal design.
Because constrained optimal designs are difficult to find, one may want to construct a
compound optimal design to minimize

OEIN =N () + (1 =N, (§) N

This optimization is easier to solve, either analytically or numerically. Cook and Wong
(1994) showed that under convexity and differentiability constrained and compound
optimal designs are equivalent. Thus, the desired constrained optimal design may be
found by first forming a compound optimal design as a function of the weight N in (7).
The constrained optimal design is found by drawing an efficiency plot, in which the rela-
tion between A and the efficiencies for both objectives are drawn, and selecting the N for
which (6) is satisfied and Effg,) is maximized. The objectives ®,; and O, are often
standardized (i.e., divided by their minimal possible values) so that the two components
in (7) are of comparable magnitude.

An example. We use the same example described earlier to illustrate how the efficiency
plot can help us find the constrained optimal design. In Figure 4 efficiency plots for a
cy-restricted co-optimal design and a c,-restricted ¢,-optimal design are given. The efficien-
cies for both objectives are high for a c,-restricted cy-optimal design, because the optimal
sample sizes for these two objectives are almost similar (see Figure 1). Thus the criteria are
not competitive in the sense that not much sacrifice in efficiency has to be accepted for a
gain in the other criterion. On the other hand both efficiencies for a c,-restricted ¢,-optimal
design are much lower because the optimal sample sizes are very different. These criteria
are thus incompatible. The desired constrained optimal design as given in (6) can be found
as follows. We draw a horizontal line at e as given in (6) to intersect the graph of Effg, ).
Then a vertical line is drawn from the point of intersection to meet the A-axis. The resulting
value of N is then used to find the compound optimal design.
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We can draw some general conclusions from Figure 4. If A =0 the design is a ©,-opti-
mal design and Effg,) = 1. On the other hand, if A = 1 the design is ®,-optimal and
Effo,) = 1. Effe,) is non-decreasing if A increases, and Effg, ) is non-increasing if A
increases. When the lines meet, the compound optimal design constructed for that
point actually maximizes the minimum efficiencies under the two criteria (Imhof and
Wong 2000). The two lines do not necessarily meet at the point A = 0.5, as Figure 4
shows.

3.2.  Robustness of two-objective optimal designs

As with single-objective optimal designs, the value of the intra-school correlation coeffi-
cient p needs to be specified to calculate a two-objective optimal design. The sensitivity
issue of the two-objective optimal design to misspecification in the intra-school corre-
lation coefficient can be studied in a similar manner. As an example we study the robust-
ness of cp-restricted cy-optimal designs, and c,-restricted c;-optimal designs against an
incorrectly specified p as a function of A. As in Section 2.2.1., C= 10,000, C,= 30, and
Ci=1, 02:5, and 7%= 1, which implies that the true p =0.167. The efficiencies of
these designs are plotted in Figure 5 for p =0.125, 0.083, and 0.042. Just like in single-
objective optimal designs, the efficiency decreases if p departs from the true p. We note
that the efficiency of c,-restricted cy-optimal designs increases slightly with A. This is
because the c,-optimality criterion is a bit more robust to incorrect specification of p
than the c;-optimality criterion (see Figure 2) and a larger value of \ implies a higher
weight is given to the cp-optimality criterion in the compound criterion. If A=0 the
cy-restricted c-optimal design is a c¢j-optimal design which does not depend on p, i.e.,
the efficiency is equal to 1. The efficiency decreases rapidly when A increases. This
is also obvious because a higher weight is given to the c,-optimality criterion in the
combination of the two objectives and the c,-optimality criterion is not very robust to
incorrectly specified p.

4. Discussion and Conclusions

We have constructed a two-objective optimal design for the hierarchical linear model
using the model from Cohen (1998) as an illustrative example. Such designs may, of
course, be constructed for any hierarchical linear models with either continuous or
dichotomous outcomes and any number and type of explanatory variables. Starting
points are the analytical formulae for single-objective optimal designs, which may be
obtained either from the literature (see the papers referred to in the introduction of
this article) or by derivation of the variances of maximum likelihood estimators. Once
the relative importance of the two objectives has been chosen the constrained opti-
mal designs may be derived from the compound optimal design, either analytically
or numerically. Most designs will depend on the intra-school correlation coefficient
and so a reasonable prior guess must be given. The robustness of the design against
misspecification of this intra-school correlation coefficient may be studied as shown in
Section 3.2.

In this article we have focused on two-objective optimal designs but an extension to
more than two objectives is possible in principle. The problem is more complicated
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because the efficiency plots are multidimensional and thereby less easily interpretable. An
alternative is to adopt a sequential approach as was done by Huang and Wong (1998b).

Multiple-objective optimal designs are an improvement of the single-objective optimal
designs because they account for the multiple objectives in the study. In addition, the
formulation reflects more adequately what is needed in reality. Therefore they should
be used more often in practice. It should, however, be noted that there is no guarantee
that the optimal design always exists. If high efficiencies are required for all or most of
the criteria, then the constrained optimal design may not exist.
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