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Sample surveys are generally multivariate, in the sense that they collect data on more than one
response variable. In theory, each variable can then be assigned an optimal weight for
estimation purposes. However, it is a distinct practical advantage to have a single weight for
all variables collected in the survey. This article describes how such multipurpose sample
weights can be constructed when small area estimates of the survey variables are required.
The approach is based on the model-based direct (MBD) method of small area estimation
described in Chandra and Chambers (2005). Empirical results reported in this article show that
MBD estimators for small areas based on multipurpose weights perform well across a range of
variables that are often of interest in business surveys. Furthermore, these results show that the
proposed approach is robust to model misspecification when applied to variables (e.g., those
that contain a significant proportion of zeros) that are not suited to linear model-based small
area estimation methods.
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1. Introduction

The weights that define the best linear unbiased predictor (BLUP) for the population total

of a variable of interest (see Royall 1976) depend on the population level conditional

covariance matrix for that variable, where the conditioning is with respect to the values of

auxiliary variables. Unless this matrix is always proportional to a known matrix, this

optimality is variable-specific. However, most surveys are multivariate, and it is often an

advantage to have a common weight for all response variables. This is especially true

where linear estimates are produced using the survey data. In what follows we refer to such

weights as “multipurpose.”

When a sufficiently rich set of auxiliary variables exist, and response variables can be

assumed to be conditionally uncorrelated given these variables, multipurpose weights can

be constructed by fitting a linear model for each response variable in terms of the complete

set of auxiliary variables (see Chambers 1996). An essentially equivalent idea is to use a

calibrated set of sample weights, where the calibration is with respect to these auxiliary

variables (see Deville and Särndal 1992).
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Small area estimation is now widely used in sample surveys. Many of the methods

currently in use are variable-specific and based on the application of mixed models (Rao

2003). Weighted direct estimation for small areas based on these models is described in

Chandra and Chambers (2005), who refer to this approach as the C-EBLUP method. Here

we more accurately refer to it as the model-based direct (MBD) method of small area

estimation. Since the weights used in MBD estimation are based on the second order

properties of linear mixed models fitted to the survey variables, they are variable-specific.

However, as noted above, there are obvious practical advantages to having a single

multipurpose weight that can be used for small area estimation for all the survey variables.

Consequently, in Section 2 of this article we replace the variable-specific BLUP optimality

criterion that underlies the mixed model weights used in the MBD approach by a

multivariate criterion that leads to a single set of optimal multipurpose weights for use in

MBD estimation for small areas. Section 3 then presents empirical results on the

performance of this approach. Finally, in Section 4 we summarize our results and make

suggestions for further research.

2. Optimal Multipurpose Sample Weighting

2.1. Basic Concepts and Notation

Consider a population U consisting of N units, each of which has a value of a characteristic

of interest y associated with it. The population vector yU ¼ ð y1; : : : ; yNÞ
0 is treated as a

realization of a random vector YU ¼ ðY1; : : : ; YNÞ
0, and our aim is estimation of the total

Ty ¼
P

j[U yj (or mean �Y ¼ N21
P

j[U yj) of the values making up yU. A sample s of n

units is selected from U, and the y-values of the sample units are observed. We denote the

set of N 2 n nonsampled population units by r. We assume the availability of XU, an N £ p

matrix of values of p auxiliary variables that are related, in some sense, to the values in yU.

In particular, yU and XU are related by the general linear model

Eð yUÞ ¼ XUb andVarð yUÞ ¼ VU ð1Þ

where b is a p £ 1 vector of unknown parameters and VU is a positive definite covariance

matrix. Without loss of generality, we arrange the vector yU so that the first n elements

correspond to the sample units, writing y0U ¼ ð y 0sy
0
rÞ. We similarly partition XU and VU

according to sample and nonsample units as

XU ¼
Xs

Xr

" #
andVU

Vss Vsr

Vrs Vrr

" #

Here Xs is the n £ p matrix of sample values of the auxiliary variable, Vss is the n £ n

covariancematrix associatedwith the n sample units that make up the n £ 1 sample vector ys.

Corresponding nonsample quantities are denoted by a subscript of r, while Vrs denotes the

(N 2 n) £ nmatrix defined by Cov( yr ,ys). It is known (see Royall 1976) that among linear

prediction unbiased estimators T̂y ¼ w 0
sys of Ty the variance of the prediction error,

VarðT̂y 2 TyÞ, is minimized by weights of the form

ws ¼ 1n þ H 0 X 0
U1N 2 X 0

s1n
� �

þ In 2 H 0X 0
s

� �
V21
ss Vsr1N2n ð2Þ
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Here H ¼ X 0
sV

21
ss Xs

� �21
X 0

sV
21
ss , 1m is a vector of ones of order m and In is the identity

matrix of order n. The weights (2) define the best linear unbiased predictor (BLUP) for Ty
given ys, assuming (1) holds. In what follows, we will refer to them simply as the BLUP

weights. By definition, these weights are calibrated on the variables in XU and so exactly

reproduce the known population totals defined by the columns of this matrix, i.e.,

w 0
sXs ¼ 1 0NXU ¼ Tx. Furthermore, under the assumption that a mixed linear model can be

used to specify the covariance matrix components Vss and Vsr in (2), the MBD approach to

small area estimation then uses these weights, with Vss and Vsr replaced by suitable

estimates, to define direct estimates of small area quantities.

2.2. Optimal Multipurpose Weighting for Uncorrelated Variables

Suppose we have K response variables and a common set of auxiliary variables with values

defined by the population matrix XU, and that Model (1) holds for each of them (although

with different parameter values). Suppose initially that these variables are mutually

uncorrelated. We use an extra subscript k ðk ¼ 1; : : : ;KÞ to denote quantities associated

with the kth response variable, for example Vkss and wks denote respectively the n £ n

covariance matrix and n £ 1 vector of sample weights that are associated with the n £ 1

vector yks of sample values of the kth response variable. With this notation, our aim is to

derive an optimal set of multipurpose weights ws ¼ {wj; j [ s} for the K response

variables measured in the survey. Let Tk ¼ 1 0Nyk denote the population total of yk, with

estimator T̂k ¼ w 0
syks based on these multipurpose weights. The weights ws are then said to

be f -optimal if (a) EðT̂k 2 TkÞ ¼ 0 for each value of k, and (b) the f-weighted total

prediction variance
P

k fkVarðT̂k 2 TkÞ is minimized at ws. Here fk is a user-specified

nonnegative scalar quantity that reflects the relative importance attached to the kth

response variable, with
P

k fk ¼ 1.

Put as ¼ ws 2 1s. In order to derive an explicit expression for the f-optimal

multipurpose weights we first note that under (a)

EðT̂k2TkÞ¼Eða 0syks21 0N2nykrÞ¼Eða 0sXs21 0N2nXrÞbk¼0)a0sXs¼1 0N2nXr ð3Þ

Furthermore, the prediction variance for the estimator T̂k¼w 0
syks is then

VarðT̂k2TkÞ¼Eða 0syks21 0N2nykrÞ
2¼Varða 0syks210N2nykrÞþ½Eða 0syks21 0N2nykrÞ�

2

The second term on the right hand side above vanishes under (3), so that

VarðT̂k2TkÞ¼a 0sVarð yksÞas22a 0sCovð yks;ykrÞ1N2nþ1 0N2nVarð ykrÞ1N2n

¼a 0sVkssas22a 0sVksr1N2nþ1 0N2nVkrr1N2n ð4Þ

We use the method of Lagrange multipliers to minimize (4) subject to (3). The

corresponding Lagrangian loss function is

F ð1Þ ¼
XK

k¼1
fk a 0sVkssas22a 0sVksr1N2n

� �
þ2ða 0sXs21 0N2nXrÞl ð5Þ
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where l is a vector of Lagrange multipliers. Differentiating (5) with respect to as and

setting the result equal to zero leads to

›F ð1Þ

›as
¼
XK

k¼1
fk 2Vkssas22Vksr1N2nf gþ2Xsl¼0

)Xsl¼
XK

k¼1
fkVksr1N2n2

XK

k¼1
fkVkssas

)as¼
XK

k¼1
fkVkss

� �21 XK

k¼1
fkVksr1N2n2Xsl

n o
ð6Þ

Multiplying both sides of (6) on the left by X 0
s and using (3), we see that

X 0
sas¼X 0

s

XK

k¼1
fkVkss

� �21 XK

k¼1
fkVksr1N2n

� �
2X 0

s

XK

k¼1
fkVkss

� �21

Xsl

)X 0
r1N2n¼X 0

sU
21
1 W11N2n2X 0

sU
21
1 Xsl

)l¼ X 0
sU

21
1 Xs

� �21
X 0

sU
21
1 W12X 0

r

� �
1N2n ð7Þ

where U1¼
PK

k¼1fkVkss and W1¼
PK

k¼1fkVksr . Substituting (7) in (6) then yields the

optimal value of as:

að1Þs ¼U21
1 W11N2n2U21

1 Xsl

¼ U21
1 W12U21

1 Xs X 0
sU

21
1 Xs

� �21
X 0

sU
21
1 W12X 0

r

� �h i
1N2n

¼U21
1 Xs X 0

sU
21
1 Xs

� �21
X 01N2X 0

s1n
� �

þ In2U21
1 Xs X 0

sU
21
1 Xs

� �21
X 0

s

h i
U21

1 W11N2n

That is, the optimal multipurpose sample weights for uncorrelated response variables are

given by

wð1Þ
s ¼1nþH 0

1 X 0
U1N2X 0

s1n
� �

þ In2H 0
1X

0
s

� �
U21

1 W11N2n ð8Þ

where

H1¼ X 0
sU

21
1 Xs

� �21
X 0

sU
21
1 ¼ X 0

s

XK

k¼1
fkVkss

� �21

Xs

	 
21

X 0
s

XK

k¼1
fkVkss

� �21

Observe that the analytical form of the optimal multipurpose weights (8) is similar to the

variable-specific BLUP weights (2), except that Vkss and Vksr are replaced by the weighted

sumsU1¼
P

kfkVkss andW1¼
P

kfkVksr respectively. Clearly (8) reduces to (2) for K¼1.

2.3. Optimal Multipurpose Weighting for Correlated Variables

Survey variables are correlated in general. Let Ckl ¼ Covð yk; ylÞ. The obvious

generalization of the f-weighted total prediction variance to this case leads to the loss

function

ffiffiffiffiffiffi
f1

p
;
ffiffiffiffiffiffi
f2

p
; : : :

ffiffiffiffiffiffi
fK

p� �0
D

ffiffiffiffiffiffi
f1

p
;
ffiffiffiffiffiffi
f2

p
; : : :

ffiffiffiffiffiffi
fK

p� �
ð9Þ
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where elements of the matrix D ¼ {Dkl} are given by

Dkl ¼
VarðT̂k 2 TkÞ if k ¼ l

CovðT̂k 2 Tk; T̂l 2 TlÞ if k – l

8<
:

and we now have

CovðT̂k 2 Tk; T̂l 2 TlÞ ¼ a 0sCklssas 2 2a 0sCklsr1N2n þ 1 0N2nCklrr1N2n

The Lagrange function to be minimized in this case is

F ð2Þ ¼
ffiffiffiffiffiffi
f1

p
;
ffiffiffiffiffiffi
f2

p
; : : :

ffiffiffiffiffiffi
fK

p� �0
D

ffiffiffiffiffiffi
f1

p
;
ffiffiffiffiffiffi
f2

p
; : : :

ffiffiffiffiffiffi
fK

p� �
þ 2 a 0sXs 2 1 0N2nXr

� �
l

¼
k

X
fkVarðT̂yk 2 Tyk Þ þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
CovðT̂yk 2 Tyk ; T̂yl 2 TylÞ

þ 2 a 0sXs 2 1 0N2nXr

� �
l

¼
k

X
fk a 0sVkssas 2 2a 0sVksr1N2n þ 1 0N2nVkrr1N2n

� �

þ
k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
a 0sCklssas 2 2a0sCklsr1N2n þ 1 0N2nCklrr1N2n

� �

þ 2ða 0sXs 2 10N2nXrÞl ð10Þ

Differentiating (10) with respect to as and setting the result equal to zero yields

k

X
fkVkss þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklss

8<
:

9=
;as

2
k

X
fkVksr þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklsr

8<
:

9=
;1N2n þ Xsl ¼ 0

) U2as 2W21N2n þ Xsl ¼ 0 ) as ¼ U21
2 W21N2n 2 Xslð Þ ð11Þ

where U2 ¼
k

P
fkVkss þ

k

P
l–k

P ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklss and W2 ¼

k

P
fkVksr þ

k

P
l–k

P ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklsr.

The same argument as in the uncorrelated case then leads to the optimal multipurpose

weights for correlated survey variables

wð2Þ
s ¼ 1n þ H 0

2 X 0
U1N 2 X 0

s1n
� �

þ In 2 H 0
2X

0
s

� �
U21

2 W21N2n ð12Þ

where H2 ¼ X 0
sU

21
2 Xs

� �21
X 0

sU
21
2 . As in the uncorrelated case, we note that the weights

defined by (12) have the same analytic form as the BLUP weights (2), except that in this
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case Vkss and Vksr are replaced by

U2 ¼
k

X
fkVkss þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklss

and

W2 ¼
k

X
fkVksr þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklsr

respectively.

2.4. Application to Small Area Estimation

Following Chandra and Chambers (2005), we use the multipurpose weights (8) and (12) to

construct model-based direct (MBD) estimates for small area means. In this case we

assume that the population can be partitioned into m nonoverlapping small areas or

domains, indexed by i in what follows. Thus, for example, the population size of area i is

denoted by Ni and so on. The variable-specific MBD estimate of the mean of the kth

response variable with values ykj in area i is then

Ŷ�
MBD
k;i ¼

X
j[si

wkjykjX
j[si

wkj

ð13Þ

where si denotes the sample (of size ni) in area i and the weights wkj are calculated using

(2), substituting estimated values V̂kss and V̂ksr for the corresponding components of the

covariance matrix of the population values of this variable. In order to define these

estimates, we assume that these population values follow the linear mixed model

YkU ¼ XUbk þ ZUuk þ ekU ð14Þ

where YkU ¼ ðY 0
k;1; : : : ; Y

0
k;mÞ

0, XU ¼ ðX 0
1; : : : ;X

0
mÞ

0, ZU ¼ diagðZi; 1 # i # mÞ,

uk ¼ ðu 0k;1; : : : ; u
0
k;mÞ

0 and ekU ¼ ðe 0k;1; : : : ; e
0
k;mÞ

0 denote partitioning into area

“components.” Here uk,i is a vector-valued random effect associated with area i, with

Varðuk;iÞ ¼ Su;kINi
, and ek,i is the vector of individual random effects for area i, with

Varðek;iÞ ¼ Se;kINi
. It follows that VarðYk;iÞ ¼ Vk;i ¼ Se;kINi

þ ZiSu;kZ
0
i. The variance

components Se;k andSu;k can be estimated from the sample data using standard methods

(maximum likelihood, restricted maximum likelihood, i.e., REML, or method of

moments). Substituting these estimated variance components back into the definition ofVk,i

and noting that Vk ¼ diagðVk;i; 1 # i # mÞ then leads to a corresponding estimate of this

population level covariance matrix. This can be appropriately partitioned into sample and

nonsample components to give the estimated values V̂kss and V̂ksr. We refer to the weights

(2) with these estimated values substituted as the (variable-specific) EBLUP weights.

In order to use the multipurpose weights (8) and (12) in MBD estimation, we assume

that the survey variables all follow the linear mixed model (14), with different parameter

values and with normal random effects. Furthermore, for any two variables of interest, say
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the kth and lth, area and individual random effects remain uncorrelated but now

uki

uli

0
@

1
A , MVNð0;SuÞwithSu ¼

VarðukiÞ Covðuki; uliÞ

Covðuli; ukiÞ VarðuliÞ

2
4

3
5 ¼

Su;kk Su;kl

Su;kl Su;ll

2
4

3
5
ð15Þ

where uki and uli are the q £ 1 vectors of random area effects, so that all variances and

covariances (i.e., Su;kk;Su;kl;Su;kl andSu;ll) have dimension q £ q, and

ekij

elij

 !
,MVNð0;SeÞwithSe¼

VarðekijÞ Covðekij;elijÞ

Covðelij;ekijÞ VarðelijÞ

" #
¼

Se;kk Se;kl

Se;kl Se;ll

" #
ð16Þ

Here Se is a 2 £ 2 matrix. Hence

Vk;i¼VarðYk;iÞ¼Se;kkINi
þZiSu;kkZ

0
i

Vl;i¼VarðYl;iÞ¼Se;llINi
þZiSu;llZ

0
i

and

Ckl;i¼CovðYk;i;Yl;iÞ¼Se;klINi
þZiSu;klZ

0
i

Given these definitions, we put U1¼diagðU1i;1# i#mÞ and W1¼diagðW1i;1# i#mÞ in

(8) and U2¼diagðU2i;1# i#mÞ and W2¼diagðW2i;1# i#mÞ in (12). Here

U1i¼
k

X
fkVkss;i¼

k

X
fk Se;kkIni þZs;iSu;kkZ

0
s;i

� �

W1i¼
k

X
fkVksr;i¼

k

X
fk Zs;iSu;kkZ

0
r;i

� �

and

U2i¼
k

X
fkVkss;iþ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklss;i

¼
k

X
fk Se;kkIni þZs;iSu;kkZ

0
s;i

� �
þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Se;klIni þZs;iSu;klZ

0
s;i

� �

W2i ¼
k

X
fkVksr;i þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Cklsr;i

¼
k

X
fk Zs;iSu;kkZ

0
r;i

� �
þ

k

X
l–k

X ffiffiffiffiffiffi
fk

p ffiffiffiffiffi
fl

p
Zs;iSu;klZ

0
r;i

� �

In practice, the bivariate variance components Su;kk;Su;kl;Se;kk andSe;kl (see (15) and (16))

are unknown and must be estimated from the survey data. For example, in the empirical

study described in the next section these components were estimated using the method of

moments (Henderson’s Method 3). In any case, substituting estimates for these

components in the formulae above then enables us to compute U1, W1, U2, and W2, and

hence the multipurpose weights (8) and (12). Computation of MBD estimates for the small
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area means of the different survey variables is then straightforward using (13), with these

multipurpose weights replacing the variable-specific EBLUP weights there.

As noted earlier, the multipurpose weights (8) and (12) are essentially EBLUP type

weights based on “importance averaging” of the variance and covariance components

associated with the different survey variables. This motivates us to consider a second

approach to deriving multipurpose weights based on corresponding “importance

averaging” of the variable-specific EBLUP sample weights (2) for these variables. That

is, we simply define our multipurpose weights as the importance-weighted average of the

variable-specific weights (2) across all K survey variables. This leads to weights

wð3Þ
s ¼

k

X
fkwsk ð17Þ

where wsk denotes the value of (2) for the kth survey variable and fk denotes the relative

importance of this variable, with
P

k fk ¼ 1.

3. An Empirical Study

In this section we report on a design-based simulation study that illustrates the

performance of small area MBD estimation combined with multipurpose weights. Our

basic data come from the same sample of 1,652 Australian broadacre farms that

participated in the annual Australian Agricultural and Grazing Industries Survey (AAGIS)

that was carried out by the Australian Bureau of Agricultural and Resource Economics in

the late 1980s and were used in the simulation study reported in Chambers (1996). Here

we used these sample farms to generate a target population of 81,982 farms by sampling

with replacement from them with probabilities proportional to their sample weights. We

drew 1,000 independent stratified random samples from this (fixed) population, with total

sample size in each simulation equal to the original sample size (1,652) and with strata

defined by the 29 different Australian broadacre agricultural regions. Sample sizes within

these regions were fixed to be the same as in the original sample. Note that these varied

from a low of 6 to a high of 117, allowing an evaluation of the performance of different

small area estimation methods across a range of realistic small area sample sizes. (See

Chandra and Chambers (2005) for more details).

We consider K ¼ 8 variables of interest. These are (i) TCC ¼ total cash costs (in

Australian dollars, A$) of the farm business over the surveyed year, (ii) TCR ¼ total cash

receipts (A$) of the farm business over the surveyed year, (iii) FCI ¼ farm cash income

(A$), defined as TCR 2 TCC, (iv) Crops ¼ area under crops (in hectares),

(v) Cattle ¼ number of cattle on the farm, (vi) Sheep ¼ number of sheep on the farm,

(vii) Equity ¼ total farm equity (A$), and (viii) Debt ¼ total farm debt (A$). Our aim is

to estimate the averages of these variables in each of the 29 regions. In doing so, we use the

fact that these regions can be grouped into three zones (Pastoral, Mixed Farming, and

Coastal), with farm area (hectares) known for each farm in the population. This auxiliary

variable is referred to as Size in what follows.

Although the linear relationship between the eight target variables and Size is rather

weak in the population, this improves when separate linear models are fitted within six

post-strata, defined by splitting each zone into small farms (farm area less than zone
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median) and large farms (farm area greater than or equal to zonemedian). Themixedmodel

(14) was therefore specified so that the matrix XU of auxiliary variable values included an

effect for Size, effects for the post-strata and effects for interactions between Size and the

post-strata. Two different specifications for ZU (corresponding to whether a random slope

on Size was included or not) were considered. This leads to two specifications for (14), a

random intercept specification (where Zi is vector of 1’s) and a random slope specification

(where both the model intercept and the slope parameter for Size are considered as random,

so Zi has an additional column defined by values of this auxiliary variable). We refer to

these as Model I and as Model II, respectively, below. We use REML estimates of random

effects parameters, obtained via the lme function in R (Bates and Pinheiro 1998) when

fitting (14) to individual survey variables. When fitting the multivariate mixed models

defined by (15) and (16) we use the method of moments (Rao 2003).

The simulation study investigated the performance of five different estimators of the

29 regional means, along with corresponding estimators of their mean squared error. These

are:

. EBLUP – EBLUP weights (Equation 14);

. MBD-E – MBD estimator (13) with EBLUP weights (2);

. MBD-I – MBD estimator (13) with multipurpose weights (8) for independent

variables;

. MBD-C – MBD estimator (13) with multipurpose weights (12) for correlated

variables;

. MBD-W – MBD estimator (13) with multipurpose weights (17) defined by weight

averaging.

Mean squared errors for the EBLUP were estimated using the approach of Prasad and Rao

(1990), while mean squared errors for the various MBD estimators were estimated using

the robust method described in Chandra and Chambers (2005), which itself is an

application of the heteroskedasticity robust method of prediction variance estimation

described in Royall and Cumberland (1978). Note that this robust MSE estimator is a

“plug in” estimator, in the sense that unknown parameters in the actual MSE are replaced

by sample estimates. As a consequence, it does not include an adjustment for the extra

variability introduced by this substitution. Given that this method of MSE estimation has

been empirically demonstrated to have good model-based as well as repeated sampling

properties (see Chambers and Tzavidis 2006; Chandra, Salvati, and Chambers 2007;

Tzavidis, Salvati, Pratesi, and Chambers 2007), we do not anticipate that such an

adjustment will make a substantial difference in realistic applications.

The simulation study was carried out in five stages. In the first stage, Model I was

assumed and the performance of the three estimators MBD-E, MBD-I, and MBD-C for

two variables (TCC and TCR) was investigated to see if there were gains to be had from

exploiting correlations among the survey variables. Table 1 sets out the average and

median values of various summary performance measures for MBD-E, MBD-I and

MBD-C under Model I when used with TCC and TCR. We observed that the weights

generated under all three methods were very similar in our simulations, and, as a

consequence, the results set out in this table are also very similar for these variables

(regional specific results generated by these methods were also virtually identical).
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Furthermore, since Spearman’s rho for TCC and TCR was 0.92 in the AAGIS sample that

underpinned the study population, the results also indicate that the MBD method based on

the multipurpose weights (8) is not sensitive to high correlations between the target

variables. Although not presented here, results from model-based simulations of target

variables with different levels of correlation (varying between 0.0 to 0.75) support this

conclusion. The simulation results discussed below therefore focus on MBD-I.

In the second stage of the study we compared the performance of the four estimation

methods EBLUP, MBD-E, MBD-I, and MBD-W under Models I and II for the five

response variables (TCC, TCR, FCI, Cattle and Sheep) where both models can be fitted.

Tables 2 and 3 show the summary performances generated by these four methods for the

five variables TCC, TCR, FCI, Cattle and Sheep under both these models. Under the better-

fittingModel II (Table 3), all threeMBDweighting methods perform similarly with respect

to both measures (ARB and MRB) of bias performance, with EBLUP performing

somewhat worse in this regard. As far as mean squared error performance is concerned, we

see that the multipurpose methodMBD-I slightly outperforms the variable-specific method

MBD-E on both AARMSE and MRRMSE, with the multipurpose method MBD-W on a

par with these two methods as far as MRRMSE is concerned, but notably less efficient with

respect to AARMSE. All three MBD methods clearly dominate the EBLUP in terms of

mean squared error performance under Model II. Under Model I (Table 2) the picture is a

little less clear, with the two multipurpose methods MBD-I and MBD-W recording

substantially better bias performances than the variable-specific MBD-E and EBLUP, and

comparable performances to MBD-E with respect to mean squared error. In this case the

EBLUP performs somewhat better as far as mean squared error is concerned, but still

exhibits large instability on occasion (e.g., AARMSE for the Cattle and Sheep variables).

The fact that both the “covariance smoothed” multipurpose MBD-I and the “weight

smoothed” multipurpose MBD-W perform somewhat better in terms of mean squared

error than the variable-specific MBD-E in Table 3 deserves comment, since one would

expect that an estimation method (MBD-E) that is tuned to a particular variable should

Table 1. Average relative bias (ARB), median relative bias (MRB),

average relative root mean squared error (ARRMSE), median

relative root mean squared error (MRRMSE) and average coverage

rate (ACR) generated by MBD-E, MBD-I and MBD-C for TCC and

TCR under Model I. All averages and medians are expressed as

percentages and are over the 29 regions of interest

Variable Criterion MBD-E MBD-I MBD-C

TCC ARB 22.99 22.67 22.71
ARRMSE 20.32 20.39 20.39
ACR 92 92 92
MRB 20.92 20.85 20.86
MRRMSE 14.29 14.36 14.35

TCR ARB 22.38 22.62 22.67
ARRMSE 21.21 21.13 21.12
ACR 92 92 92
MRB 20.52 20.56 20.57
MRRMSE 13.28 13.27 13.27
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have the edge when used to estimate that variable. However, this expectation is based on

the assumption that the model used in the variable-specific estimator is “correct.” For the

population used in our simulations this is certainly not the case, with the assumption of

linearity representing a convenient approximation that holds better for some variables than

others. In this context a multipurpose approach to weighting is qualitatively more robust

than variable-specific weighting since it does not put too much importance on any

particular variable and its underlying model assumptions.

In Figure 1 we show the regional level performances of EBLUP, MBD-E, and MBD-I

when estimating average TCC under Model II. We do not show results for MBD-W since

these were very similar to those shown for MBD-I. Also, we do not show results for

Model I since these were only marginally different from those for Model II. A

considerable reduction in relative biases under multipurpose weighting can be seen in

most regions. A similar pattern of results was observed for TCR, FCI, Cattle, and Sheep.

From Figure 1 we see that the weighting methods (MBD-E and MBD-I) do not perform

well in Region 21, recording very large values of relative RMSE. Inspection of the data

indicates that this is because of a small number of outlying estimates that were generated

during the simulations, due to the selection into sample of a large outlier

(TCC . A$30,000,000) in this region. When we discard these outlying estimates, all

three weighting methods, and particularly MBD-I and MBD-W, perform well for TCC

across all 29 regions. Similar results were observed for the other four variables TCR, FCI,

Table 2. Average relative bias (ARB), median relative bias (MRB), average relative root mean squared error

(ARRMSE), median relative root mean squared error (MRRMSE) and average coverage rate (ACR) for the five

variables best suited to linear mixed modelling. All averages and medians are expressed as percentages and are

over the 29 regions of interest. Model I is assumed

Criterion Method TCC TCR FCI Cattle Sheep

ARB EBLUP 4.24 5.48 6.93 138.48 304.24
MBD-E 22.49 29.25 213.80 215.05 27.33
MBD-I 21.54 21.30 20.50 21.78 0.69
MBD-W 21.29 21.02 20.04 21.35 0.98

MRB EBLUP 1.55 0.55 22.08 0.95 20.23
MBD-E 20.82 23.87 22.83 24.79 24.48
MBD-I 20.61 20.42 20.56 20.97 20.35
MBD-W 20.52 20.39 20.54 20.75 20.30

ARRMSE EBLUP 19.92 21.76 63.93 304.74 906.18
MBD-E 20.56 23.34 54.42 37.45 24.88
MBD-I 20.86 21.77 59.72 33.29 30.24
MBD-W 20.85 21.77 60.07 33.36 30.64

MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00
MBD-E 14.45 16.20 35.85 30.34 15.50
MBD-I 14.69 13.41 42.09 30.55 14.67
MBD-W 14.74 13.46 42.45 30.56 14.67

ACR EBLUP 90 88 87 86 91
MBD-E 92 91 94 93 94
MBD-I 92 92 94 95 96
MBD-W 92 92 94 95 96
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Cattle, and Sheep. The outlier in Region 21 also impacts on the EBLUP MSE estimator,

leading to low coverage for the EBLUP in this region. This low coverage is evident in

Regions 3 and 7 as well, mainly because the highly skewed distribution of Area in these

regions leads to negative values for this estimator. The same phenomenon underpins the

high values of relative bias and relative root mean squared error of the EBLUP for the

Cattle and Sheep variables that are evident in Tables 2 and 3. Here zero values in the data

for these variables tended to generate negative values for the EBLUP.

In the third stage of the simulation study, we used the multipurpose weights derived in

the second stage (i.e., weights based on the K ¼ 5 variables TCC, TCR, FCI, and Cattle

and Sheep) in MBD-I to evaluate the performance of this estimator for the three variables

Crops, Equity and Debt that were impossible to fit using model II because they contained

many zero values. In particular, in Table 4 we contrast the performances of the variable-

specific estimators EBLUP and MBD-E with that of MBD-I for these three variables. Note

that these results are based on Model I, since Model II cannot be used here. We see that

MBD-I is again clearly the method of choice, with EBLUP performing particularly badly –

as one might expect given the large number of zero values in the data for Crops, Equity,

and Debt. This is evident when we look at Figure 2, which shows the regional specific

performances of the three methods for Crops. Here we see that the EBLUP method fails in

Regions 2, 6, 9, and 18. These are regions where there are a large number of zero values for

this variable.

Table 3. Average relative bias (ARB), median relative bias (MRB), average relative root mean squared error

(ARRMSE), median relative root mean squared error (MRRMSE) and average coverage rate (ACR) for the five

variables best suited to linear mixed modelling. All averages and medians are expressed as percentages and are

over the 29 regions of interest. Model II is assumed

Criterion Method TCC TCR FCI Cattle Sheep

ARB EBLUP 2.98 2.85 16.70 131.66 2.63
MBD-E 22.13 21.25 0.50 20.29 3.66
MBD-I 21.67 21.29 0.74 21.95 1.10
MBD-W 21.30 20.72 3.17 21.29 0.93

MRB EBLUP 0.61 1.37 3.98 0.62 0.00
MBD-E 20.47 20.51 0.35 20.31 0.00
MBD-I 20.65 20.50 0.24 20.30 20.15
MBD-W 20.52 0.01 0.53 20.22 20.09

ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01
MBD-E 20.15 21.46 65.43 30.80 37.82
MBD-I 19.06 21.03 64.03 30.09 32.04
MBD-W 27.13 34.84 129.29 45.16 34.99

MRRMSE EBLUP 16.40 15.61 33.89 22.64 11.73
MBD-E 13.16 12.39 37.64 28.79 14.68
MBD-I 12.84 12.18 37.92 24.84 14.77
MBD-W 12.84 12.71 37.62 24.93 14.72

ACR EBLUP 85 86 84 86 89
MBD-E 93 93 90 95 96
MBD-I 93 93 94 95 96
MBD-W 93 93 94 95 96
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Fig. 1. Regional performance of EBLUP (dashed line), MBD-E (thin line) and MBD-I (thick line) for TCC

under Model II
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Since Model I can be fitted to all eight variables, and so can be used to define

multipurpose weights that depend on all of them, in stage four of our simulations we

computed MBD-I using weights defined by both the limited (K ¼ 5) and full (K ¼ 8) set

of target variables in (8). However, we again noted that these weights were not

substantially different, and led to very similar estimates. Consequently we do not present

these results here.

Note that in all four of the simulation stages so far, we assign equal importance to all

variables included in derivation of the multipurpose weights. In the final stage of our

simulations we therefore replicated the stage two simulations for MBD-I assuming Model I,

but this time also considered three other ways of assigning importance factors to the

different variables. The first assigned an importance factor to variable k inversely

proportional to its estimated individual level variance component ŝ 2
e;k. The second

assigned an importance factor inversely proportional to ŝ 2
u;k þ ŝ 2

e;k, i.e., it also took

account of estimated between region variability. Finally, the third (denoted EI in Table 5)

allocated values for these importance factors proportional to a subjective assessment that

financial variables TCC, TCR, and FCI are five times more important, in terms of

prediction variance, than the production variables Cattle and Sheep in the AAGIS. Table 5

provides summary details of the performance of the MBD-I weighting method when the

multipurpose weights (based on TCC, TCR, FCI, and Cattle and Sheep) are computed

using these alternative importance factors. The four different weighting methods showed

remarkably small differences in the weights that they generated. That is, for the population

considered in the simulation study, there is little to choose between these different

Table 4. Average relative bias (ARB), median relative bias (MRB), average

relative root mean squared error (ARRMSE), median relative root mean squared

error (MRRMSE) and average coverage rate (ACR) for EBLUP, MBD-E and

MBD-I for Crops, Equity and Debt under Model I. All averages are expressed as

percentages and are over the 29 regions of interest

Criterion Methods Crops Equity Debt

ARB EBLUP 90.31 4.36 8.39
MBD-E 0.00 29.32 24.94
MBD-I 20.21 21.20 20.96

MRB EBLUP 0.00 20.28 1.16
MBD-E 20.84 23.51 22.36
MBD-I 0.00 20.32 20.61

ARRMSE EBLUP 123.96 18.51 29.02
MBD-E 23.53 19.14 27.71
MBD-I 22.92 17.05 28.57

MRRMSE EBLUP 15.10 12.32 21.49
MBD-E 15.76 16.18 23.70
MBD-I 15.80 13.52 24.88

ACR EBLUP 95 88 91
MBD-E 96 92 93
MBD-I 96 94 93
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Fig. 2. Regional performances of EBLUP (dashed line), MBD-E (thin line) and MBD-I (thick line) for Crops

under Model I
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approaches to assessing the relative importance of the variables that define the

multipurpose weights, and our decision to treat all five as being of equal importance seems

a reasonable overall choice.

4. Concluding Comments

In this article we develop two loss functions that can be used to compute optimal

multipurpose weights suitable for use in small area estimation using MBD estimators. The

first (8) ignores the correlations between the survey variables, while the second (12) takes

these into account. For the population considered in our simulation studies the

performances of the MBD estimators MBD-I and MBD-C based on “covariance

smoothed” multipurpose weighting are virtually identical, i.e., there are no gains from

taking account of the correlations between the survey variables when constructing the

multipurpose weights. We also investigated an alternative “weight smoothing” approach

to constructing multipurpose weights. However, our empirical results indicate that this

method is marginally less efficient than the loss function based MBD-I method. Our

simulations also indicate that these multipurpose weights remain efficient across a wide

range of variables, even variables that have not been used in the definition of the

multipurpose weights. This can be important in some situations (e.g., where variables have

many zero values) where standard mixed models cannot be fitted and the usual EBLUP-

based methods are inappropriate.

A final comment concerns the performance of the EBLUP in our simulations. By

definition, the EBLUP is the most efficient linear estimator provided its model

assumptions hold. However, this efficiency was not evident in our simulations, in all

probability because this estimator’s underlying model assumptions fail when applied to

Table 5. Average relative bias (ARB), average relative root mean squared error (ARRMSE) and average

coverage rate (ACR) for multi-purpose weighting (MBD-I) based on different choices of fk for K ¼ 5 target

variables (TCC, TCR, FCI, Cattle, and Sheep) under Model I. Note that the EI (economic importance) option

corresponds to fk ¼ 100=340 for the economic performance variables TCC, TCR and FCI (the main target of the

AAGIS), and fk ¼ 20=340 for the production variables Cattle and Sheep

Criterion f21
k TCC TCR FCI Cattle Sheep

ARB K 21.54 21.30 20.50 21.78 0.69
ŝ 2
e;k 21.69 21.48 20.82 22.03 0.52

ŝ 2
u;k þ ŝ 2

e;k 21.64 21.42 20.70 21.95 0.57

EI 21.54 21.30 20.50 21.79 0.68

ARMSE K 20.86 21.77 59.72 33.29 30.24
ŝ 2
e;k 20.83 21.71 58.00 33.19 29.99

ŝ 2
u;k þ ŝ 2

e;k 20.85 21.75 58.15 33.25 30.11

EI 20.86 21.77 58.30 33.29 30.24

ACR K 92 92 94 95 96
ŝ 2
e;k 92 92 94 95 96

ŝ 2
u;k þ ŝ 2

e;k 92 92 94 95 96

EI 92 92 94 95 96
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the AAGIS data. This does raise the issue of when is it appropriate to use the EBLUP in

small area estimation. To argue that this should only be when its assumptions hold seems

to be somewhat impractical, since the reality is that it is never possible to know if this is the

case. What happens in practice is that the EBLUP is computed because a mixed linear

model provides a reasonable fit to the data, with significant small area effects. This was

certainly the case for the AAGIS sample data that underpinned our simulations.

Undoubtedly a better fit to the AAGIS data could have been obtained by adoption of a

more complex model. For example, a mixed linear model on the logarithmic scale is a

much better fit for the strictly positive values of TCC, TCR, and Cattle and Sheep in these

data. However, taking advantage of this nonlinearity leads to an extra level of technical

complexity in estimation, which we hope to report on elsewhere. Our concern here is to

demonstrate that combining a simple linear method (MBD) of model-based small area

estimation with a multipurpose approach to sample weighting leads to a robust estimation

method, i.e., one that works well in a variety of situations, even those where underlying

model assumptions are approximate at best.
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