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Ben Klemens1

In a situation where two raters are classifying a series of observations, it is useful to have an
index of agreement among the raters that takes into account both the simple rate of agreement
and the complexity of the rating task. Information theory provides a measure of the quantity of
information in a list of classifications which can be used to produce an appropriate index of
agreement. A normalized weighted mutual information index improves upon the traditional
intercoder agreement index in a number of ways, key being that there is no need to develop a
model of error generation before use; comparison across experiments is easier; and that
ratings are based on the distribution of agreement across categories, not just an overall
agreement level.
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1. Introduction

This article uses a measure of shared entropy between two classifiers to express an index

for agreement between them. This new measure, which will be notated as PI, will be

compared to the traditional measure k and several related measures. The new measure

does away with the standard of applying a series of transformations to the observed rate of

agreement, and instead uses information-theoretic accounting rules to calculate the total

information in the agreed-upon observations relative to the total information in the

individual ratings. The simplest means of measuring agreement is to take the ratio of

ratings in agreement to the total number of ratings; the complexity-adjusted measure PI

takes the ratio of information in agreement to total information.

Consider the case of unordered, discrete categories; the case of ordered categories will

be discussed as an extension below. Once the distribution of category choices for the

individual raters is set, k depends only on the percent of items which are given the same

classification by both raters, while PI also depends on the characteristics of the categories

in which the agreements occur. Categories where the agreement rate is significantly larger

than the rate that would occur given independent raters will have a positive effect on PI,

while categories where the agreement rate is smaller than the rate given independence will
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lower PI. The final score is an amalgam of each category’s score, and broadly asks whether

there is more weight on categories where there is more than chance agreement, or on

categories where there is less than chance agreement.

We must separate the unordered case from the ordered case because the model of

agreement at random changes depending on the situation. The literature is thus filled with

variants of k for different situations, and it is difficult to argue that it is valid to compare

the statistic across studies where the underlying model of agreement at random is different.

Conversely, the ratio of (possibly weighted) information in agreement to total information

can be calculated for every situation in this range, meaning that comparison across studies

has greater validity.

Empirically, the traditional measure k and the new measure PI tend to behave similarly.

At the extremes, cases where k is zero or one are cases where PI is also zero or one, and the

simulations below find that their power to distinguish small changes in the rate of

agreement are remarkably similar. Thus, the alternate statistic here largely retains the

empirical characteristics and general intuition associated with k, while providing several

conceptual benefits: there are fewer conceptual issues hindering comparisons across

studies, one does not need to develop a model of error generation for different situations,

and PI will be shown to usefully distinguish between situations with strong agreement in

one category and situations with more even agreement across several categories, even

when k considers the two situations to be identical.

By way of introduction, this article will begin with a short motivating example. Section 2

gives a brief overview of entropy accounting and defines PI. Section 3 provides some

simple examples and lemmata about the basic properties of PI. Section 4 presents a simple

simulation showing that the powers of k and PI are similar. Section 5 is the empirical

section, in which the measure is applied to a test of the US Census Bureau’s American

Community Survey; in all cases, PI and k behave in a similar manner.

A motivating example. Consider the case of two raters classifying a sequence of

observations into categories. The two rows represent the sequence of categorizations of the

same data set by two raters, so each column represents two classifications of the same data

point by two independent raters.

The coders readily agree on which observations fall into category 1, but are muddled

with regard to 2 and 3.

The simplest index for intercoder agreement is the percentage of classifications that are

in agreement across raters which will range from 0% in the case of no items classified the

same by both raters, to 100% in the case of full agreement. This is notated as Po, and in this

case with twelve items and eight correct classifications is 66.67%. For many purposes, this

index is all that one needs, but it is sometimes unsatisfactory because it does not reflect the

complexity of the task. If there are only two categories, two people picking categories by

each flipping a coin would arrive at 50% agreement; if there are a hundred categories and

the task is difficult, 50% agreement may be excellent.

Table 1. Two coders (top, bottom) classified a series of 12 observations

1 1 1 1 1 1 2 2 2 3 3 3
1 1 1 1 1 1 3 3 2 2 2 3
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Let the observed probability of the first rater choosing category i and the second

choosing category j be pij. Then the marginal probability pi· indicates the probability that

the first rater chooses category i and p·j indicates the probability that the second rater chose

category j. Thus, given C categories, Po ;
PC

i¼1pii.

In some fields, authors distinguish between the theoretically ideal distribution p and the

current set of ratings which provide a single empirical estimate of the distribution p̂. The

custom in the interrater agreement literature is to accept the current observed empirical

distribution p̂ as identical to p, so this paper will make no distinction and use p throughout.

Scott (1955) and Cohen (1960) adjusted the base value of Po using the odds of

agreement given random categorizations. Under Cohen’s setup, the expected rate of

agreement, Pe, assumes that each rater has a distinct discrete distribution of categories

produced by tabulating the rate at which the first rater used each of the C categories, and

similarly for the second rater. Then the odds of chance agreement between the two raters is

Pe ;
XC
i¼1

pi·p·i:

The chance-adjusted rate of agreement, Cohen’s k, is defined as

k ;
Po 2 Pe

1 2 Pe

:

Applying this to the example here, Pe ¼ 0.375 and k < 0.467.

Scott’s p assumes that both raters are drawing from the same discrete distribution, and

the best estimator of the bins in that distribution is the sum of selections by both raters,

~pi ; ð pi· þ p·iÞ=2. Then, having generated one distribution for both raters,

PScott
e ;

i

X
~p2
i :

Replacing Pe in the definition for k with PScott
e gives the definition of p.

With two categories that were used equally, Pe ¼ PScott
e ¼ 0.5; for 100 categories, each

used with equal likelihood, Pe ¼ PScott
e ¼ 0.01, demonstrating that the adjustment

typically does give a better rating to a value of Po when there are many options than the

same Po when there are few.

Cohen (1960, p. 40) describes k as “simply the proportion of chance-expected

disagreements which do not occur.” The literature typically refers to k as a chance-adjusted

or chance-corrected measure. However, the measure of chance-expected disagreement is

not based on an explicit and plausible model of how chance errors occur.

Both Scott’s and Cohen’s chance-adjustments model rating at chance by imagining two

random number generators spitting out two sequences of categories, without taking inputs

of any sort (including the data to be categorized). That is, the model underlying Pe consists

of no more than comparing independent draws from discrete distributions.

There exist occasions where it is worth considering the possibility of rating at random;

for example, Kravitz et al. (2010) failed to reject the null hypothesis that pairs of peer

reviews for a journal agreed on accept/reject/revise categories at rates no greater than
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random. However, to test the hypothesis that Po ¼ Pe, one can use Po without adjustment,

rather than testing that p ¼ 0 or k ¼ 0.

In the introductory example, the raters have no problem agreeing on type 1, but have

difficulty with types 2 and 3, so the model of errors entirely at random seems implausible,

and there may be a more accurate model that reflects raters who can accurately spot type 1

but commit errors with types 2 and 3.

Other situations afford other error processes that each require a different model: one

rater might consider values under 0.5 to be class 1 and values over 0.5 to be class 2 while

the other rater sets a cutoff at 0.6, or the first rater may tend to misclassify category 3 as

category 4 while the other rater tends to misclassify 3s as 5s, or raters may overuse the

some other type category but make no further errors. For any of these situations, using Pe

or PScott
e as a chance-adjustment is using an already rejected model of the error process.

Uebersax (1992) discusses the lack of a plausible underlying error model at length; on

the web, Uebersax (2010) offers a bibliography of a dozen and a half articles discussing

issues and problems with k, primarily regarding its underlying error model, its

misinterpretation as a measure of true agreement, and its unexpected sensitivity to features

like the number of categories. Cook (2005) also offers some critique of the statistic.

Even when assuming that errors occur entirely at random, subtle issues arise in

determining the rate of chance-expected disagreement. We already saw an example of this

in the difference between Scott’s and Cohen’s versions of Pe. Andrés and Marzo (2004)

use an error model where raters are generally accurate but sometimes make errors entirely

at random. Fleiss (1971) and Craig (1981) offer multi-rater generalizations of Scott’s error

models. When dealing with continuous variables, Barry and Mielke (1988) – offer an

alternative error model. Krippendorff (2004) generalizes many of the above statistics by

allowing an arbitrary metric for discrete, ordinal, continuous, data and another method of

calculating the observed and expected rate of disagreement given more than two raters.

The intuitive concept of a chance-adjustment may make sense, but there is no one-size-

fits-all way of formalizing what rating at chance means.

If the calculation of Pe changes across studies, there is no meaningful way to compare

cross-study k statistics outside of using the statistics a rough heuristic. Conversely, the

ratio of information in agreement to total individual information is calculable for any pair

of distributions, and is therefore more easily compared across studies.

An information-theoretic measure. Information theory is built upon an accounting of

information. The measure of the information held by distribution D is its entropy, and is

notated H(D). As will be demonstrated by some simple examples below, it is not

unreasonable to take the entropy as a formal measure of the intuitive idea of the

complexity of a rating task. For example, the entropy rises as the number of equiprobable

bins increases. Common information accounting identities break down total entropy into

several elements, one of which is the mutual information shared jointly.

By analogy to Po, which is the count of elements in agreement divided by the total count

of elements, the new index proposed here, PI, is the count of information in agreement

divided by the total information.

For a given distribution of ratings, entropy is well-defined, so the information-based

index sidesteps the issue of determining the error generation model underlying a series of

ratings. In the example above, the entropy for the top row is 1.5, and is identical for the
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bottom row. The information shared in agreement, defined below, is 0.569, so the shared

information as a ratio of average individual information is 0.379.

Now consider a second example, where the top row of ratings is identical to those

before, but the bottom row of ratings has changed:

Overall, the agreement rate is no better than before: Po is still 66.67%. But the raters are

not in perfect agreement with category 1 anymore, and instead get two-thirds agreement

for each of the three categories. That is, the rate of agreement across categories is more

consistent in this example than in the first.

Having observed this data pattern, the careful researcher might wish to throw out the error

process for the first example (where type one was never rated in error) and develop a new

model of the error process. In this case, it may be difficult to compare the two examples

above, because both the ratings and the error generation model changed. Comparingp andk

across examples would have to be done under the understanding that these statistics are

simply convenient heuristics which may have no serious real-world interpretation.

Conversely, the complexity-adjusted measure comparing information in agreement to total

agreement can be compared across configurations as easily as Po could be.

Or, the researcher may believe that agreement at random is the correct model in both

cases (so the run of ones in agreement from the first example was just good luck). In that

case, it would be valid to use p or k for both cases. Because neither Po nor Pe changed

from the first example to the second, both p and k would give the same score to both of

these examples. That is, these statistics are insensitive to the consistency of the raters

(or lack thereof) across categories.

The counts for top and bottom rater did not change, so their individual entropies are

identical. But as will be discussed extensively below, the more even distribution of shared

information bears more information: it is 0.61 as opposed to the first example’s value of

0.569. Colloquially, we would say that the second more consistent set of ratings is more

informative––and it frequently is. For the typical study, all categories have roughly equal

importance, and if they do not, we will see that it is easy to impose a weighting scheme so

that weighted cases have equal importance, so one would not want an especially bad error

rate on all but one or two categories.

The statistic presented here acknowledges that there are reasons to account for the

complexity of a situation––it really is easier to put data into two bins than a hundred––but

sidesteps the question of how errors are generated by measuring the complexity of the

rating task directly. That is, the measure here replaces the chance-adjusted index with a

complexity-adjusted index. It thus replaces the problem of modeling the error generation

process, where the correct model must be chosen on a case by case basis and the easiest

models are implausible for most cases, with the somewhat settled question of how we

measure the complexity of a set of distributions.

Even if the theoretical basis of k makes it inappropriate for many of the situations in

which it is used, its prevalence in the literature indicates that it is a good heuristic that

captures researchers’ intuitions about a situation-adjusted agreement rate. Ideally, we

Table 2. Classifications as in Table 1, but the coders are not in full agreement regarding category 1.

1 1 1 1 1 1 2 2 2 3 3 3
1 1 1 1 2 3 1 2 2 1 3 3
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would have an index which has a more broadly applicable theoretical basis, but which

captures similar characteristics of the data. The PI statistic will prove to demonstrate this

empirical similarity to k.

2. Entropy and its Decomposition

Our index of intercoder agreement should be adjusted to fit the complexity of the situation, so

it is natural to base the index on entropy, a common measure of a configuration’s complexity.

The entropy is equivalent to the minimum average number of binary digits (i.e., bits) that

would be needed to transmit a message given a sufficiently clever encoding. Similarly, if two

sets of categorizations share a great deal of mutual information (as defined below) and we

have one coder’s stream of ratings on hand, we would need fewer bits of information to

determine the second stream. Readers unfamiliar with measuring information may wish to

refer to a textbook exposition such as Pierce (1980) or MacKay (2003).

Formally, let there be a set of C bins, each with probability pi for i in 1 to C––that is, a

discrete distribution D. Then the entropy is defined as:

HðDÞ ; 2
XC
i¼1

pilog2ð piÞ: ð1Þ

Because pi # 1 for all i, log2( pi) will be nonpositive, and the above expression will be

nonnegative. For a single bin with probability one, log2(1) ¼ 0, and H(D) ¼ 0: because all

observations will be in the same bin, seeing a new observation imparts no new

information. For two equiprobable bins, HðDÞ ¼ 2ð2 1
2

log2ð
1
2
ÞÞ ¼ 1, meaning that a single

observation imparts one bit of new information. For ten equiprobable bins,

HðDÞ ¼ 10 ð20:1 log 2ð0:1ÞÞ < 3:32. Thus, as more options arise, entropy generally rises.

The limit of x log2(x) as x # 0 is zero, so for the purposes of the entropy calculation, it is

custom to let 0 · log2(0) ; 0 (Gallager 1968, footnote p. 18). This means that if bin i in a

discrete distribution has pi ¼ 0, then it is irrelevant for the entropy calculation.

The entropy definition is applied to a conditional distribution of the first rater’s choices

(X) given the distribution of the second rater’s choices (Y) as follows:

HðXjYÞ ¼ 2
XC
i¼1

XC
j¼1

pijlog2

pij

p·j

� �
:

The mutual information is defined as a sum over the categories similar to the entropy,

and can be written as the difference of unconditional and conditional entropies:

IðX; YÞ ;
XC
i¼1

XC
j¼1

pijlog2

pij

pi·p·j

� �
;

¼
XC
i¼1

XC
j¼1

pijlog2

pij

p·j

� �
2 pijlog2ð pi·Þ

� �

¼ 2HðXjYÞ þ HðXÞ;

so

HðXÞ ¼ IðX; YÞ þ HðXjYÞ:
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That is, the entropy of one configuration is the sum of the information shared with the other

configuration and information that is residual given the other configuration.

Symmetrically, HðYÞ ¼ IðX; YÞ þ HðYjXÞ.

It is useful to break down the mutual information further. Define weighted mutual

information as

IwðX;YÞ ;
XC
i¼1

XC
j¼1

wijpijlog2

pij

pi·p·j

� �
; ð2Þ

where wij is a weighting between zero and one for the case where the first rater chose

category i and the second chose category j. Because we are developing an index of

matching, it makes sense to define

wij ;
1; i ¼ j

0; i – j
:

(

Let the weighted mutual information using this weighting be IA(X,Y)––the information

in agreement. It also makes sense to define the complement, information in disagreement,

ID(X, Y), using

wij ;
0; i ¼ j

1; i – j
;

(

though it may be easier to define the information in disagreement as the residual mutual

information after information in agreement is subtracted:

IDðX; YÞ ¼ IðX; YÞ2 IAðX; YÞ: ð3Þ

Then
HðXÞ ¼ IAðX; YÞ þ IDðX; YÞ þ HðXjYÞ

and

HðYÞ ¼ IAðX; YÞ þ IDðX; YÞ þ HðYjXÞ

so

HðXÞ þ HðYÞ ¼ 2IAðX; YÞ þ 2IDðX; YÞ þ HðXjYÞ þ HðYjXÞ

ð4Þ

One could informally rewrite the last equation as

ðHðXÞ þ HðYÞÞ=2 ¼ IAðX; YÞ þ everything else:

Our interest is in how much of the quantity on the left-hand side is accounted for by I A and

how much is accounted for by everything else. Thus, the remainder of the article shall

consider this statistics as a candidate for measuring intercoder agreement:

PIðX; YÞ ;
IAðX; YÞ

ðHðXÞ þ HðYÞÞ=2
:

A worked example. Consider this table of frequencies, in which two raters placed

elements into categories 1, 2, and 3. The main table lists joint frequencies, which total to

the individual rater frequencies to the right of and below the lines.
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Table 3. A table of joint and marginal rating possibilities.

1 2 3

1 0:2 0 0 0:2

2 0:05 0:06 0:19 0:3

3 0:15 0:14 0:21 0:5

0:4 0:2 0:4 1

The diagonal elements are in bold to indicate that they are the only elements of the joint

distribution used for the calculation. The first term of I A is 0.2 log2 (0.2/(0.2 · 0.4)) < 0.264.

The second is 0.06 log2 (0.06/(0.3 · 0.2)) ¼ 0.06 log2 (1) ¼ 0; in this case 0.06 is the

product of the individual frequencies 0.3 · 0.2, exactly what one would expect given

independent raters. The third term is 0.21 log2 (0.21/(0.5 · 0.4)) < 0.015, for a total

I A < 0.279. The entropies are H (row) < 1.485 and H (column) < 1.52, so PI < 0.185.

In this case, the measures give similar results: with Po ¼ 0.2 þ 0.06 þ 0.21 ¼ 0.47

and Pe ¼ 0.2 · 0.4 þ 0.3 · 0.2 þ 0.5 · 0.4 ¼ 0.34, we have k < 0.197. For p, we first

write down the mean marginal distribution (0.3, 0.25, 0.45), which gives PScott
e ¼ 0.355

and p < .178.

3. Characteristics of PI

This section will explore the characteristics of PI, and where appropriate compare it to k.

Several artificial small-N examples will be considered. This section will also consider

some variants, such as modifications for a weighted agreement measure, surveys with

more than two raters, and follow-up questions.

Full agreement and full disagreement. Figure 1 gives an example of two raters in full

agreement. At the top of the figure are two sequences of categorizations from the two

raters, and in this example they match in all cases. At the lower left, the main part of the

table is the joint probability distribution over the categories produced by the pair of raters.

The distributions for the individual raters are summed to the right of and below the lines.

In this case, the joint distribution has nonzero values only along the diagonal. The diagonal

1 1 1 1 2 2 2 2 3 3

1 1 1 1

0.40
0.40
0.20

–
–

3

0.20

0.20 1

–
0.40

0.40

2

–

0.40

0.40

–

1

–

1
2
3

2 2

First rater entropy
Second rater entropy
Information in agreement

2 2 3 3

Agreement (Po)

k

PI

Pe

1.522
1.522
1.522

100%

1.000 (0.000)

(0.000)1.000

0.360

Fig. 1. The case of full agreement.
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elements and marginal totals are all that is necessary to compute the various statistics

generated by the pair of configurations. Standard errors for k and PI were calculated using

bootstrap, and are given in parentheses (Klar et al. 2002). For the case of full agreement

here, there is zero variation in the indices.

As in Figure 1, if two raters agree on all observations, and Pe , 1, then k ¼ PI ¼ 1.

There is effectively no complexity adjustment in this case: full agreement given two

options and full agreement given a thousand options both get an index of k ¼ PI ¼ 1.

Two ways to be zero. There are two manners in which the list of frequencies for joint

agreement fail to provide any additional information.

Figure 2 shows the first case, where both raters entirely disagree. At random, there

would be about 11% agreement, so zero percent agreement is actually worse than random,

and k is negative. The index PI ¼ 0 tells us that having the diagonal of the joint

distribution does not improve our knowledge of the individual raters’ information at all,

which is indeed the case if the diagonal is filled with zero entries. One can show that if two

raters disagree on all observations, and 0 , Pe , 1, then k , 0 and PI ¼ 0.

The second way in which PI can be zero is if the odds of agreement match the rate at

which independent raters would agree, pij ¼ pi· · p·j. If this is the case for pii, for all i, then

Po ¼ Pe, and so k ¼ 0.

The same holds for PI when the agreement rate is equivalent to the independent rate. In

the case of independent raters, information about one rater gives us no information about

the other: H(X) ¼ H(XjY), so I(X,Y) is zero.

Consider the example of Figure 3, where one of the raters chose the same value every

time. This is an extreme example of independent raters. There is agreement when the non-

constant rater picks the constant rater’s favorite category, but the agreement measures

register the agreement as pure chance.

Is PI positive? Zero is not the minimum for either statistic. Cohen (1960 p. 42)

comments that “if [k ] is less than zero : : : , it is likely to be of no further practical

interest.” In cases of generally competent raters doing a reasonable rating task, we can

expect both k and PI to be positive; in other cases, the instrument or methods are likely too

flawed to be useful. But it is worth discussing why and how both indices are negative, even

if researchers may never encounter such situations in real-world data.

1

1 2 3
–1 0.30 0.10

0.202 – 0.20
0.103 0.10 –

0.30 0.40 0.30 1

0.40
0.40
0.20

2 1 2 1 2 3 1 3 2

2 1 3 1 2 3 2 2 1 3

First rater entropy
Second rater entropy
Information in agreement

Agreement (Po)

k

PI

Pe

1.522
1.571
0.000

0%

–0.515 (0.003)

(0.000)0.000

0.340

Fig. 2. An example of full disagreement.
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Define

Ri ;
pii

pi·p·i
:

If Ri ¼ 1, then the joint agreement frequency is equivalent to the case of independence,

where Pii ¼ pi·p·i. If Ri . 1, then joint agreement occurs with greater frequency than

would occur under independence, and if Ri , 1, then joint agreement occurs less often

than it would given independence.

The total PI is the sum of one element for each category, and researchers may get value

from individual elements of the sum. As above, we can determine whether the term is

positive, negative, or zero by comparing pii to pi· · p·i, but one could do a full per-term

analysis comparable to the per-term breakdown of k by Fleiss (1971) or James (1983). If

Ri . 1, then bin i adds a positive term to the numerator of PI; if Ri , 1, bin i adds a

negative term; if Ri ¼ 1 then it adds nothing.

This is akin to k, whose numerator is Po 2 Pe ¼
P

ið pii 2 pi·p·iÞ, and so each bin

changes the numerator depending on whether pii is greater than, less than, or equal to pi·p·i.

Figure 4 shows a case analogous to negative correlation. In this case, if we had the full

contingency table, and saw that the first rater had chosen a, then we would guess that the

second rater had chosen b. But if we were given only the diagonal entries–– (a, a) ¼ 0.1

and (b, b) ¼ 0.1––then we would place even odds on the second rater choosing a or b. In a

sense, the partial table gives the misleading impression that there is no correlation between

elements when the correlation is actually negative. In this case, PI < 2 0.264.

1 1 1 1 1 1

1 1 2 2 2 3

First rater entropy1 0.33

0.33
0.50
0.50

0.17
1 2 3

0.17
1.00
1 Second rater entropy

Information in agreement

Agreement (Po)

k

PI

Pe

0.000
1.459
0.000

33%

0.000 (0.000)

(0.000)0.000

0.333

Fig. 3. One rater chose the same ranking in all cases. This is a special case of independent raters.

1 1 1 1 1 2 2 2 2 2

1 2 2 2

0.400.10

21

0.10

0.50
0.50

1

0.40

0.500.50

1
2

2 1 1 1 1 2

First rater entropy
Second rater entropy
Information in agreement

Agreement (Po)

k

PI

Pe

1.000
1.000

–0.264

20%

–0.600 (0.008)

(0.003)–0.264

0.500

Fig. 4. Analogue to negative correlation.
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More informative agreement. In Figure 6, there are only a few cases of C, but the

raters agreed on which they were. In Figure 5, the raters could not agree on which items

were the rare type C. By the measure of count of As, Bs, and Cs, and the count of

agreements, the cases are identical. That means that k is identical in both cases. Note the

diagonal elements: in the first case they are (0.4, 0.3, 0.1) and in the second (0.3, 0.3, 0.2),

and the more even pattern of agreement rates leads to a larger value of PI than the more

spread-out diagonal. One can show that, all else equal, shifting weight from a category

where Ri is larger than the mean R across categories to a category where Ri is smaller than

the mean R will raise PI. As in the examples above, such a shift can be done without

affecting Po or Pe, meaning that k is invariant.

3.1. A Few Variants

Many of the variants of the interrater agreement problem, such as situations where raters

could be approximately correct, or where some questions like follow-ups are strongly

related to prior questions, or where there are several raters, have been explored in the

literature on k, and could be applied to PI analogously. In all cases, the problem of

determining what Pe means in the given variant is no longer relevant. It is still sensible to

compare the ratio of weighted information in agreement to individual information across

studies, but with the caveat that the weighting scheme should be meaningful across

studies.
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Ordinal scales. For ordinal scales, researchers may want to give partial credit for

ratings that are close to each other but not a match. The weighted k puts some weight on

near agreement; the same partial-credit principle can be applied to I A. Instead of the

simple binary weighting used throughout this paper, one could define I Aord using a

weighting such as

wij ;

1 i ¼ j

1=2 0 , ji2 jj # 1

1=4 1 , ji2 jj # 2

0 2 , ji2 jj

:

8>>>>><
>>>>>:

The choice of weighting scheme is subjective and should encode subject-specific

knowledge of how much value a near miss provides. In Van der Wulp and Van Stel (2009,

table 3), there is a good example of an asymmetric 5 £ 5 table of weights comparing

different levels of triage as given by a rater during an emergency and by a post-emergency

gold standard. Their table of weights was intended for calculation of a weighted k, but

could be used for a weighted PI without modification.

So long as we define I D using Equation 3, the accounting identity of Equation Set 4

continues to hold for I Aord, and the basic facts about PI below––it is one at full agreement,

is zero when agreement is at chance or there is no agreement, and so on––will have natural

extensions to the ordinally-oriented version, I Aord=ð
1
2
ðHðXÞ þ HðYÞÞÞ.

New alphabets. Given the sequence of letters i, a, m, a, d, o, g, there is benefit to

reinterpreting it as a sequence of words: i, am, a, dog. The same may hold with a sequence

of questions. Question #2 may be a follow-up to Question #1, so valid response sequences

might include:

Thus, if the first rater chose 1A for the first question and the second chose 1C, then the

first rater will have a rating for question 2 (either 2A or 2B) while the second rater will

have a blank for question 2. One can recode the pair of responses into word-like sets, such

as the six rows of the table.

The method of aggregating questions into sets is especially useful in conjunction with a

weighting table, because some aggregate questions are similar to others, such as how #3

and #4 in the table above both have Q1 in common but disagree on Q2, so it may be

reasonable to assign a weight of 0.5 to a pair of ratings (3,4) or (4,3). The full matrix of

weights might look like:

Table 4. Valid options for Question 2 are contingent on the response to Question 1.

Q1 Q2

1. 1A 2A
2. 1A 2B
3. 1B 2A
4. 1B 2C
5. 1C [valid skip]
6. 1D [valid skip]
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Such aggregations from letters to words are natural in information theory, and thus

natural for the information-based agreement measures discussed in this article. The

method could readily be applied to traditional agreement measures such as k as well, using

a reasonable method of constructing Pe.

Many raters. Fleiss (1971) accommodates several raters by taking the mean of the

agreement rate across raters. Not surprisingly, there is some awkwardness about resolving

what Pe means in the new context. Although typically described as a generalization of

Cohen’s k, Fleiss’s version of Pe is the natural multi-rater generalization of Pscott
e , and in

the case of two raters reduces to Scott’s p.

The concept of aggregating several pairwise components applies naturally to PI. If we

have three raters, X, Y, and Z, then we now have three sets of individual rating

distributions, pXi ; p
Y
i ; and pZi ; i [ 1; : : : ;C, and three sets of pairwise ratings, with

diagonal terms pXYii ; pXZii ; and pYZii ; i [ 1; : : : ;C. Writing PI for raters X and Y as

2IAðX; YÞ=ðHðXÞ þ HðYÞÞ, it is natural to add together the additional information in

agreement terms and the individual entropy terms to get a ratio of total information in

agreement to total information in individual ratings:

PIðX; Y ; ZÞ ¼
2IAðX; YÞ þ 2IAðX; ZÞ þ 2IAðY ;ZÞ

ðHðXÞ þ HðYÞÞ þ ðHðXÞ þ HðZÞÞ þ ðHðYÞ þ HðZÞÞ
:

This retains the spirit of the two-rater measure, as one could write the sum

ðHðXÞ þ HðYÞÞ þ ðHðXÞ þ HðZÞÞ þ ðHðYÞ þ HðZÞÞ

¼ 2IAðX; YÞ þ 2IAðX; ZÞ þ 2IAðY; ZÞ þ everything else:

As in the two-dimensional case, full agreement means that the ‘everything else’ portion

is zero and all weight is in the I A(·,·) terms; full disagreement means that the I A(·,·) terms

are zero.

4. Simulation and Sensitivity

I ran a series of simulations using two raters to gauge the power of k and PI to detect small

differences in rater efficacy. To simplify the simulation, let the first rater be the ‘gold

standard’ rater, who draws from ten bins with equal probabilities. The second is a rater

who agrees with the first rater with probability pc.

Table 5. A weighting matrix appropriate for the questions in Table 4

1 2 3 4 5 6

1 1 0.5 0 0 0 0
2 0.5 1 0 0 0 0
3 0 0 1 0.5 0 0
4 0 0 0.5 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
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The goal of the simulation was to test the power of the statistics to distinguish between

one set of data based on raters agreeing at a rate pc and a second set based on raters

agreeing at rate pc 2 e .

The simulation ran this procedure for 1,000 tests:

1. Generate first set, where both raters classify 500 items into ten bins. They agree with

probability pc.

2. Generate second set, where both raters classify 500 items into ten bins. They agree

with probability pc 2 e.

3. Calculate k and standard error of k (via bootstrap) for both runs.

4. Calculate PI and standard error of PI (via bootstrap) for both runs.

5. Run a standard t-test testing the null hypothesis H0 : (k given pc) . (k given pc 2 e).

Mark whether the test rejected the null or failed to reject at the 95% confidence level.

6. Run a standard t-test testing the null hypothesis H0 : PI given pc . PI given pc 2 e.

Mark the result, as with the test on k.

Representative results are printed in Table 6, including the proportion of runs where k or

PI successfully rejected the null hypothesis and distinguished between the two samples at

the 95% confidence level. The two statistics are remarkably close, and demonstrate power

within 1% of each other in every case.

The examples above showed that as consistency of rating across categories improved, PI

changed while k remained constant. Thus, if one needed a test of the consistency of raters

across categories, there is no need to run simulations: k is by construction insensitive to

changes in consistency and is therefore unusable in such a situation. However, consistency

and agreement rate are effectively unrelated, so the ability of PI to discriminate between

Table 6. The power of k and PI to resolve differences in pc given different base values of pc and

difference e

pc e k power PI power

0.3 0.01 0.541 0.544
0.5 0.01 0.540 0.531
0.7 0.01 0.557 0.561
0.9 0.01 0.650 0.641
0.95 0.01 0.673 0.673

0.3 0.02 0.678 0.676
0.5 0.02 0.665 0.665
0.7 0.02 0.700 0.707
0.9 0.02 0.803 0.800
0.95 0.02 0.857 0.857

0.3 0.05 0.935 0.934
0.5 0.05 0.918 0.918
0.7 0.05 0.943 0.943
0.9 0.05 0.989 0.989
0.95 0.05 0.998 0.998
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more and less consistent patterns says nothing about its ability to better discriminate

between situations with different agreement rates.

5. Empirical Results

The Census Bureau’s Center on Survey Measurement ran a series of tests on the methods

underlying the American Community Survey, including tests of new questions about

internet usage and English/Spanish comparisons. The interviews were recorded, and

several raters classified each interviewer’s utterance in categories such as asked as

worded, major change, correctly coded response, or inaudible, and classified respondent

utterances in categories such as directly answered, asked for clarification, or refused to

answer. It is these classifications that will be the data set under analysis below.

The test survey itself was conducted in mid-2011, and the questions include questions

about individuals in the household, such as military service and parental place of

birth/ancestry. Because the responses to the questions themselves are irrelevant to the

issue of intercoder agreement, and the responses are protected by Title 13 of the U.S.

Code, I do not detail the actual questions or responses.

Within the several categorization tasks associated with an interview, there were four

‘check only one’ parts, regarding

. the extent to which the interviewer’s initial asking of the question adhered to the

question script (six options, including exact reading, major change, skipped),

. the respondent’s subsequent response (nine options, including codeable answer,

qualified/uncertain answer, don’t know, refused)

. the classification of the final answer (eight options, including codeable answer,

qualified/uncertain answer, don’t know, refused), and

. the evaluation of the interviewer’s data entry (three options: matches respondent

answer, does not match, other/unclear if matches).

I omitted rating tasks that allowed multiple responses or did not have a pair of raters with

more than 100 ratings in common. The statistics were calculated where possible for each

pair of raters and each of the above categories, producing 336 sets of statistics, as shown in

Figure 7 and graphically in Figure 8.

For each subcategory, there were between 28 and 140 pairs of raters. For a given pair of

raters, the average number of pairs of ratings ranges from 240 to almost 2,000. Different

pairs of raters rated different combinations of the four subcategories of all nonlanguage,

so the count in subcategories will not sum to 140. All pairs who classed nonlanguage

Section

Language

All nonlanguage
Interviewer query
Response
Data entry
Final outcome

Pairs Average count

140
28
56
28
56

140

396
511
512
506
495
345

k (std err)

0.58 (0.11) 0.52 (0.08)
0.60 (0.07)
0.51 (0.07)
0.49 (0.06)
0.49 (0.06)
0.91 (0.05)

0.69 (0.05)
0.57 (0.10)
0.54 (0.10)
0.54 (0.10)
0.93 (0.04)

PI (std err)

Fig. 7. For each section, the count of rater pairs with more than 100 ratings, the average number of ratings for

each pairing, and the mean and standard error of k, and PI.
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categories also classed the language. The numeric value of PI tends to be slightly smaller

than k. But for samples of this size, with competent raters, the two statistics tend to track

each other closely. In this data set, the standard errors for PI are smaller for most

nonlanguage questions.

For each pair of raters and each segment, there is a single point in the plot of Figure 8

with coordinates (k, PI). The k ¼ PI line is printed for reference, and we see that, for the

bulk of the cases, the numeric value of PI follows that of k closely, although it is typically

about 0.05 smaller.

6. Conclusion

This article proposes replacing the chance-adjusted rate of agreement with a complexity-

adjusted rate of agreement.

The main problem with chance-adjustment is that it must be based on a solid model by

which errors are generated, yet both Scott’s p and Cohen’s k are based on a completely at

random decision model which is implausible for most real-world situations. To correct for

this, the literature offers variants of k for rating entirely at random, rating given some fixed

rate of accuracy, rating given ordered categories, rating given multiple raters whose

discrete distributions need to be aggregated before k is calculated, and so on. But such a

diversity of forms means that researchers need to do up-front work to determine which

member of the k family is most appropriate for the given situation, and it is invalid to

compare k across studies. Conversely, the same PI calculation retains its applicability for

any pair of raters, because the entropy accounting does not rely on a specific error model.

Just as it is meaningful to compare the count of ratings in agreement to the total count of

ratings across a broad range of situations, it is meaningful and valid to compare the

proportion of information in agreement to total individual information across a broad

range of situations.
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Fig. 8. The values of k and PI for the data coding described in Section 5.
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The change to a more sound theoretical basis improves the validity of cross-scenario

comparisons, but does not throw out our intuition about what sort of rater behavior should

be given higher or lower ratings. In the simulation and ACS example, we find a great deal

of similarity in how both old and new indices gauge the adjusted level of agreement, so

intuition about k largely transfers to intuition about PI. Thus, it is reasonable to use PI as a

plug-in replacement for k, with the added benefit of not needing to develop an appropriate

model for Pe for each given situation.

The one key distinction between PI and k is in measuring consistency across categories:

were raters very good with one category but bad with all the others, or did raters do as well

across all categories? The PI statistic rates consistent ratings more highly than equivalent

ratings with the same Po and Pe but less consistency. This advocates leaning toward using

PI in situations where consistency is valuable, and k in situations where the breakdown of

agreement across categories is not relevant.
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