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Multiple imputation is a method specifically designed for variance estimation in the presence
of missing data. Rubin’s combination formula requires that the imputation method is
“proper,” which essentially means that the imputations are random draws from a posterior
distribution in a Bayesian framework. In national statistical institutes (NSI’s) like Statistics
Norway, the methods used for imputing for nonresponse are typically non-Bayesian, e.g.,
some kind of stratified hot-deck. Hence, Rubin’s method of multiple imputation is not valid
and cannot be applied in NSI’s. This article deals with the problem of deriving an alternative
combination formula that can be applied for imputation methods typically used in NSI’s and
suggests an approach for studying this problem. Alternative combination formulas are derived
for certain response mechanisms and hot-deck type imputation methods.
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1. Introduction

Multiple imputation is a method specifically designed for variance estimation in the

presence of missing data, developed by Rubin (1987). Two more recent references with

further discussions and studies are Rubin (1996) and Schafer (1997). The basic idea is to

create m imputed values for each missing value and combine the m completed data sets by

Rubin’s combination formula for variance estimation. For the estimator to be valid,

the imputations must display an appropriate level of variability. In Rubin’s term, the

imputation method is required to be “proper.” In national statistical institutes (NSI’s) the

methods used for imputing for nonresponse very seldom if ever satisfy the requirement of

being “proper.” However, the idea of creating multiple imputations to measure the

imputation uncertainty and use it for variance estimation and for computing confidence

intervals is still of interest. The problem is then that Rubin’s combination formula is no

longer valid with the usual nonproper imputations used by NSI’s. The reason is that the

variability in nonproper imputations is too small and the between-imputation component

must be given a larger weight in the variance estimate. The problem is then to determine

what this weight should be to give valid statistical inference, and also for what kind of

nonresponse mechanisms and estimation problems it is possible to determine a simple
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combination formula not dependent on unknown parameters. This article suggests an

approach for studying this problem.

In Section 2 an approach for determining the combination of the imputed completed

data sets is suggested. Section 3 has three applications with random nonresponse:

(i) estimating a population average from simple random samples using hot-deck

imputation, (ii) estimating the regression coefficient in the ratio model using residual

regression imputation and (iii) estimating the regression coefficient in simple linear

regression with residual regression imputation. Section 4 deals with the general

problem of multiple imputation for stratified samples. In Section 5 we apply the theory

in Section 4 to stratified samples with random nonresponse within strata, covering

(i) estimation of population average using stratified hot-deck imputation and

(ii) estimation of log (odds ratios) in logistic regression with missingness both for

the dependent variable and the explanatory variable. Section 6 takes up the problem of

using the same combination rule for all estimation problems with a given imputation

method and data and response model. A general result for hot-deck imputation and

linear estimates is presented.

2. An Approach for Determining an Alternative Combination Formula for

Variance Estimation in Multiple Imputation

Let s ¼ ð1; : : : ; nÞ denote the full sample, with y ¼ ð y1; : : : ; ynÞ denoting the full

sample data, values of random variable Y1; : : : :; Yn. In the case of sampling from a

finite population under a design model, a renumbering of the selected units has been

performed, of course, and the stochastic nature of y is determined by the sampling

plan. The objective is to estimate some parameter u. The observed data is denoted

by yobs ¼ {ð yi : i [ srÞ; sr}, being the observed part of y and the response sample sr

of size nr.

Let û be the estimator based on the full sample data y, with VarðûÞ estimated by V̂ðyÞ.

For i [ s 2 sr we impute by some method y *
i and let y* denote the complete data

ð yi : i [ sr; y *
i : i [ s 2 srÞ. Based on y*, we have û* ¼ ûð y*Þ and V̂* ¼ V̂ð y*Þ.

Multiple imputation of m repeated imputations leads to m completed data-sets with

m estimates û
*

i ; i ¼ 1; : : : ;m; and related variance estimates V̂
*

i ; i ¼ 1; : : : ;m.

The combined estimate is given by �u* ¼
Pm

i¼1û
*

i =m. The within-imputation variance

is defined as �V* ¼
Pm

i¼1V̂
*

i =m and the between-imputation component is B* ¼Pm
i¼1ðû

*

i 2 �u*Þ2=ðm 2 1Þ: The total estimated variance of �u* is then proposed to be

W ¼ �V* þ k þ
1

m

� �
B* ð1Þ

That is, we need to determine k such that

EðWÞ ¼ Varð �u*Þ ð2Þ

Rubin (1987) has shown that k ¼ 1 can be used with proper imputations, which

essentially means drawing imputed values from a posterior distribution in a Bayesian

framework.
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In general, one has to determine the terms in (2). One way to try and do this is to

use double expectation, conditioning on yobs, that is, EðWÞ ¼ E{EðWjYobsÞ} and

Varð �u*Þ ¼ E{Varð �u*jYobsÞ} þ Var{Eð �u*jYobsÞ}. Typically,

Eð �V*Þ < VarðûÞ ð3Þ

and EðB*jyobsÞ ¼ Varðû*jyobsÞ. Hence, approximately

EðWÞ ¼ VarðûÞ þ EðkÞ þ
1

m

� �
EVarðû*jYobsÞ ð4Þ

Moreover, Varð �u*jyobsÞ ¼ Varðû*jyobsÞ=m and Eð �u*jyobsÞ ¼ Eðû*jyobsÞ. This implies that

Varð �u*Þ ¼ m21E{Varðû*jYobsÞ} þ Var{Eðû*jYobsÞ}. From (3) and (4), Equation (2)

becomes VarðûÞ þ EðkÞEVarðû*jYobsÞ ¼ Var{Eðû*jYobsÞ}, which gives the following

general expression:

EðkÞ ¼
VarEðû*jYobsÞ2 VarðûÞ

EVarðû*jYobsÞ
ð5Þ

For this to be of interest, k must be, at least approximately, determined independently of

unknown parameters. In addition, one needs to check that (3) holds. To illustrate how (5)

can be used we shall in the next section consider three special cases with random

nonresponse.

3. Three Applications for Random Nonresponse

3.1. Estimating Population Average with Hot-deck Imputation

Consider a simple random sample from a finite population of size N, where the aim is to

estimate the population average m of some variable y. We shall assume completely random

nonresponse. In the terminology of Rubin (1987) and Little and Rubin (2002), the

missingness mechanism is said to be MCAR (missing completely at random). We note that

MCAR means that the response indicators R1; : : : ;RN are independent with the same

response probability pr ¼ PðRi ¼ 1Þ. The imputation method is the hot-deck method,

where y *
i is drawn at random from yobs with replacement, and the estimate is the sample

mean. Let �yr be the observed sample mean and ŝ 2
r ¼ 1

nr21

P
i[sr

ð yi 2 �yrÞ
2 the observed

sample variance. Then �Y* is the imputation-based sample mean for the completed sample,

and the combined estimator is given by ��Y* ¼
Pm

i¼1
�Y *

i =m. Let �Ys denote the sample mean

based on a full sample. Then, Varð �YsÞ ¼ s2ð1
n
2 1

N
Þ, with s2 ¼ ðN 2 1Þ21

PN
i¼1ð yi 2 mÞ2

being the population variance. We have further that Eð �Y*jyobsÞ ¼ �yr and

Varð �Y*jyobsÞ ¼ {ðn 2 nrÞ=n2}{ðnr 2 1Þ=nr}ŝ
2
r using that EðY *

i jyobsÞ ¼ �yr and

VarðY *
i jyobsÞ ¼ ŝ2

r ðnr 2 1Þ=nr.

In this case, V̂* ¼ ŝ 2
*
ð1
n
2 1

N
Þ where ŝ 2

*
¼ 1

n21

P
sr
ð yi 2 �y *Þ2 þ

P
s2sr

ðy *
i 2 �y*Þ2

� �
.

It can be shown that Eðŝ 2
*
jyobsÞ ¼ ŝ 2

r 1 2 1
nr

� �
1 þ nr

nðn21Þ

� �
< ŝ 2

r and (3) holds.
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We find, from (5),

EðkÞ ¼

Var �Yr

� �
2 s2 1

n
2

1

N

� �

E
n 2 nr

n2
�

nr 2 1

nr

� �
Eðŝ 2

r jnrÞ

¼

s2 E
1

nr

� �
2

1

N

� �
2 s2 1

n
2

1

N

� �

E
n 2 nr

n2
�

nr 2 1

nr

� �
s2

<
ð1 2 prÞ=pr

1 2 pr

¼
1

pr

which is satisfied approximately, with f ¼ ðn 2 nrÞ=n being the rate of nonresponse, by

letting k ¼ 1=ð1 2 f Þ:

3.2. Estimating the Regression Coefficient in the Ratio Model with Residual Imputation

We shall assume completely random nonresponse as in Section 3.1. We consider a

ratio model, i.e., regression through the origin: Yi ¼ bxi þ 1i, with Varð1iÞ ¼ s2xi;

i ¼ 1, : : : ,n. It is assumed that all xi’s are known, also in the nonresponse sample. The full

data estimator of b is given by b̂ ¼
Pn

i¼1Yi=
Pn

i¼1xi. The unbiased estimator of s 2 is

given by ŝ2 ¼
Pn

i¼1
1
xi
ð yi 2 b̂xiÞ

2=ðn 2 1Þ.

We shall consider residual regression imputation. Let b̂r be the b̂ - estimate based

on observed sample sr. Define the standardized residuals ei ¼ ð yi 2 b̂rxiÞ=
ffiffiffiffi
xi

p
,

for i [ sr. For i [ s 2 sr: draw the value of e*
i at random, with replacement, from the

set of observed residuals ei; i [ sr. The imputed y-value is given by

y *
i ¼ b̂rxi þ e *

i

ffiffiffiffi
xi

p
.

Let X ¼
Pn

i¼1xi;Xr ¼
P

i[sr
xi and Xnr ¼

P
i[s2sr

xi ¼ X 2 Xr. All considerations

from now on are conditional on nr and Xr , and we aim to determine k directly from (5).

The proportion of the x-total in the nonresponse group is denoted as f X ¼ Xnr=X.

We now have b̂* ¼
P

sr
yi þ

P
s2sr

y *
i

� �
=X and ŝ 2

*
¼ 1

n21

�P
sr

1
xi
ð yi 2 b̂*xiÞ

2

þ
P

s2sr

1
xi
ðy *

i 2 b̂*xiÞ
2
�

.

In order to determine k from (5) we need to check the validity of (3) and derive

EVarðb̂*jyobsÞ; VarEðb̂*jyobsÞ and Varðb̂Þ. We note that Varðb̂Þ ¼ s2=X. In Appendix A.1

it is shown that condition (3) holds for moderate and large nr, and that

VarEðb̂*jyobsÞ ¼
s2

Xr

þ
ð1 2 d1Þd2nnrXnr

X 2
�
s2

nr

ð6Þ

EVarðb̂*jyobsÞ ¼
Xnr

X 2
�
s2

nr

ðnr þ d1 2 2Þ ð7Þ

Here, 0 # d1; d2 # 1. From (5), using (6) and (7), we find

k ¼
nrX

2 2 nrX�Xr þ ð1 2 d1Þd2nnrXnrXr

XrXnrðnr þ d1 2 2Þ
<

X

Xr

þ ð1 2 d1Þ d2

nnr

nr

Journal of Official Statistics436



We note that if all xi ¼ 1, then d1 ¼ d2 ¼ 1. Now, with f X ¼ Xnr=X being the

proportion of the x-total in the nonresponse group and f ¼ nnr=n the rate of nonresponse,

we finally get, since typically ð1 2 d1Þd2 < 0,

k <
1

1 2 f X

þ ð1 2 d1Þd2

f

1 2 f
<

1

1 2 f X

for usual x-values and nonresponse rates.

3.3. Estimating the Regression Coefficient in Simple Linear Regression with Residual

Imputation

As in Sections 3.1 and 3.2 the nonresponse mechanism is assumed to be MCAR with

pr ¼ PðRi ¼ 1Þ. The simple linear regression model is assumed: Yi ¼ aþ bxi þ

1i;with Varð1iÞ ¼ s2; i ¼ 1; : : : ; n: All xi’s are assumed to be known. We may assume,

that �x ¼
Pn

i¼1xi=n ¼ 0. Then the full data estimates are given by b̂ ¼
Pn

i¼1xiyi=SSx,

where SSx ¼
Pn

i¼1x 2
i ; and â ¼ �y ¼

Pn
i¼1yi=n: The unbiased estimator of s2 is given by

ŝ2 ¼ 1
n22

Pn
i¼1ð yi 2 â2 b̂xiÞ

2. Let âr; b̂r be the estimates based on the response sample,

âr ¼ �yr 2 b̂r �xr and b̂r ¼
P

i[sr
ðxi 2 �xrÞyi=SSx;r. Here, �yr ¼

P
i[sr

yi=nr, �xr ¼
P

i[sr
xi=nr

and SSx;r ¼
P

i[sr
ðxi 2 �xrÞ

2.

Simple residual imputation is defined as follows: The observed residuals are ej ¼

ð yj 2 âr 2 b̂rxjÞ; for j [ sr. For i [ s 2 sr : draw e *
i at random, with replacement from

ðej; j [ sr). The imputed y- value is given by y *
i ¼ âr þ b̂rxi þ e *

i :

The imputation based estimates are b̂* ¼
P

i[sr
xiyi þ

P
i[s2sr

xiy
*
i

� �
=SSx, â* ¼

ðnr �yr þ ðn 2 nrÞ�y *
nrÞ=n where �y *

nr ¼
P

s2sr
y *

i =ðn 2 nrÞ and ŝ 2
*
¼ 1

n22

P
sr
ð yi2

n
â* 2 b̂*xiÞ

2 þ
P

s2sr
ðy *

i 2 â* 2 b̂*xiÞ
2
o
: It can be shown (see Appendix A.2 for a

summary proof) that Eðŝ 2
*
Þ ¼ s2Eðnr22

nr
� n22f

n22
Þ < s2 where, as in Section 3.1,

f ¼ ðn 2 nrÞ=n. Since Varðb̂Þ ¼ s2=SSx, (3) holds. It is readily seen that Eðb̂*jyobsÞ ¼

b̂r and Varðb̂*jyobsÞ ¼ s 2
e �cr=SSx, where s 2

e ¼
P

sr
e 2

i =nr and cr ¼
P

s2sr
x 2

i =SSx

[ k0; 1l. It can be shown that Eðs 2
e jsrÞ ¼

nr22
nr

s2. Moreover, clearly EðcrÞ ¼ 1 2 pr and

Varðb̂rjsrÞ ¼ s2=SSx;r: It follows, from (5), that

EðkÞ ¼
Eð1=SSx;rÞ2 1=SSx

ð1 2 prÞE{ðnr 2 2Þ=nr}=SSx

<
1=EðSSx;rÞ2 1=SSx

ð1 2 prÞ=SSx

Using the fact that conditional on nr, sr is a simple random sample such that the

response indicators are correlated with Cov(Ri, Rj) ¼ 2 f (1 2 f)/(n 2 1), we find that

EðSSx;rÞ ¼ ð pr 2
12pr

n21
ÞSSx. It follows that, approximately, E(k) ¼ 1

pr2
1
n

< 1=pr and we can

use k ¼ 1/(1 2 f ).

4. Multiple Imputation for Stratified Samples

4.1. Separate Combinations

One way to combine the m completed data sets is to do it separately for each stratum,

i.e., determine a separate k for each stratum. The general setup is then as follows:
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The sample s is divided into H sample strata, s1, : : : , sH. Let yh be the planned full

data from subsample sh of size nh. It is assumed that y1, : : : ,yH are independent. The

observed part of yh is denoted by yh,obs with shr being the response sample from sh of

size nhr. The estimator based on the full sample data is the sum of independent terms,

û ¼
PH

h¼1ûh where ûh is based on the yh. VarðûÞ ¼
PH

h¼1VarðûhÞ is estimated by

V̂ðûÞ ¼
PH

h¼1V̂hð yhÞ where V̂hð yhÞ is the variance estimate of ûh based on yh. For

i [ sh 2 shr we impute by some method y *
i based on yh,obs and let yh

* denote the

complete data ð yh;obs; y *
i ; i [ sh 2 shrÞ. Based on y *

h , we have û
*

h ¼ ûhðy
*
h Þ and V̂

*

h ¼

V̂hð y
*
h Þ: Then the imputation based estimator is given by û* ¼

PH
h¼1û

*

h and

V̂* ¼
PH

h¼1V̂
*

h . Multiple imputation of m repeated imputations leads to m completed

data sets with m estimates for each stratum h, ûh;i; i ¼ 1; : : : ;m and related variance

estimates V̂
*

h;i; i ¼ 1; : : : ;m: The total estimates and related variances are û
*

i ¼PH
h¼1û

*

h;i and V̂
*

i ¼
PH

h¼1V̂
*

h;i; for i ¼ 1, : : : , m. The combined estimate for stratum h

is given by �u *
h ¼

Pm
i¼1û

*

h;i=m. The within-imputation variance for stratum h is �V *
h ¼Pm

i¼1V̂
*

h;i=m and the between-imputation component is given by

B *
h ¼

Pm
i¼1 ðû

*

h;i 2
�u *
h Þ

2=ðm 2 1Þ. Following the same idea as in Section 2, Formula

(1), the total estimated variance of �u *
h is then proposed to be Wh ¼ �V *

h þ ðkh þ
1
m
ÞB *

h .

The combined total estimate is given by �u* ¼
Pm

i¼1û
*

i =m ¼
PH

h¼1
�u *
h . It follows that the

total estimated variance of �u* can be expressed as

Wsep ¼
XH

h¼1

Wh ¼ �V* þ
XH

h¼1

kh þ
1

m

� �
B *

h ð8Þ

where �V* ¼
Pm

i¼1V̂
*

i =m ¼
PH

h¼1
�V *

h . Provided (3) holds for each stratum h,

Eð �V *
h Þ < VarðûhÞ ð9Þ

we have from (5) that kh must satisfy

EðkhÞ ¼
VarEðû

*

h jYh;obsÞ2 VarðûhÞ

EVarðû*
h jYh;obsÞ

ð10Þ

The combination Formula (8) is an alternative to the usual combination Formula (1),

especially useful when we get simple expressions for kh but not for k. The next section

develops an expression for k in this situation.

4.2. An Overall Combination Formula

Now let W be given by (1). We shall determine the between-imputation factor k. Since

EðWÞ ¼ EðWsepÞ we have

E
XH

h¼1

kh þ
1

m

� �
B *

h

( )
¼ E k þ

1

m

� �
B* ð11Þ

Here, B* ¼ 1
m21

Pm
i¼1ðû

*

i 2 �u*Þ2 ¼ 1
m21

Pm
i¼1

P
hðû

*

h;i 2
�u *
h Þ

n o2

. Note that EðB*jyobsÞ ¼

E
PH

h¼1B *
h jyobs

� �
, since EðB*jyobsÞ ¼ Varðû*jyobsÞ ¼

PH
h¼1Varðû

*

h jyobsÞ and EðB *
h jyobsÞ ¼

Varðû
*

h jyobsÞ.
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Hence, the identity (11) becomes E{
PH

h¼1khEðB *
h jYobsÞ} ¼ E{kEðB*jYobsÞ}: This

gives us the solution k ¼
PH

h¼1khEðB *
h jyobsÞ=EðB*jyobsÞ if we want to use the usual

combination Formula (1) and hence

k ¼

XH

h¼1

khVarðû
*

h jyobsÞ

Varðû*jyobsÞ
¼
XH

h¼1

kh�
Varðû

*

h jyobsÞ

Varðû*jyobsÞ
ð12Þ

a weighted average of kh. We get a simple expression for k only when all kh are equal,

say kh ¼ k0. Then k ¼ k0.

5. Four Applications to Stratified Samples and Random Nonresponse within Strata

5.1. Estimating Population Average from Stratified Sample with Stratified Hot-deck

Imputation

Consider stratified simple random samples from a finite population of size N, with H strata

of sizes Nh, h ¼ 1, : : : ,H. The aim is to estimate the population average m of some

variable y. We assume completely random nonresponse within each stratum, denoted as

MAR (missing at random) by Rubin (1987) and Little and Rubin (2002). This means

that the response indicators in stratum h, Rh;1; : : : ;Rh;Nh
are independent with

phr ¼ PðRh;i ¼ 1Þ. The imputation method is stratified hot-deck. Let yh,obs be the observed

part from the response sample shr of size nhr from stratum h, yh;obs ¼ ð yi : i [ shrÞ. Then

an imputed value y *
i in stratum h is drawn at random from yh,obs. The estimator based

on the full sample data is the usual stratified weighted average
�Ystrat ¼

PH
h¼1Nh �yh=N ¼

PH
h¼1vh �yh. Here, vh ¼ Nh=N and �yh ¼

P
sh

yi=nh, where sh is

the sample from stratum h and nh ¼ jshj. Then Varð �YstratÞ ¼
PH

h¼1v 2
hs

2
h ð

1
nh
2 1

Nh
Þ, with

s 2
h ¼

i[Uh

P
ð yi 2 mhÞ

2=ðNh 2 1Þ being the population variance in stratum h. Here Uh

is stratum population h and mh is the average in Uh.

Let �yhr be the observed sample mean from stratum h and ŝ 2
hr ¼

1
nhr21

P
i[shr

ð yi 2 �yhrÞ
2

the observed sample variance. The imputation-based estimator is given by �Y *
strat ¼PH

h¼1Nh �y
*
h =N where �y *

h ¼
P

shr
yi þ

P
sh2shr

y *
i

� �
=nh ¼ nhr �yhr þ

P
sh2shr

y *
i

� �
=nh. Let

the m imputation replicates of �Y *
strat be denoted by �Y *

strat;i for i ¼ 1, : : : , m. The combined

estimator is given by Y��
*

strat ¼
Pm

i¼1
�Y *

strat;i=m:

5.1.1. Separate Strata Combinations

It follows from Section 3.1 that kh ¼ 1=ð1 2 f hÞ, where f h ¼ ðnh 2 nhrÞ=nh is the rate of

nonresponse in stratum h. The combination formula for the variance estimate of ��Y
*

strat

becomes, from (8),

Wsep ¼ �V * þ
XH

h¼1

1

1 2 f h

þ
1

m

� �
B *

h

Here, �V* ¼
PH

h¼1
�V *

h and �V *
h is the average of the m values of the imputation-based variance

estimate V̂
*

h ¼v 2
h ŝ

2
h*

1
nh
2 1

Nh

� �
where ŝ 2

h*
¼ 1

nh21

P
shr
ð yi 2 �y *

h Þ
2 þ

P
sh2shr

ðy *
i 2 �y *

h Þ
2

� �
.
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5.1.2. Overall Combination Formula. Determination of k in (1)

From (12) we need to determine Varðvh
�Y *

h jyobsÞ and Varð �Y *
s t ra tjyobsÞ ¼PH

h¼1Var ðvh
�Y *

h jyobsÞ. Then

k ¼
XH

h¼1

1

1 2 f h

�
Varðvh

�Y *
h jyobsÞ

Varð �Y *
stratjyobsÞ

Now, Eð �Y *
h jyh;obsÞ ¼ �yhr and Varð �Y *

h jyh;obsÞ ¼ {ðnh 2 nhrÞ=n 2
h }�{ðnhr 2 1Þ=nhr}ŝ

2
hr <

f hŝ
2
hr=nh. Hence we can determine k as

k ¼
XH

h¼1

1

1 2 f h

�
f hv 2

h ŝ
2
hr=nhXH

k¼1

f kv 2
k ŝ

2
kr=nh

If the stratum sizes Nh are large then we can let V̂ðvh
�YhÞ ¼ v 2

h ŝ
2
hr=nh. Let also

bh ¼ f hV̂ðvh
�YhÞ=

PH
k¼1f kV̂ðvk

�YkÞ. Then

k ¼

XH

h¼1

V̂ðvh
�YhÞf h

1

1 2 f hXH

h¼1

V̂ðvh
�YhÞf h

¼
XH

h¼1

bh�
1

1 2 f h

ð13Þ

Since
PH

h¼1bh ¼ 1, we see that k is a weighted average of the inverse of the response

rates. If all fh ¼ f, the overall nonresponse rate, we get as for simple random sample

that k ¼ 1/(1 2 f). Otherwise, a stratum response rate 1 2 fh has large weight if either

the nonresponse rate is large and/or the estimated variance of vh
�Yh is large.

5.1.3. An Alternative Expression for k in (1)

By directly applying (5) we can get an alternative expression for k. Given yobs, the imputed

sample means �Y *
h are independent, which implies that Eð �Y *

stratjyobsÞ ¼
PH

h¼1Nh �yhr=N ¼

�ystrat;r and Varð �Y *
stratjyobsÞ <

PH
h¼1v 2

h�f hŝ
2
hr=nh: Just like in Section 3.1, (3) holds. From

(5) we get

EðkÞ <
Varð �Ystrat;rÞ2 Varð �YstratÞ

E
h

X
v 2

h�f hŝ
2
hr=nh

 !

¼

XH

h¼1

v 2
hs

2
h E

1

nhr

� �
2

1

Nh

� �
2
XH

h¼1

v 2
hs

2
h

1

nh

2
1

Nh

� �
XH

h¼1

v 2
h�E

f h

nh

Eðŝ 2
hrjnhrÞ

� 	

<

XH

h¼1

v 2
hs

2
h

1 2 phr

nh

�
1

phrXH

h¼1

v 2
hs

2
h

1 2 phr

nh

¼

XH

h¼1

v 2
h

s 2
h

nhr

Eð f hÞ
1 2 f h

Eð1 2 f hÞXH

h¼1

v 2
h

s 2
h

nhr

Eð f hÞð1 2 f hÞ

ð14Þ
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Now, Varð �YhrÞ ¼ EVarð �YhrjnhrÞ ¼ s 2
h Eð1=nhrÞ. Let V̂ðvh

�YhrÞ ¼ v 2
h ŝ

2
hr=nhr. Then we see

that the expression for E(k) is satisfied approximately, if the stratum sizes Nh are large, by

letting

1

k
¼

XH

h21

ð1 2 f hÞf hV̂ðvh
�YhrÞ

XH

h21

f hV̂ðvh
�YhrÞ

¼
XH

h21

ahð1 2 f hÞ ð15Þ

where the weights ah ¼ f hV̂ðvh
�YhrÞ=

PH
k¼1f kV̂ðvk

�YkrÞ. Since
PH

h¼1ah ¼ 1, we see

that 1/k is a weighted average of the response rates. If all fh ¼ f, the overall

nonresponse rate, we have, as shown in Section 5.1.2, that k ¼ 1/(1 2 f ). As seen in

Section 5.1.2, we note also in Expression (15) that a stratum response rate 1 2 f h has

large weight if either the nonresponse rate is large and/or the estimated variance of

vh
�Yhr is large. The estimate of the total based on the response sample is given by

�Ystrat;r ¼
P

h vh
�Yhr: We obtain Formula (13) for k by noting from (14) that we have

EðkÞ <
PH

h¼1 Varðvh
�YhÞEð f hÞ

1
Eð12f hÞ

=
PH

h¼1Varðvh
�YhÞEð f hÞ. Then we see that the

expression for E(k) is satisfied approximately, if the stratum sizes Nh are large, by

letting k be given by (13).

5.2. Logistic Regression with Binary Explanatory Variable. Estimating Log(Odds Ratio)

The variables Y1; : : : ; Yn are independent 0/1 -variables, and we have explanatory

0/1-variable x with fixed known values x1; : : : ; xn. The class probabilities are given

by p1 ¼ PðYi ¼ 1jxi ¼ 1Þ and p0 ¼ PðYi ¼ 1jxi ¼ 0Þ. We assume a MAR(missing

at random) model for the response variables R1; : : : ;Rn, with PðRi ¼ 1jxi ¼ 1Þ ¼ p1r

and PðRi ¼ 1jxi ¼ 0Þ ¼ p0r. We can reparametrize the model in a logit version,

log {PðY ¼ 1jxÞ=PðY ¼ 0jxÞ} ¼ aþ bx, where a ¼ log {p0=ð1 2 p0Þ} and b ¼

log
p1=ð12p1Þ

p0=ð12p0Þ
¼ log(odds ratio). The aim is to estimate b: Let s ¼ (1, : : : , n) denote the

full sample with strata s1 ¼ {i [ s : xi ¼ 1} and s0 ¼ {i [ s : xi ¼ 0}. The sizes of s1 and

s0 are denoted by n1 and n0. We note that n1 ¼
Pn

i¼1xi ¼ X and n0 ¼ n – X. The response

samples in the strata are s1r ¼ {i [ s1 : Ri ¼ 1} and s0r ¼ {i [ s0 : Ri ¼ 1} with total

response sample being sr of size nr. Let also n1r ¼ js1rj and n0r ¼ js0rj. We see that

n1r ¼
P

sr
xi ¼ Xr and n0r ¼ nr 2 Xr. The data from sr can be represented as follows where

nijr denotes the number of observations with x ¼ i and y ¼ j: see (Table 1).

We then have the maximum likelihood estimates (MLE)p̂1r ¼ n11r=n1r and p̂0r ¼

n01r=n0r and MLE of b equals b̂r ¼ log
p̂1r=ð12p̂1rÞ

p̂0r=ð12p̂0rÞ
¼ log ðn11rn00r=n10rn01rÞ. Similarly, the

Table 1. The observed data and nonresponse totals for the two classes

x\y y ¼ 0 y ¼ 1 Totals Nonresponse

x ¼ 0 n00r n01r n0r n0 2 n0r

x ¼ 1 n10r n11r n1r n1 2 n1r
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estimator based on the full sample is given by b̂ ¼ log
p̂1=ð12p̂1Þ

p̂0=ð12p̂0Þ
¼ log ðn11n00=n10n01Þwith

obvious analogue notation. We can express this estimate as b̂ ¼

log {p̂1=ð1 2 p̂1Þ} 2 log {p̂0=ð1 2 p̂0Þ} ¼ b̂1 2 b̂0, of the same form as in Section 4.1.

We also have that b̂1 and b̂0 are independent based on the separate sample strata s1 and s0.

For large n0, n1, b̂ is approximately Nðb;s 2

b̂
Þ where s 2

b̂
¼ {n1p1ð1 2 p1Þ}

21þ

{n0p0ð1 2 p0Þ}
21. So, approximately, Varðb̂1Þ ¼ 1={n1p1ð1 2 p1Þ} and Varðb̂0Þ ¼

1={n0p0ð1 2 p0Þ} and an estimate of Varðb̂Þ is given by

V̂ðb̂Þ ¼
1

n1p̂1ð1 2 p̂1Þ
þ

1

n0p̂0ð1 2 p̂0Þ
¼

1

n11

þ
1

n10

� �
þ

1

n01

þ
1

n00

� �

such that V̂ðb̂Þ ¼ V̂1 þ V̂0, where V̂1 ¼ 1
n11

þ 1
n10

� �
and V̂0 ¼ 1

n01
þ 1

n00

� �
are the variance

estimates of b̂1 and b̂0, respectively.

We shall consider the following imputation method: For each missing value in

s1 – s1r, the imputed value y* is drawn at random from the estimated distribution of Y

given x ¼ 1:

y* ¼ 1 with probability p̂1r ¼ n11r=n1r and y* ¼ 0 with probability 1 2 p̂1r:

The same imputation method is used for s0 – s0r with y* drawn at random from the

estimated distribution of Y given x ¼ 0. This is the same as stratified hot-deck

imputation, imputed values are drawn at random, with replacement, from y1;obs ¼ ð yi :

i [ s1rÞ and y0;obs ¼ ð yi : i [ s0rÞ.

The imputed values in s – sr can be represented in the same form as the original data

where now n *
ij denotes the number of imputed values with x ¼ i and y ¼ j: see (Table 2).

The imputation-based estimate of p1 is given by p̂ *
1 ¼ ðn11r þ n *

11Þ=n1 such

that the imputation-based estimate b̂
*

1 ¼ log {p̂ *
1 =ð1 2 p̂ *

1 Þ} ¼ log {ðn11r þ n *
11Þ=

ðn1 2 n11r 2 n *
11Þ}. Similarly, the imputation-based estimates for b0 and b are given by

b̂
*

0 ¼ log {ðn01r þ n *
01Þ=ðn0 2 n01r 2 n *

01Þ} and b̂* ¼ b̂
*

1 2 b̂
*

0 .

The m repeated imputations lead to m estimates b̂
*

1;i; b̂
*

0;i; b̂
*

i , for i ¼ 1, : : : , m. The

combined estimate is given by �b* ¼
Pm

i¼1b̂
*

i =m ¼
Pm

i¼1b̂
*

1;i=m 2
Pm

i¼1b̂
*

0;i=m ¼
�b *
1 2 �b *

0 . The imputed variance estimate V̂* for b̂ is given by

V̂* ¼
1

n11r þ n *
11

þ
1

n10r þ n *
10

þ
1

n01r þ n *
01

þ
1

n00r þ n *
00

ð16Þ

We see that EðV̂*jyobsÞ < 1
n1p̂1rð12p̂1rÞ

þ 1
n0p̂0rð12p̂0rÞ

and (3) hold. We also note that (9) holds

separately for each class.

Table 2. The imputed totals for the two classes

x\y y ¼ 0 y ¼ 1 Totals

x ¼ 0 n*
00 n*

01 n0 2 n0r

x ¼ 1 n*
10 n*

11 n1 2 n1r

Journal of Official Statistics442



5.2.1. Separate Classes Combination

Let us first use the approach in Section 4.1 and determine separate k1, k0 for the two

classes. Consider first stratum s1 ¼ {i [ s : xi ¼ 1}. In Appendix A.3 it is shown that

Eðb̂
*

1 jy1;obsÞ< b̂1r and Varðb̂
*

1 jy1;obsÞ < f 1ð1 2 f 1ÞV̂ðb̂1rÞ. From (10), we find approxi-

mately:

Eðk1Þ ¼
Varðb̂1rÞ2 Varðb̂1Þ

E{ f 1ð1 2 f 1ÞV̂ðb̂1rÞ}
¼

E Varðb̂1rjn1rÞ2 Varðb̂1Þ

E{ f 1ð1 2 f 1ÞE ½V̂ðb̂1rÞjn1r�}

<

1

p1ð1 2 p1Þ
E

1

n1r

� �
2

1

n1

� �

E f 1ð1 2 f 1Þ
1

n1rp1ð1 2 p1Þ

<
ð1 2 p1rÞ=p1r

1 2 p1r

¼
1

p1r

which is satisfied approximately by letting k1 ¼ 1=ð1 2 f 1Þ. In exactly the same way, we

find that k0 ¼ 1=ð1 2 f 0Þ where f 0 ¼ ðn0 2 n0rÞ=n0 is the rate of nonresponse in stratum

s0. The between-imputation component for b̂
*

1 is given by B *
1 ¼ 1

m21

Pm
i¼1ðb̂

*

1;i 2
�b *
1 Þ

2 and

likewise B *
0 is the between-imputation component for b̂

*

0 . Then an estimated variance of

the combined imputation-based estimate �b* for b is given by, from (8),

Wsep ¼ �V* þ
X1

x¼0

1

1 2 f x

þ
1

m

� �
B *

x

where �V* is the average of m replicates of the imputed variance estimate V̂* given by (16).

5.2.2. Overall Combination Formula. Determination of k in (1)

Since Varðb̂
*

1 jy1;obsÞ ¼ f 1ð1 2 f 1ÞV̂ðb̂1rÞ and Varðb̂
*

0 jy0;obsÞ ¼ f 0ð1 2 f 0ÞV̂ðb̂0rÞ, we have

from (12)

k ¼
1

1 2 f 1

�
f 1ð1 2 f 1ÞV̂ðb̂1rÞX1

x¼0

f xð1 2 f xÞV̂ðb̂xrÞ

þ
1

1 2 f 0

�
f 0ð1 2 f 0ÞV̂ðb̂0rÞX1

x¼0

f xð1 2 f xÞV̂ðb̂xrÞ

ð17Þ

Var ðb̂1Þ < ðn1r=n1Þ Varðb̂1r j n1rÞ ¼ ð1 2 f 1Þ Varðb̂1rjn1rÞ. Similarly, Varðb̂0Þ <
ð1 2 f 0Þ Varðb̂0rjn0rÞ. We can therefore estimate the variance of the full sample estimates

b̂1 and b̂0 by V̂ðb̂1Þ ¼ ð1 2 f 1ÞV̂ðb̂1rÞ and V̂ðb̂0Þ ¼ ð1 2 f 0ÞV̂ðb̂0rÞ, respectively. Then

k ¼
1

1 2 f 1

�
f 1V̂ðb̂1ÞX1

x¼0

f xV̂ðb̂xÞ

þ
1

1 2 f 0

�
f 0V̂ðb̂0ÞX1

x¼0

f xV̂ðb̂xrÞ

¼
1

1 2 f 1

�b1 þ
1

1 2 f 0

�ð1 2 b1Þ

Just like in Section 5.1.2 we see that k is a weighted average of the inverse of the response

rates. If all fh ¼ f, the overall nonresponse rate, we get that k ¼ 1/(1 2 f). Otherwise, a

stratum response rate 1 – fx has large weight if either the nonresponse rate is large and/or

the estimated variance of b̂x is large.
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Alternatively, from (17), 1=k ¼
P1

x¼0ð1 2 f xÞ f xV̂ðb̂xrÞ=
P1

x¼0 f xV̂ðb̂xrÞ ¼
P1

x¼0

axð1 2 f xÞ, where the weights are ax ¼ f xV̂ðb̂xrÞ={ f 1V̂ðb̂1rÞ þ f 0V̂ðb̂0rÞ}. So we can

alternatively express 1/k as a weighted average of the response rates.

If the aim is to estimate p1 and p0 we obtain, of course, k ¼ 1/(1 2 f1) for p1 and

k ¼ 1= (1 2 f0) for p0.

5.3. Logistic Regression with Categorical Explanatory Variable. Estimating

Log(Odds Ratios)

If the explanatory x is categorical defining, say, H classes, we can generalize the results as

follows:

Let ph ¼ PðY ¼ 1jx ¼ hÞ, h ¼ 0, : : : , H–1. Logistic regression defining the

categories is done by introducing H 2 1 binary explanatory variables x1, : : : , xH-1

where xh ¼ 1 if observation belongs to Class h, and 0 otherwise for h ¼ 1, : : : , H –

1. Then an observation belongs to Class 0 if x1 ¼ x2 ¼ : : : ¼ xH21 ¼ 0. The logit

version of the model becomes, with x ¼ ðx1; x2; : : : ; xH21Þ : log {PðY ¼ 1jxÞ=

PðY ¼ 0jxÞ} ¼ aþ b1x1 þ b2x2 þ : : :þ xH21bH21. We see that a ¼ log p0

12p0
and

bh ¼ log
ph=ð12phÞ

p0=ð12p0Þ
¼ log (odds ratio) for Class h versus Class 0. Estimating bh by

multiple imputation is done in exactly the same manner as for binary x, with Class h

replacing Class 1.

5.4. Logistic Regression with Missing Values in a Binary Explanatory Variable

The situation is as in Section 5.2, except that y is fully observed in s, y ¼ ð y1; : : : ; ynÞ, and

we have missing values for the x-variable. Y1; : : : ; Yn are independent 0/1-variables and

we have an explanatory 0/1-variable x with fixed values x1; : : : ; xn, some of which are

missing. The response variables indicate missingness of the xi’s but now with MAR model

PðRi ¼ 1jyi ¼ 1Þ ¼ q1r and PðRi ¼ 1jyi ¼ 0Þ ¼ q0r.

Otherwise, the model is the same as in Section 5.2 with class prob-

abilities: p1 ¼ PðYi ¼ 1jxi ¼ 1Þ and p0 ¼ PðYi ¼ 1jxi ¼ 0Þ, and the logit version

log {PðY ¼ 1jxÞ= PðY ¼ 0jxÞ} ¼ aþ bx with b ¼ log
p1=ð12p1Þ

p0=ð12p0Þ
. The aim is still to

estimate b.

Let now s1 ¼ {i [ s : yi ¼ 1} and s 0 ¼ {i [ s : yi ¼ 0} with sizes n+
1 and n+

0. The

response samples in the strata are s1
r ¼ {i [ s1 : Ri ¼ 1} and s0

r ¼ {i [ s0 : Ri ¼ 1} with

total response sample being sr ¼ {i [ s : Ri ¼ 1} ¼ s1
r < s0

r . The data can now be

represented as before, except that nonresponse totals are for each y-stratum. See Table 3.

The MLE p̂1r; p̂0r; b̂r, based on sr are the same as before, as is the full sample

estimate b̂. The imputation method is stratified hot-deck for the y-strata. For each

Table 3. The observed data and nonresponse totals for the y-strata

x\y y ¼ 0 y ¼ 1

x ¼ 0 n00r n01r

x ¼ 1 n10r n11r

Totals n+
0r n+

1r

Nonresponse n+
0 2 n+

0r n+
1 2 n+

1r
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missing value of x in s1 2 s1
r , the imputed value x* is drawn at random from

x1;obs ¼ ðxi : i [ s1
r Þ. Similarly, imputed values in s0 2 s0

r are drawn at random from

x0;obs ¼ ðxi : i [ s0
r Þ. The imputed values in s – sr can be represented in the same

form as the original data where now n *
ij denotes the number of imputed values with

x ¼ i and y ¼ j. See Table 4.

We need to find an approximate expression for the expectation and variance of b̂*, now

denoted b̂*, conditional on the observed data. We defer to Appendix A.4 to show that

Varðb̂*jy; xobsÞ < f 1ð1 2 f 1Þð 1
n11r

þ 1
n01r

Þ þ f 0ð1 2 f 0Þð 1
n10r

þ 1
n00r

Þ and Eðb̂*jy; xobsÞ < b̂r.

Here f 1 ¼ ðn+
1 2 n+

1rÞ=n+
1 is the nonresponse rate in Stratum s1 and f 0 ¼ ðn+

0 2 n+
0rÞ=n+

0

the nonresponse rate in s0. We note that q̂1r ¼ n+
1r=n+

1 ¼ 1 2 f 1 and q̂0r ¼ n+
0r=n+

0. So the

denominator in (5) becomes

E f 1 1 2 f 1
� � 1

n11r

þ
1

n01r

� �
þ f 0 1 2 f 0

� � 1

n10r

þ
1

n00r

� �� 	
ð18Þ

The numerator in (5) equals, as before, Varðb̂rÞ2 Varðb̂Þ, and we have approximately

Varðb̂rÞ2 Varðb̂Þ ¼
1

n1p1ð1 2 p1Þ
�

1 2 p1r

p1r

þ
1

n0p0ð1 2 p0Þ
�

1 2 p0r

p0r

ð19Þ

where, as before, p1r ¼ PðRi ¼ 1jxi ¼ 1Þ and p0r ¼ PðRi ¼ 1jxi ¼ 0Þ. We need alternative

estimates of p1r and p0r. Since p1r ¼ p1q1r þ ð1 2 p1Þq0r; we have

p̂1r ¼ p̂1ð1 2 f 1Þ þ ð1 2 p̂1Þð1 2 f 0Þ. Similarly, p̂0r ¼ p̂0ð1 2 f 1Þ þ ð1 2 p̂0Þð1 2 f 0Þ.

We can also use that n1p̂1r < n1r and n0p̂0r < n0r. From (18) and (19) it follows that we

can use

k ¼

1

n11r

þ
1

n10r

� �
p̂1rf

1 þ 1 2 p̂1rð Þf 0
� �

þ
1

n01r

þ
1

n00r

� �
p̂0rf

1 þ 1 2 p̂0rð Þf 0
� �

f 1 1 2 f 1
� � 1

n11r

þ
1

n01r

� �
þ f 0 1 2 f 0

� � 1

n01r

þ
1

n00r

� �

¼

f 1 1

n10r

þ
1

n00r

� �
þ f 0 1

n11r

þ
1

n01r

� �

f 1 1 2 f 1
� � 1

n11r

þ
1

n01r

� �
þ f 0 1 2 f 0

� � 1

n01r

þ
1

n00r

� �

We note that if f 1 ¼ f 0 ¼ f, then k ¼ 1/(1 – f). Otherwise, we can express 1/k as a

linear combination of the response rates (1– f 1, 1– f 0). Let w1 ¼ 1
n11r

þ 1
n01r

and

w0 ¼ 1
n10r

þ 1
n00r

. Then

Table 4. The imputed totals for the y-strata

x\y y ¼ 0 y ¼ 1

x ¼ 0 n*
00 n*

01

x ¼ 1 n*
10 n*

11

Totals n+
0 2 n+

0r n+
1 2 n+

1r
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1

k
¼ a1ð1 2 f 1Þ þ a0ð1 2 f 0Þ

where a1 ¼ f 1w1=ð f 1w0 þ f 0w1Þ and a0 ¼ f 0w0=ð f 1w0 þ f 0w1Þ. We note that in general

a1 þ a0 – 1.

6. Question: CanWe Use the Same Combination Formula for a Given Situation and

Imputation Method for All Scientific Estimands?

We try here to give a general approach to this problem. Let s denote the full sample and y

the full sample data. There are three possible cases:

1. s is a sample from a finite population and y ¼ ð yi : i [ sÞ with design model. Then

the observed stochastic variables are (s, sr) and yobs is equivalent to (s, sr).

2. Same situation as in Case 1, but with a population model. Here, the observed

stochastic variables are yobs ¼ {ð yi : i [ srÞ; sr; s}.

3. An observational study where s ¼ ð1; : : :; nÞ and y ¼ ð y1; : : : ; ynÞ is modeled. Then

the observed stochastic variables are yobs ¼ {ð yi : i [ srÞ; sr}.

As an illustration we consider the case with nonresponse MCAR (the response variables

Ri are independent with pr ¼ P(Ri ¼ 1)) and hot-deck imputation. The case in Section 3.1

with a simple random sample is a special Case 1, and we found that for estimating the

population mean with the sample mean,

k ¼
1

1 2 f
; with f ¼ ðn 2 nrÞ=n ¼ 1 2 p̂r; the nonresponse rate ð20Þ

Restricting attention to linear estimates where the imputed estimator û* estimates the same

parameter as û, we will show that (20) holds in general for all the three cases above when

the nonresponse mechanism is MCAR and we have hot-deck imputation. First, however,

we consider the question whether hot-deck imputation always gives valid imputation-

based estimators such that this value of k can be used. The answer, in general, is NO. One

obvious requirement for an imputation method is that, at least approximately,

Eðû*jy; sÞ ¼ û ð21Þ

the imputed estimator should estimate the same parameter as û. That is to say that

conditional on the full planned data, the expected value of the imputed estimator should

equal the full sample estimate. In Case 1, y is superfluous when s is given and (21) says

that Eðû*jsÞ ¼ û. In Case 3, s is not stochastic and therefore unnecessary, while in Case 2

we need both y and s.

We consider estimates that are linear in ( yi : i [ s). The following results, proved in

Appendix A.5, characterize linear estimates satisfying (21) with hot-deck imputation and

show that for such estimators, k ¼ 1/(1 – f ).

Lemma. Assume û ¼
P

i[s aiðsÞyi. Then Eðû*jy; sÞ ¼ û if and only if aiðsÞ ¼ aðsÞ

for all i [ s.

That is û ¼ aðsÞ
P

i[s yi ¼ naðsÞ�ys.

Remark. In Case 3, s carries no information and ai(s) ¼ ai.
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Theorem. Consider û ¼
P

i[s aiðsÞyi and Eðû*jy; sÞ ¼ û. Assume (3) holds. Then

EðkÞ ¼
Eð1=p̂rÞ21

12pr2
1
n
{Eð1=p̂rÞ21}

< 1
pr

and k ¼ 1=ð1 2 f Þ can be applied.

Let us look at some special cases:

1. With aðsÞ ¼ 1=n, same as in Section 3.1, we see that (21) holds.

2. Regression coefficient for regression through the origin, b̂ ¼
Pn

i¼1yi=
Pn

i¼1xi. Here

(21) is satisfied with a ¼ 1=
Pn

i¼1xi, and hence k ¼ 1=ð1 2 f Þ.

3. A case where (21) does not hold is estimating the regression coefficient in usual linear

regression where b̂ ¼
P

ðxi 2 �xÞyi=
P

ðxi 2 �xÞ2. Here, ai ¼ ðxi 2 �xÞ=
Pn

j¼1ðxj 2 �xÞ2,

not independent of i. One can show that Eðb̂*jyÞ < prb̂ (exact npr21
n21

b̂). Hence,

for regular regression problems hot-deck imputation cannot work. We note that from

Section 3.3 one can use k ¼ 1/(1 2 f ) with residual imputation.

Obviously, when y is correlated to known x in a nonresponse group, one should utilize this

in the imputations regardless of the estimation problems under consideration.

7. Discussion

We have shown that it is possible to develop a general theory for multiple imputation that

does not require that the imputations are random draws from a Bayesian posterior

distribution. For stratified samples with stratified estimates there is a need for further

studies on which variance estimate to apply, either (8) using separate stratum

combinations given by (10) or the overall combination (1) with k given by (12).

We see from the cases presented in this article that the non-Bayesian MI formula depends

typically on a measure of the proportion of missing information in the response sample as

compared to the full sample. In the simplest case in Section 3.1 the missing information is

measured by 1/(1 – f ), the inverse of the response rate. The higher this factor is, the more

weight on the between-imputation component. In the ratio model in Section 3.2 with

residual hot-deck regression imputation, the measure of missing information is the inverse

of the proportion of the x-total in the response sample compared to the full sample. We note

that in simple linear regression with the variance term independent of the explanatory

variable, the missing information is again measured by 1/(1 – f ). A suggestion for further

study is to examine the possibility of generalizing this result by defining relevant measures

of missing information, using the basic defining formula (5) for determining k.

It also remains to study the performance of related confidence intervals. Some

preliminary simulation studies not included in this article show that for simple linear

regression with residual imputation and k ¼ 1/(1 – f ), confidence intervals of the form
�b* ^ za=2

ffiffiffiffiffi
W

p
(where za=2 is the upper a/2-point in the N(0,1)-distribution) achieve

approximately the nominal level (1 – a).

A. Appendix

A.1. Multiple Imputation for the Ratio Model in Section 3.2

Consider first the Condition (3) which is equivalent to Eðŝ 2
*
Þ < s2. Let

b̂nr ¼
P

s2sr
y *

i =Xnr, and ŝ 2
nr ¼

s2sr

P
1
xi
ð y *

i 2 b̂nrxiÞ
2=ðnnr 2 1Þ. Here, nnr ¼ n – nr.
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Then one can express ŝ 2
*

in the following way:

ŝ 2
*
¼

1

n 2 1
ðnr 2 1Þŝ 2

r þ ðnnr 2 1Þŝ 2
nr þ

XrXnr

X
ðb̂r 2 b̂nrÞ

2

� �

In this case, EðY *
i jyobsÞ ¼ b̂rxi þ �e

ffiffiffiffi
xi

p
, where �e ¼

P
sr

ei=nr, and VarðY *
i jyobsÞ ¼ xis

2
e ,

where s 2
e ¼ 1

nr

P
sr
ðei 2 �eÞ2. Using this, it can be shown that

Eðŝ 2
*
Þ ¼ s2 1 2

c1

n 2 1
2

4c2

ðn 2 1Þnr

2 c3f
n 2 1

n�nr

� �

where c1; c2; c3 lie in the interval (0,1). Hence, Eðŝ 2
*
Þ < s2 and (3) holds for moderate and

large nr.

Next, we look at Varðb̂*jyobsÞ and Eðb̂*jyobsÞ. We see that b̂* ¼ ðb̂rXr þ b̂nrXnrÞ=X,

and Eðb̂nrjyobsÞ ¼ b̂r þ ð�e=XnrÞ
P

s2sr

ffiffiffiffi
xi

p
and Varðb̂nrjyobsÞ ¼ s 2

e =Xnr. This gives us

Eðb̂*jyobsÞ ¼ b̂r þ ð�e=XÞ
P

s2sr

ffiffiffiffi
xi

p
and Varðb̂*jyobsÞ ¼ ðXnr=X 2Þs 2

e : It follows that

VarEðb̂*jyobsÞ ¼ Varðb̂rÞ þ

X
s2sr

ffiffiffiffi
xi

p
 !2

X 2
Varð�eÞ þ 2

X
s2sr

ffiffiffiffi
xi

p

X
Covðb̂r; �eÞ

Now, Covðb̂r; �eÞ ¼ 0. Using Cauchy-Schwarz inequality,
�P

aibi

�2
#
P

a 2
i

P
b 2

i with

ai ¼
ffiffiffiffi
xi

p
and bi ¼ 1, we see that

�Pn
i¼1

ffiffiffiffi
xi

p �2
# nX: It follows that Varð�eÞ ¼

ðs2=nrÞ
�
1 2

�P
sr

ffiffiffiffi
xi

p �2
=nrXr

�
¼ ð1 2 d1Þs

2=nr, 0 # d1 # 1; and
�P

s2sr

ffiffiffiffi
xi

p �2
=X 2 ¼

d2nnrXnr=X 2; 0 # d2 # 1: Hence,

VarEðb̂*jyobsÞ ¼
s2

Xr

þ
ð1 2 d1Þd2nnrXnr

X 2
�
s2

nr

Next we find that Eðs 2
e Þ ¼ s2ð1 2 1

nr
Þ2 Varð�eÞ ¼ s2ðnr þ d1 2 2Þ=nr, which gives us

EVarðb̂*jyobsÞ ¼
Xnr

X 2
�
s2

nr

ðnr þ d1 2 2Þ

A.2. Multiple Imputation in Simple Linear Regression in Section 3.3. A Summary

Proof of:

Eðŝ 2
*
Þ ¼ s2E

� nr 2 2

nr

�
n 2 2f

n 2 2

�
; where f ¼ ðn 2 nrÞ=n

ŝ2
* ¼

1
n22

ðSSr
eþSSnr

e Þ where SSr
e¼
P

sr
ð yi2â*2b̂*xiÞ

2 and SSnr
e ¼

P
s2sr

ðy*
i 2â*2b̂*xiÞ

2

We can express the two residual sums of squares on the form

SSr
e ¼

sr

X
ð yi 2 âr 2 b̂rxiÞ

2 þ
sr

X
½ðâr 2 â*Þ2 þ ðb̂r 2 b̂*Þxi�

2

SSnr
e ¼

s2sr

X
ð yi 2 â *

nr 2 b̂
*

nrxiÞ
2 þ

s2sr

X
½ðâ *

nr 2 â*Þ þ ðb̂
*

nr 2 b̂* Þxi�
2
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Here â *
nr; b̂

*

nr are the estimates based only on the imputed y *
i ; i [ s 2 sr. It follows that

EðSSr
ejyobsÞ ¼ nrs

2
e þ nrVarðâ*jyobsÞ þ

�
s2sr

X
x 2

i

�
Varðb̂*jyobsÞ þ 2nr �xrCovðâ*; b̂*jyobsÞ

¼ nrs
2
e þ f ð1 2 f Þs 2

e þ ð1 2 crÞSSxcrs
2
e =SSx þ 2nr �xrf �xnrs

2
e =SSx�

with �xnr ¼
X
s2sr

xi=ðn 2 nrÞ
�

) EðSSr
ejyobsÞ ¼ s 2

e {nr þ f ð1 2 f Þ þ crð1 2 crÞ þ 2nr �xr �xnrf ð1=SSxÞ} ð22Þ

After some algebraic manipulations, we find that

EðSSnr
e jyobsÞ ¼

s2sr

X
VarðY *

i 2 �Y *
nrjyobsÞ þ

s2sr

X
ðxi 2 �xnrÞ

2Varðb̂
*

nrjyobsÞ

2 2
s2sr

X
ðxi 2 �xnrÞCovðY *

i 2 �Y *
nr; b̂

*

nrjyobsÞ

þ ðn 2 nrÞVarðâ *
nr 2 â*jyobsÞ þ crSSxVarðb̂

*

nr 2 b̂*jyobsÞ

þ 2ðn 2 nrÞ�xnrCovðâ *
nr 2 â*; b̂

*

nr 2 b̂*jyobsÞ

¼ðn2nr21Þs2
e þs2

e 22s2
e þðn2nrÞ

�
ð12 f Þ2s2

e

1

n2nr

þ �x2
nrs

2
e

1

SSx;nr

	

þcrSSxs2
e

�
1

SSx;nr

þ
cr

SSx

22
1

SSx

�
þ2ðn2nrÞ�xnr

�
f �xnrs

2
e

1

SSx

2 �xnrs
2
e

1

SSx;nr

�

where SSx;nr ¼
P

s2sr
ðxi2 �xnrÞ

2. We see that SSx;nr ¼
P

s2sr
x2

i 2ðn2nrÞ�x
2
nr ¼

crSSx2ðn2nrÞ�x
2
nr, and therefore crSSx=SSx;nr ¼1þðn2nrÞ�x

2
nr=SSx;nr. It follows that

EðSSnr
e jyobsÞ¼s2

e ðn2nr21Þþð12 f Þ2þc2
r 22crþ2f �x2

nrðn2nrÞ=SSx

� �
ð23Þ

From (22) and (23) we find that

ðn22ÞEðŝ2
*jyobsÞ¼s2

e

�
n2 f 2crþ2f

1

SSx
�xnrn�x

�
¼s2

e ðn2 f 2crÞ

Since EðcrjnrÞ¼
1

SSx

Pn
i Eð12RijnrÞx

2
i ¼ð12nr=nÞ¼ f , we have

ðn22ÞEðŝ2
*Þ¼Es2

e ðn2 f 2crÞ¼Eðn2 f 2crÞEðs
2
e jsrÞ¼Eðn2 f 2crÞ

nr22

nr

s2

¼s2E
nnr22

nr

ðn2 f 2EðcrjnrÞ
o
¼s2E

nnr22

nr

ðn22f Þ
o

A.3. Logistic Regression with Binary Explanatory Variable. Separate Classes

Combination

We shall determine Eðb̂
*

1 jy1;obsÞ and Varðb̂
*

1 jy1;obsÞ.

Conditional on y1,obs, n *
11 is binomially distributed ðn1 2 n1r; p̂1rÞ.

Hence, Eðn *
11jy1;obsÞ ¼ ðn1 2 n1rÞp̂1r and Varðn *

11jy1;obsÞ ¼ ðn1 2 n1rÞp̂1rð1 2 p̂1rÞ:
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Conditional on y1,obs, b̂
*

1 is of the form T ¼ log {ða þ ZÞ=ðb 2 ZÞ}, where Z is

binomial (n,p) and a and b are constants. Taylor linearization around E(Z) ¼ np

gives T < log {ða þ npÞ=ðb 2 npÞ} þ ðZ 2 npÞða þ bÞ={ða þ zÞðb 2 zÞ} and

EðTÞ < log
a þ np

b 2 np
and VarðTÞ <

a þ b

ða þ npÞðb 2 npÞ

� �2

npð1 2 pÞ ð24Þ

It follows that, with a ¼ n11r and b ¼ n1 – n11r, Eðb̂
*

1 jy1;obsÞ < b̂1r and Varðb̂
*

1 jy1;obsÞ <
n1={n1p̂1rn1ð1 2 p̂1rÞ}
� �2

ðn1 2 n1rÞp̂1rð1 2 p̂1rÞ. Let f 1 ¼ ðn1 2 n1rÞ=n1 be the non-

response rate in stratum s1. We see that

Varðb̂
*

1 jy1;obsÞ <
f 1n1

n 2
1

�
1

p̂1rð1 2 p̂1rÞ
¼ f 1ð1 2 f 1Þ�

1

n1rp̂1rð1 2 p̂1rÞ

¼ f 1ð1 2 f 1ÞV̂ðb̂1rÞ

A.4. Logistic Regression With Missing Values in a Binary Explanatory Variable

To determine Varðb̂*jy; xobsÞ and Eðb̂*jy; xobsÞ we need to represent b̂* in a different way

than in Section 5.2 for it to be the sum of two independent terms, conditional on the

observed data (y, xobs):

b̂* ¼ log
ðn11r þ n *

11Þðn00r þ n *
00Þ

ðn10r þ n *
10Þðn01r þ n *

01Þ
¼ log

ðn11r þ n *
11Þ

ðn01r þ n *
01Þ

2 log
ðn10r þ n *

10Þ

ðn00r þ n *
00Þ

¼ b̂
1

*
2 b̂

0

*

and Varðb̂*jy; xobsÞ ¼ Varðb̂
1

*
jy; x1;obsÞ þ Varðb̂

0

*
jy; x0;obsÞ. Conditional on ( y, xobs), n *

11

is binomial (n+
1 2 n+

1r, p1) where p1 ¼ n11r=n+
1r, and n *

10 is binomial (n+
0 2 n+

0r, p0)

where p0 ¼ n10r=n+
0r. Then, from (24), we find that approximately Eðb̂

1

*
jy; x1;obsÞ ¼

log {p1=ð1 2 p1Þ} and Varðb̂
1

*
jy; x1;obsÞ ¼ n+

1={n+
1p1n+

1ð1 2 p1Þ}
� �2

ðn+
1 2 n+

1rÞp
1ð1 2 p1Þ.

Then Varðb̂
1

*
jy; x1;obsÞ < f 1={n+

1p1ð1 2 p1Þ} ¼ f 1ð1 2 f 1Þ={n+
1rp

1ð1 2 p1Þ}. Similarly,

Eðb̂
0

*
jy; x1;obsÞ < log {p0=ð1 2 p0Þ} such that Eðb̂

*
jy; xobsÞ <b̂r. Also, Varðb̂

0

*
jy; x0;obsÞ <

f 0={n+
0p0ð1 2 p0Þ} ¼ f 0ð1 2 f 0Þ={n+

0rp
0ð1 2 p0Þ}. We have that

1

n+
1rp

1ð1 2 p1Þ
¼

n+
1r

n11rn01r

¼
1

n11r

þ
1

n01r

and
1

n+
0rp

0ð1 2 p0Þ
¼

1

n10r

þ
1

n00r

and it follows that Varðb̂*j y; xobsÞ < f 1ð1 2 f 1Þð 1
n11r

þ 1
n01r

Þ þ f 0ð1 2 f 0Þð 1
n10r

þ 1
n00r

Þ.

A.5. Proofs of Lemma and Theorem in Section 6

In order to prove Lemma and Theorem in Section 6 we need some facts. In all three cases

described in Section 6:

(a) nr is binomial (n, pr) and independent of s

(b) sr given nr,s is a simple random sample from s of size nr

(c) PðRi ¼ 1jnrÞ ¼ nr=n and PðRi ¼ 1;Rj ¼ 1jnrÞ ¼
nr

n
� nr21

n21
(follows from (b))

(d) EðY *
i jyobsÞ ¼ �yr ( ) EðY *

i jy; s; nrÞ ¼ �ys ) EðY *
i jy; sÞ ¼ �ys)

(e) VarðY *
i jyobsÞ ¼

nr21
nr

ŝ2
r , where ŝ 2

r ¼ 1
nr21

P
i[sr

ð yi 2 �yrÞ
2
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(f) Eðŝ 2
r jy; s; nrÞ ¼ ŝ2 where ŝ2 ¼ 1

n21

P
i[sð yi 2 �ysÞ

2

ð) VarðY *
i jy; s; nrÞ ¼

n21
n

ŝ2 < ŝ2)

(g) Varð �Yrjy; s; nrÞ ¼ f ŝ2=nr ¼ ŝ2ð 1
nr
2 1

n
Þ

Proof of Lemma

Eðû*jy; sÞ ¼ E E
i[sr

X
aiðsÞyi þ

i[s2sr

X
aiðsÞY

*
i jYobs

0
@

1
A



y; s

8<
:

9=
;

¼ðdÞ E
X
i[sr

aiðsÞyijy; s

 !
þ E

X
i[s2sr

aiðsÞ �Yrjy; s

 !

First term:

E
X
i[sr

aiðsÞyijy; s

 !
¼ E E

X
i[s

aiðsÞyiRijy; s; nr

 !
jy; s

( )

¼ðcÞ E
X
i[s

aiðsÞyi

nr

n
jy; s

 !
¼ðaÞ prû

Second term:

E
X

i[s2sr

aiðsÞ �Yrjy; s

 !
¼ E E

1

nr

X
i[s

X
j[s

aiðsÞyjð12RiÞRjjy; s;nr

 !
jy; s

( )

¼ðcÞ E
1

nr

X
i[s

X
j[s;j–i

aiðsÞyj

nr

n
2

nr

n
�

nr 2 1

n2 1

� �
jy; s

 !

¼ðaÞ 12 pr

n2 1

X
i[s

X
j[s;j–i

aiðsÞyj ¼
12 pr

n2 1
ðn�aðsÞn�ys 2 ûÞ

where �aðsÞ ¼
X
i[s

aiðsÞ=n

This implies that Eðû*jy; sÞ ¼ prû þ 12pr

n21
ðn2 �aðsÞ�ys 2 ûÞ and (21) , û¼ n�aðsÞ�ys ¼

�aðsÞ
P

i[s yi

Proof of Theorem

From Lemma, û ¼ aðsÞ
P

i[s yi ¼ naðsÞ�ys and û* ¼ aðsÞ
X
i[sr

yi þ
X

i[s2sr

y *
i

 !
Eðû*j yobsÞ ¼

ðd Þ aðsÞðnr �yr þ ðn 2 nrÞ�yrÞ ¼ naðsÞ�yr

Varðû*j yobsÞ ¼
ðeÞ {aðsÞ}2ðn 2 nrÞ

nr 2 1

nr

ŝ 2
r
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Hence,

VarEðû*jYobsÞ ¼ VarðnaðsÞ �YrÞ ¼ E{n2{aðsÞ}2Varð �YrjY; sÞ} þ Var{naðsÞEð �YrjY; sÞ}

¼n2E ½aðsÞ�2{E{Varð �YrjY ;s;nrÞjY;s}þVar{Eð �YrjY;s;nrÞjY;s}
� �

þVar{naðsÞE{Eð �YrjY;s;nrÞjY;s}}¼ðgÞ n2E
�
½aðsÞ�2{ŝ2E{ð1=nrÞ21=nÞjs}

þVarð �YsjY;s
�
þVar{naðsÞ �Ys}¼nE ½aðsÞ�2ŝ2½Eð1=p̂rjsÞ21�þ0

� �
þVarû¼ðaÞ nðEð1=p̂rÞ21ÞE ½aðsÞ�2ŝ2

� �
þVarû

Next,

EVarðû*jYobsÞ ¼ E ½aðsÞ�2ðn 2 nrÞ
nr 2 1

nr

ŝ 2
r

� �

¼ E{ðn 2 nrÞð1 2 1=nrÞ½aðsÞ�
2Eðŝ 2

r jY; s; nrÞ} ¼ E{ðn 2 nrÞð1=nr 2 1Þ½aðsÞ�2ŝ2}

¼ðaÞ {nð1 2 prÞ2 ðEð1=p̂rÞ2 1Þ}Eð½aðsÞ�2ŝ2Þ

We find now, from (5),

EðkÞ ¼
ðEð1=p̂rÞ2 1ÞE{½aðsÞ�2ŝ 2}

{ð1 2 prÞ2
1

n
ðEð1=p̂rÞ2 1Þ}E{½aðsÞ�2ŝ 2}

¼
ðEð1=p̂rÞ2 1Þ

1 2 pr 2
1

n
ðEð1=p̂rÞ2 1Þ

<
ð1=prÞ2 1

1 2 pr

¼
1

pr

:
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