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Non-Bayesian Multiple Imputation

Jan F. Bjmnstad]

Multiple imputation is a method specifically designed for variance estimation in the presence
of missing data. Rubin’s combination formula requires that the imputation method is
“proper,” which essentially means that the imputations are random draws from a posterior
distribution in a Bayesian framework. In national statistical institutes (NSI’s) like Statistics
Norway, the methods used for imputing for nonresponse are typically non-Bayesian, e.g.,
some kind of stratified hot-deck. Hence, Rubin’s method of multiple imputation is not valid
and cannot be applied in NSI’s. This article deals with the problem of deriving an alternative
combination formula that can be applied for imputation methods typically used in NSI’s and
suggests an approach for studying this problem. Alternative combination formulas are derived
for certain response mechanisms and hot-deck type imputation methods.

Key words: Variance estimation; survey sampling; stratified sampling; logistic regression;
nonresponse; hot-deck imputation.

1. Introduction

Multiple imputation is a method specifically designed for variance estimation in the
presence of missing data, developed by Rubin (1987). Two more recent references with
further discussions and studies are Rubin (1996) and Schafer (1997). The basic idea is to
create m imputed values for each missing value and combine the m completed data sets by
Rubin’s combination formula for variance estimation. For the estimator to be valid,
the imputations must display an appropriate level of variability. In Rubin’s term, the
imputation method is required to be “proper.” In national statistical institutes (NSI’s) the
methods used for imputing for nonresponse very seldom if ever satisfy the requirement of
being “proper.” However, the idea of creating multiple imputations to measure the
imputation uncertainty and use it for variance estimation and for computing confidence
intervals is still of interest. The problem is then that Rubin’s combination formula is no
longer valid with the usual nonproper imputations used by NSI’s. The reason is that the
variability in nonproper imputations is too small and the between-imputation component
must be given a larger weight in the variance estimate. The problem is then to determine
what this weight should be to give valid statistical inference, and also for what kind of
nonresponse mechanisms and estimation problems it is possible to determine a simple

! Statistics Norway, Division for Statistical Methods and Standards, P.O. Box 8131 Dep., N-0033 Oslo, Norway.
Email: jab@ssb.no

Acknowledgment: The problem of deriving a non-Bayesian multiple imputation method was studied in a
Master’s thesis in 1999 by Tonje Braaten with the author as her adviser. The present research began within the
DACSEIS research project, and started originally when the author was contacted by Tonje Braaten regarding this
issue in her doctoral studies in epidemiology.

© Statistics Sweden



434 Journal of Official Statistics

combination formula not dependent on unknown parameters. This article suggests an
approach for studying this problem.

In Section 2 an approach for determining the combination of the imputed completed
data sets is suggested. Section 3 has three applications with random nonresponse:
(i) estimating a population average from simple random samples using hot-deck
imputation, (ii) estimating the regression coefficient in the ratio model using residual
regression imputation and (iii) estimating the regression coefficient in simple linear
regression with residual regression imputation. Section 4 deals with the general
problem of multiple imputation for stratified samples. In Section 5 we apply the theory
in Section 4 to stratified samples with random nonresponse within strata, covering
(i) estimation of population average using stratified hot-deck imputation and
(i1) estimation of log (odds ratios) in logistic regression with missingness both for
the dependent variable and the explanatory variable. Section 6 takes up the problem of
using the same combination rule for all estimation problems with a given imputation
method and data and response model. A general result for hot-deck imputation and
linear estimates is presented.

2. An Approach for Determining an Alternative Combination Formula for
Variance Estimation in Multiple Imputation

Let s=(1,...,n) denote the full sample, with y = (y;, .. .,y,) denoting the full
sample data, values of random variable Y, . ..., Y,. In the case of sampling from a
finite population under a design model, a renumbering of the selected units has been
performed, of course, and the stochastic nature of y is determined by the sampling
plan. The objective is to estimate some parameter 6. The observed data is denoted
by yops = {(yi : i € s,),5,}, being the observed part of y and the response sample s,
of size n,.

Let 6 be the estimator based on the full sample data y, with Var( é) estimated by V(y).
For i € s — 5, we impute by some method y; and let y* denote the complete data
(yi:i € sp,y; 1i € s—s,). Based on y*, we have 6* = O(y*) and V* = V(y").

Multiple 1mputat10n of m repeated imputations leads to m completed data-sets with
m estimates (9 ,i=1,...,m, and related varlance estimates V =1, ,m.
The combined estimate is glven by 6" =>"",6 /m The within-imputation variance
is defined as ve=3S"v, /m and the between-imputation component is B =
py 1(¢9 — 0%)?/(m — 1). The total estimated variance of §* is then proposed to be

. 1 .
W=V +(k+—)B (1
m
That is, we need to determine k such that

E(W) = Var(6") (2)

Rubin (1987) has shown that k=1 can be used with proper imputations, which
essentially means drawing imputed values from a posterior distribution in a Bayesian
framework.
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In general, one has to determine the terms in (2). One way to try and do this is to
use double expectation, conditioning on y,, that is, E(W)= E{E(W|Y )} and
Var(0*) = E{Var(6*|Y ,5)} + Var{ E(6*|Y ,»5)}. Typically,

E(V*) = Var(6) 3)

and E(B*|yops) = Var(0*|y.ps). Hence, approximately
N 1
E(W) = Var(6) + (E(k) + Z) EVar(6°|Y ,5) 4)

Moreover, Var(9*[yops) = Var(0*yops)/m and E(8*|yops) = E(O* |y,ps). This implies that
Var(8") = m~"E{Var(6*|Y us)} + Var{E(6*|Y ,s)}. From (3) and (4), Equation (2)
becomes Var(6) + E(k)EVar(0*|Y ,p5) = Var{E(0*|Y o)}, which gives the following
general expression:

Ek) = VarE(O*IY{;ff) — Var(6) 5
Evar(exlyobs)

For this to be of interest, k must be, at least approximately, determined independently of
unknown parameters. In addition, one needs to check that (3) holds. To illustrate how (5)
can be used we shall in the next section consider three special cases with random
nonresponse.

3. Three Applications for Random Nonresponse

3.1. Estimating Population Average with Hot-deck Imputation

Consider a simple random sample from a finite population of size N, where the aim is to
estimate the population average u of some variable y. We shall assume completely random
nonresponse. In the terminology of Rubin (1987) and Little and Rubin (2002), the
missingness mechanism is said to be MCAR (missing completely at random). We note that
MCAR means that the response indicators Ry, . . ., Ry are independent with the same
response probability p, = P(R; = 1). The imputation method is the hot-deck method,
where y,” is drawn at random from y,,, with replacement, and the estimate is the sample
mean. Let ¥, be the observed sample mean and 6',2 = m;—lzie»( Vi — y,)z the observed
sample variance. Then Y™ is the imputation-based sample mean for the completed sample,
and the combined estimator is given by ¥* = Y7 ¥ /m. Let )7 denote the sample mean
based on a full sample. Then, Var(Y,) = o ( N) with o2 - 1)*127:1(” - ,u)2
being the population variance. We have further that E(Y*|yms) =9, and
Var(Y*yos) = {(n — n,)/n®}{(n, — 1)/n,}6> using that  E(Y;|ym) =3 and
Var(Y*lyoba) - Uz(nr - 1)/71,

In this case, V* = 0'2(1 ¥) where z—n ; (Z i =3P+, 5 OF —y*)z).

It can be shown that E(G2|y.ms) = & ( )( n(fil)) zgf and (3) holds.
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We find, from (5),

alp(D) 1) (11
_ ny N n N ~ (1 _pr)/pr _ 1

E<n_nr.nr_1>o_2 l_pr Pr

which is satisfied approximately, with f= (n — n,)/n being the rate of nonresponse, by
letting k = 1/(1 — f).

3.2.  Estimating the Regression Coefficient in the Ratio Model with Residual Imputation

We shall assume completely random nonresponse as in Section 3.1. We consider a
ratio model, i.e., regression through the origin: Y; = Bx; +¢&;, with Var(e;) = o2x;;
i=1,...,n Itisassumed that all x;’s are known, also in the nonresponse sample. The full
data estimator of § is given by 8= Y"",¥,/3"  x;. The unbiased estimator of o2 is
given by 67 = 31, L(yi — Bx)?/(n — D). A A

We shall consider residual regression imputation. Let 3, be the B - estimate based
on observed sample s,. Define the standardized residuals e; = (y; — B,.xi) /X
for i € s,. For i € s — s,: draw the value of e;k at random, with replacement, from the
set of observed residuals e¢;,i €s,. The imputed y-value is given by
i =B+ e; \/%i.

Let X =>" x,X, = Zia, x; and X, = ZzEs—s, xi =X — X,. All considerations
from now on are conditional on 7, and X,., and we aim to determine k directly from (5).
The proportion of the x-total in the nonresponse group is denoted as fx = X,,,/X.

We now have B*= (ZS Vit yf)/X and ¢ = ﬁ (ZS,.%(yi — Bxi)?
+ Y, 07— B,

In order to determine k from (5) we need to check the validity of (3) and derive
EVar(B*Yobs), VarE(B*yops) and Var(B). We note that Var(8) = o /X. In Appendix A.1
it is shown that condition (3) holds for moderate and large n,, and that

A o? (1- d )d Mar Xy a?

VarE(B lyon) = 3+ (6)
A * an 0-2

EVdr(B |yobs) = X2 ) n_(nr + dl - 2) (7)

Here, 0 = d;,d, = 1. From (5), using (6) and (7), we find

an2 - an ) Xr + (1 - dl )dZnananr X Nyyr
~Z 11 —d)d "
X Xur(n, +dy = 2) Xr+( D n

r

k:
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We note that if all x; =1, then d; =d, = 1. Now, with fx = X,,,/X being the
proportion of the x-total in the nonresponse group and f = n,,/n the rate of nonresponse,
we finally get, since typically (1 — d)d, = 0,

f 1
1 —dpydy—— =
1_fx+( 1)21_f =y

for usual x-values and nonresponse rates.

k =

3.3.  Estimating the Regression Coefficient in Simple Linear Regression with Residual
Imputation

As in Sections 3.1 and 3.2 the nonresponse mechanism is assumed to be MCAR with
pr=P(R;=1). The simple linear regression model is assumed: Y; = a+ Bx; +
g;, with Var(e;) = o%;i=1, . . ., n. All x;’s are assumed to be known. We may assume,
that ¥ = Y7 ,x;/n = 0. Then the full data estimates are given by 8= 3" xy;/SS,,
where SS, = Y% x?, and & =5 = >__,y;/n. The unbiased estimator of ¢* is given by
62 = ﬁ S (yi—a— Bx,-)z. Let a,, ,é, be the estimates based on the response sample,
&, =9y, — B,)"c, and B, = ZiEs,(xi — X,)vi/SSy . Here, 3, = Zi&r yi/np, X = Z:ES, Xi/ny
and Sy, = ) e, (i — %)%

Simple residual imputation is defined as follows: The observed residuals are e¢; =
(yj—a — érxj), forj € 5,. For i € s — s, : draw ¢, at random, with replacement from
(¢j,j € s,). The imputed y- value is given by y,;" = &, + B.x; +¢;".

The imputation based estimates are B = Dies, XiVi T D ies—s, xiyi*) /SS., & =

(3, + (= n)yy)/n where yo. =3 y'/(n—n) and 67 =-133 (yi—

@ — B x)? + Zs_sr(yi* — @ — B*x)?}. It can be shown (see Appendix A.2 for a

summary proof) that E(62) = 0?E("-2 ") =~ g?

) where, as in Section 3.1,
f = —n,)/n. Since Var(B) = 02/SS,, (3) holds. It is readily seen that E(B"|yoss) =
B, and Var(B*|yoss) = s2+¢,/SS,, where s>=13 ef/n, and ¢, =3 x?/SS,
€ (0, 1). It can be shown that E(s?|s,) = ”’n—tzoz. Moreover, clearly E(c,) = 1 — p, and

Var(B,ls,) = a?/SS,,. It follows, from (5), that

S

E(1/SS.,) — 1/SS, _ 1/E(SS,,) — 1/SS,
(I = pE{(n, — 2)/”r}/SSx (1- pr)/SSx

E(k) =

Using the fact that conditional on n,, s, is a simple random sample such that the
response indicators are correlated with Cov(R;,R) = — f(1 — f)/(n — 1), we find that
E(SS. )= (p, — ln_j’l’)SSx. It follows that, approximately, E(k) =

use k= 1/(1 — f).

zﬁ =~ 1/p, and we can

4. Multiple Imputation for Stratified Samples

4.1. Separate Combinations

One way to combine the m completed data sets is to do it separately for each stratum,
i.e., determine a separate k for each stratum. The general setup is then as follows:
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The sample s is divided into H sample strata, si,. .., sy. Let y, be the planned full
data from subsample s, of size ny,. It is assumed that y,,. . .,yy are independent. The
observed part of y, is denoted by yj, ,»s With 55, being the response sample from s, of
size ny,. The estimator based on the full sample data is the sum of independent terms,
6= Zf:léh where 6, is based on the y,. Var(f) = Z,’f:lVar(OAh) is estimated by
V(é) = Zg l\A/h(y;,) where Vh(yh) is the variance estimate of 6, based on y;,. For
i € s, — sp We nnpute by some method y,” based on yj, ops and let y, denote the
complete data (yy, obx,y, ,1 € s, — sp). Based on yh, we have 0,1 Oh(yh) and Vh =
Vh(yh) Then the imputation based estimator is given by 6" = Zh 1t9h and
V= Zh th Multiple imputation of m repeated imputations leads to m completed

data sets w1th m estimates for each stratum #, 0;,,,,1 =1, ...,m and related variance
Ak

estimates V,”, =1, .. 1. The total estimates and related variances are 0, =

S 10,“ and V = Zh_ V,”, fori = 1,. .., m. The combined estimate for stratum &

is glven by 6, = Zi:lgh.i /m. The within- 1mputation variance for stratum # is V, =
oy 1V,“/m and the between-imputation component is given by
B, =>1" ,(Ohl 6,)*/(m — 1). Following the same idea as in Section 2, Formula
(1), the total estimated variance of Hh is then proposed to be W), = Vh + (kj, + —)B
The combined total estimate is given by 6* =Y | 6, /m =1L 8,. It follows that the
total estimated variance of 6* can be expressed as

W th V+Z<kh+> (8)

where V* =S V" /m =1 V' Provided (3) holds for each stratum h,
E(V,) = Var(fy) ©)
we have from (5) that k;, must satisfy

VarE OA* Y — Var(6
E(kh) _ ( hl h’ffS) ( h) (10)
EVar(6,|Y j.obs)

The combination Formula (8) is an alternative to the usual combination Formula (1),
especially useful when we get simple expressions for &, but not for k. The next section
develops an expression for k in this situation.

4.2.  An Overall Combination Formula

Now let W be given by (1). We shall determine the between-imputation factor k. Since
E(W) = E(Wy,,) we have

H
N 1 .
E{Z(kh-l-—)Bh}:E(k-l-—)B an
h=1 m "
Here B* = 12:’1 l(é* _ é*)Z L ]Ez I{Zh(ehl } Note that E(B |yobs -

(Zh IB b)obs) since E(B |yobs) - Var(a |y0bs) - Zh 1var(0h |y0bs) and E(B |y0bs) -
Var(e |y0bs)
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Hence, the identity (11) becomes E{ZlekhE(B,jlY,,bs)} = E{kE(B*|Y ss)}. This
gives us the solution k = Zf:lkhE(B; [Vobs)/E(B™|yops) if we want to use the usual
combination Formula (1) and hence

H
> knVar(8,1yons)

H
— V 0, Yobs
=" = k2t Var(d, o) (12)
Var(0 Iyobs) =1 Var(e |y0bs)

a weighted average of k;,. We get a simple expression for k only when all k;, are equal,
say kj, = ko. Then k = k.

5. Four Applications to Stratified Samples and Random Nonresponse within Strata

5.1. Estimating Population Average from Stratified Sample with Stratified Hot-deck
Imputation

Consider stratified simple random samples from a finite population of size N, with H strata
of sizes N, h=1,...,H The aim is to estimate the population average u of some
variable y. We assume completely random nonresponse within each stratum, denoted as
MAR (missing at random) by Rubin (1987) and Little and Rubin (2002). This means
that the response indicators in stratum /A, Ry, ...,R,y, are independent with
Pnr = P(Ry; = 1). The imputation method is stratified hot-deck. Let yj, .5, be the observed
part from the response sample sy, of size n, from stratum A, yj o5 = (y; : i € sp,). Then
an imputed value y," in stratum / is drawn at random from Y, ,,,. The estimator based
on the full sample data is the usual stratified weighted average
Yira = Zh \Niwyn/N = Zh \Viyn. Here, vy = N,/N and y, = Zsh y,/nh, Where sy, 18
the sample from stratum 4 and n;, = |s;]. Then Var(Yy,u) = Zh Vi (rh ) with
Z( yi — up)? /(N — 1) being the population variance in stratum h Here Uy,
is stratum population 4 and w,, is the average in U,
Let y, be the observed sample mean from stratum /4 and &,,zr = ﬁ Z,ew,, (yi — yh,)
the observed sample variance. The imputation-based estimator is given b
Zh 1Nhyh /N where yh = (th, yi+ Zv,, Sy yi )/”h = (nhryhr + Zs,,*.w,, Vi 5
be denoted by Y.,

strat, i

strat —

/nh. Let

the m imputation rephcates of ¥ fori=1, ..., m. The combined

strat
estimator is glven by strat Zz 1 rlrazz/m'

5.1.1. Separate Strata Combinations

It follows from Section 3.1 that k, = 1/(1 — f}), where f), = (n, — ny,)/ny, is the rate. of
nonresponse in stratum /. The combination formula for the variance estimate of Y, trat
becomes, from (8),

W —\7*+XH:< : +1)B*
sep — 1_fh m h

Here, V" = Z =1 Vh and Vh isthe average of the m values of the imputation- based variance

2.2 (1 2 2
estimate V =V Gje —N, where a'h* = 71 Zsh,(y, -9 +Zs;, o O W)
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5.1.2. Overall Combination Formula. Determination of k in (1)

From (12) we need to determine Var(w,¥,|y,»s) and Var(Y.,, |vops) =
S Var Y, [ons). Then
L i 1 Var(V_h*YZ |Yobs)
1 _fh Var(Yxtm[b’obs)

Now, E(Y,lynobs) = and  Var(Y, lynoss) = {(n = nu)/n2} - {(ne = 1)/} 6 =
fhafr/nh. Hence we can determine k as

k:

H .
1 v 6l /ny,
L=fn &
h=1 .
> _fevi G/
k=1

If the stratum sizes N, are large then we can let IA/(thh)zv,%cf'fr/nh. Let also
by = fuVOYi)/ S fi Vi o). Then
S 1
WnYp)fn
h=1 1-
k:

—f A
0 Z 1 _fh (13)
Z Vo Y)fn =

h=1
Since Zlebh = 1, we see that k is a weighted average of the inverse of the response
rates. If all f, = f, the overall nonresponse rate, we get as for simple random sample
that k = 1/(1 — f). Otherwise, a stratum response rate 1 — f;, has large weight if either
the nonresponse rate is large and/or the estimated variance of v,Y), is large.

5.1.3.  An Alternative Expression for & in (1)

By directly applying (5) we can get an alternative expression for k. Given y{,;,s, the imputed
sample means )7* are independent which implies that E(Y,mtlyobs) = Zh N /N =
Vstrar,r and Var(thtly(,;,y) ~ Zh Vi f;,o'h, /ny,. Just like in Section 3.1, (3) holds. From
(5) we get

Var(Ystrul,r) - Var(Ystmt)

E(zv,f -fh&;,/nh)
h

4 2 2 1 4 22 1
E -
Soiai(e(;,) ) - i ()
H
ZVZ E{ Uhrlnhr)}

4 — Phr a-h —fn
Z : Z i B 5

~ =] e (14)

1 - Phr H }%
vy 7E(fh)(1 —fn

E(k) =

2 2
Vh Ty
=1 h =1
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Now, Var(Yy,) = EVar(Yy,\ny.) = o2E(1/ny,). Let VoY) = v]f(f'hzr/nh,. Then we see
that the expression for E(k) is satisfied approximately, if the stratum sizes N, are large, by
letting

H
A = ffaVontn)

i bl - = > a1 =fn) (15)
th‘,\/(vhyhr) et
h—1

where the weights ay :f;,V(thh,)/Zleka(kak,). Since ZhH:lah =1, we see
that 1/k is a weighted average of the response rates. If all f, =f the overall
nonresponse rate, we have, as shown in Section 5.1.2, that k = 1/(1 — f). As seen in
Section 5.1.2, we note also in Expression (15) that a stratum response rate 1 — f;, has
large weight if either the nonresponse rate is large and/or the estimated variance of
vy, is large. The estimate of the total based on the response sample is given by
Ytratr = Do viY4. We obtain Formula (13) for k by noting from (14) that we have
E(k) = S0 Var(v, ¥)E( fh)m/Zf:lVar(thh)E( fn). Then we see that the
expression for E(k) is satisfied approximately, if the stratum sizes N, are large, by
letting k& be given by (13).

5.2.  Logistic Regression with Binary Explanatory Variable. Estimating Log(Odds Ratio)

The variables Yy, ...,Y, are independent O/1 -variables, and we have explanatory
0/1-variable x with fixed known values xi, . . .,x,. The class probabilities are given
by m =PY;=1lx;=1) and my = P(Y; = 1lx; = 0). We assume a MAR(missing
at random) model for the response variables Ry, . . .,R,, with P(R; = 1|x; = 1) = py,

and P(R; = 1lx; = 0) = po,. We can reparametrize the model in a logit version,
log {P(Y = 1|x)/P(Y =0|x)} = o+ Bx, where «a= log{m/(1— m)} and B=
log :(‘)?8:;‘3 = log(odds ratio). The aim is to estimate 8. Let s = (1,. . ., n) denote the
full sample with stratas; = {i € s : x; = 1} and 5o = {i € 5 : x; = 0}. The sizes of s, and
so are denoted by n; and ny. We note that n; = » - |x; = X and ny = n — X. The response
samples in the strata are s, = {i € s; : R; = 1} and so, = {i € 50 : R; = 1} with total
response sample being s, of size n,. Let also ny, = |s1,| and ng, = |so,]. We see that
ny, = ZS, x; = X, and ng, = n, — X,. The data from s, can be represented as follows where
n;j denotes the number of observations with x = iandy = j: see (Table 1).

We then have the maximum likelihood estimates (MLE)#y, = nyj,/n;, and 7y, =

no1,/nor and MLE of B equals [§, = log /(A=) log (n11,100,/R10:M01,)- Similarly, the

7o, /(1—70,)

Table 1. The observed data and nonresponse totals for the two classes

x\y y=0 y=1 Totals Nonresponse
x=0 noor no1r oy no — Nor
x=1 nior niir nyy ny — nyy
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estimator based on the full sample is given by ﬁ = log :{‘)?8 :0) log (n11100/n10m01) With

obvious analogue notation. We can express this estimate as B=
log {# /(1 — )} — log {ﬁo/(l %)} = Bi — Po, of the same form as in Section 4.1.
We also have that 3; and 3, are independent based on the separate sample strata s; and s.
For large ngy, ni, B is approximately N(B, 0% where 2= {nm(l — 77'1)} It
{nomy(1 — my)}~ 1 So, approximately, Var(Bl) =1/{nym(l —m)} and Var(Bo) =
1/{nom(1 — )} and an estimate of Var(é) is given by

A 1 1 1 1 1 1
e (L) ()
ma (L — ) nofo(1 — 1) nyo N nor Moo

such that V(,é) Vi + V,, where V, = (n—” + nim) and V, = (W + ﬁ) are the variance
estimates of B; and ,80, respectively.

We shall consider the following imputation method: For each missing value in
S1 — S1,, the imputed value y* is drawn at random from the estimated distribution of Y
given x = 1:

y* =1 with probability 7, = nj,/n, and y* =0 with probability 1 — 4,

The same imputation method is used for sy — so, with y* drawn at random from the
estimated distribution of Y given x =0. This is the same as stratified hot-deck
imputation, imputed values are drawn at random, with replacement, from y; ., = (y; :
i € s1,) and Yoo = (¥i 1 1 € 50,).

The imputed values in s — s, can be represented in the same form as the original data
where now n;; ~ denotes the number of imputed values withx = iandy = j: see (Table 2).

The 1mputat10n -based estimate of ™ is given by 77, (ni1, + nl*,)/nl such
that the imputation-based estimate Bl log {#, /(1 — &)} = log {(n11, + n;,)/
(n1 iy — n”)} Similarly, the imputation-based estlmates for By and B are given by
B() log {(no1, + nm)/(no - no1r — nol)} and ,3 = ,8] R ,8()

The m repeated imputations lead to m estimates 31 i B()m B for i=1,...,m The

combined estimate is given by B"=>1 ,,8 /m > 1311/’" an:]é(:,/mz
Bl BO The imputed variance estimate V* for Bis given by

A w 1 1 1 1
V' = —+ —+ —+ = (16)
niy+ny mort nyy  Noir + ngr  Noor + N

We see that E(V*|yops) = —A—— + ——L——and (3) hold. We also note that (9) holds

i (1=1,) © no o (1—1,)
separately for each class.

Table 2. The imputed totals for the two classes

x\y y=0 y=1 Totals

=0 * * _

X = oo Ny no noy
=1 #* * _

X = nlO ny ni ni,
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5.2.1. Separate Classes Combination

Let us first use the approach in Section 4.1 and determine separate ki, ko for the two
classes. Consider first stratum s; = {i € s : x; = 1}. In Appendix A.3 it is shown that

EB, y1.on)= Bir and Var(B; |y1 ons) = f1(1 = £1)V(B1,). From (10), we find approxi-
mately:

_ Var(By) = Var(B)) _ EVar(ByIn,) — Var(By)
E{fil = fOV(Bi}  ELAX = fOE VB, 1)

mnm (* ) ")
_md —m) ny) nm) _A=p)/pr_ 1

1 1 - r r
Ef(l = f)——— b1 b
nym(l — )

E(ky)

which is satisfied approximately by letting k; = 1/(1 — f1). In exactly the same way, we
find that ko = 1/(1 — fo) where fo = (no — no,)/no is the rate of nonresponse in stratum
so. The between-imputation component for BA; is givenby B = L 37" 1([§1* i B,)? and
likewise B, is the between-imputation component for ﬁ(: . Then an estimated variance of
the combined imputation-based estimate 8* for B is given by, from (8),

o 1 1 1\ .
WS@]?:V +Zx_0(] _f +m>Bx

where V* is the average of m replicates of the imputed variance estimate V* given by (16).

5.2.2. Overall Combination Formula. Determination of k in (1)

Since Var(B, 1y1.on) = f1(1 = FV(B1,) and Var(By 10.0s) = fo(1 = fo)V(Bor), we have
from (12)

1 A1 = VB 1 Fol = fo)V(Bor)
= i n -
D L0 = FVBa) D = FV(By)

x=0 x=0

k:

a7

Var (Br) = (ni;/m) Var(Bi, | miy) = (1= f1) Var(By,|ny,).  Similarly, Var(By) =
(1 = fo) Var(Bor|no,). We can therefore estimate the variance of the full sample estimates

B1 and By by V(B1) = (1 — f)V(B1,) and V(Bo) = (1 — fo)V(Bo,), respectively. Then
_ 1 AVBY L foWB) 1 [
S T L By B By LS Ty N
> £ VB > £ VB

x=0 x=0

Just like in Section 5.1.2 we see that k is a weighted average of the inverse of the response
rates. If all f, = f, the overall nonresponse rate, we get that k = 1/(1 — f). Otherwise, a
stratum response rate 1 — f; has large weight if either the nonresponse rate is large and/or
the estimated variance of B, is large.
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Alternatively, from (17), 1/k= 101 = f0f:VB)/ o V(B = L
a.(1 — f,), where the weights are a, zfxf/(,éx,)/{fl V(,él,) +f0V(ﬁO,)}. So we can
alternatively express 1/k as a weighted average of the response rates.

If the aim is to estimate 7r; and 77y we obtain, of course, k = 1/(1 — f;) for 7r; and
k=1/ (1 — fo) for m.

5.3.  Logistic Regression with Categorical Explanatory Variable. Estimating
Log(Odds Ratios)

If the explanatory x is categorical defining, say, H classes, we can generalize the results as
follows:

Let m,=PY =1lx=h), h=0,...,H-1. Logistic regression defining the
categories is done by introducing H — 1 binary explanatory variables xi, ..., xy
where x;, = 1 if observation belongs to Class &, and 0 otherwise for h=1, ..., H —
1. Then an observation belongs to Class O if x; =x, =...=xy_; = 0. The logit
version of the model becomes, with x = (x,x, ...,xg—1): log {P(Y = 1|x)/
PY=0x)}=a+Bix1+PBox2+...+xy—1Bu—1. We see that a= log 117370 and

, = log %: log (odds ratio) for Class h versus Class 0. Estimating 3, by
multiple imputation is done in exactly the same manner as for binary x, with Class &
replacing Class 1.

5.4.  Logistic Regression with Missing Values in a Binary Explanatory Variable

The situation is as in Section 5.2, except that y is fully observedins, y = (y;, . . .,y,), and
we have missing values for the x-variable. Yy, . . ., Y, are independent 0/1-variables and
we have an explanatory 0/1-variable x with fixed values xi, . . .,x,, some of which are
missing. The response variables indicate missingness of the x;’s but now with MAR model
PR; = lly; = 1) = qi, and P(R; = l]y; = 0) = qo-

Otherwise, the model is the same as in Section 5.2 with class prob-
abilities: 7 = P(Y; = 1|x; = 1) and 7 = P(Y; = 1|x; = 0), and the logit version
log {P(Y = 1|x)/ P(Y =0|x)} = a + Bx with B = log % The aim is still to
estimate .

Letnow s' = {i€s:y;=1}and s° = {i € s:y; =0} with sizes n{ and n;. The
response samples in the strata are s' = {i € s':R;=1}and s(r’ = {i € s": R; = 1} with
total response sample being s, ={iEs: R, =1} = s; U s(r). The data can now be
represented as before, except that nonresponse totals are for each y-stratum. See Table 3.

The MLE 7, 7, ,é,, based on s, are the same as before, as is the full sample
estimate [§ The imputation method is stratified hot-deck for the y-strata. For each

Table 3. The observed data and nonresponse totals for the y-strata

x\y y=20 y=1
x=0 noor no1r
x=1 nior niyr
Totals g, nj,

o

Nonresponse ng — 1y, ny — nj,
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missing value of x in s! —s!, the imputed value x* is drawn at random from
Xiobs = (X 11 € si). Similarly, imputed values in 50— s(r) are drawn at random from
Xoops = (x; 1 1 € s?). The imputed values in s — s, can be represented in the same
form as the original data where now n; denotes the number of imputed values with
x = iand y = j. See Table 4.

We need to find an approximate expression for the expectation and variance of B*, now

denoted f:, conditional on the observed data. We defer to Appendix A.4 to show that
Var(Bsly, xons) = f1(1 = FOG-+ ;0 + 001 = fOG+50) and E(B:ly, Xobs) = By

notr nior noor
Here f! = (n} — nj,)/n] is the nonresponse rate in Stratum s' and f° = (n, — n;,)/n;
the nonresponse rate in s°. We note that §;, = n},/n} = 1 — f' and go, = n,,/nj. So the

denominator in (5) becomes

E{f%l—fﬂ<1 + 1)+f%1—f%<i—+ 1)} (18)
nir no1r nior noor

The numerator in (5) equals, as before, Var(é,) - Var(B), and we have approximately

1 L —pi, 1 1 = por
mm(—m)  pi nomo(1 — m)  por

Var(B,) — Var(é) = (19)
where, as before, p;, = P(R; = 1|x; = 1) and po, = P(R; = 1|x; = 0). We need alternative
estimates of p;, and pgo,.. Since pi= mq;,,+ {0 — m)q,, Wwe have
pir= (1 — )4+ A = A — ). Similarly, po, = #o(1 — f1) + (1 — Fo)(1 — f).

We can also use that n;p;, = ny, and ngpg, = ng,. From (18) and (19) it follows that we
can use

1 1
( + )(mrf +(1 = #,)f ( )(ﬁ'()rfl + (1 = fo,)f°)
k= Ntir tor no1,  Moor

°) +
1
P00 ) #0 v a)
niir no1r  Noor
f1< L, >-+f0( L, )
_ nior noor nir noir

_fwl—fq<l + 1)+f%1—f%<1 + 1)

niir  Noir no1r  Noor

We note that if f' = %= then k = 1/(1 — f). Otherwise, we can express 1/k as a
linear combination of the response rates (1—f', 1-f°). Let w; = nlll + ﬁ and
wo = nw o 1 -. Then

Table 4. The imputed totals for the y-strata

x\y y=20 y=1
x=0 ”30 ”;1
x=1 ”To n’lk1

Totals ny — ng, ny — nj,
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1
L= —fH+a1—f°

where a; = f'wi /(f'wo +f"w1) and ag = fwo/(f 'wo + f°w1). We note that in general
a; +ag # 1.

6. Question: Can We Use the Same Combination Formula for a Given Situation and
Imputation Method for All Scientific Estimands?

We try here to give a general approach to this problem. Let s denote the full sample and y
the full sample data. There are three possible cases:

1. s is a sample from a finite population and y = (y; : i € s) with design model. Then
the observed stochastic variables are (s, s,) and y,;, is equivalent to (s, s,).

2. Same situation as in Case 1, but with a population model. Here, the observed
stochastic variables are y,,, = {(y; : i € s,),5,,5}.

3. An observational study where s = (1,. . .,n)andy = (yj, . . .,y,) is modeled. Then
the observed stochastic variables are y,,; = {(y; : i € s,),S,}.

As an illustration we consider the case with nonresponse MCAR (the response variables
R; are independent with p, = P(R; = 1)) and hot-deck imputation. The case in Section 3.1
with a simple random sample is a special Case 1, and we found that for estimating the
population mean with the sample mean,

k= ﬁ, with f = (n —n,)/n =1 — p,, the nonresponse rate (20)
Restricting attention to linear estimates where the imputed estimator 6* estimates the same
parameter as 6, we will show that (20) holds in general for all the three cases above when
the nonresponse mechanism is MCAR and we have hot-deck imputation. First, however,
we consider the question whether hot-deck imputation always gives valid imputation-
based estimators such that this value of k can be used. The answer, in general, is NO. One
obvious requirement for an imputation method is that, at least approximately,

E@*ly,s) =0 2L

the imputed estimator should estimate the same parameter as 6. That is to say that
conditional on the full planned data, the expected value of the imputed estimator should
equal the full sample estimate. In Case 1, y is superfluous when s is given and (21) says
that E(é*ls) = 0. In Case 3, 5 is not stochastic and therefore unnecessary, while in Case 2
we need both y and s.

We consider estimates that are linear in (y; : i € s). The following results, proved in
Appendix A.5, characterize linear estimates satisfying (21) with hot-deck imputation and
show that for such estimators, k = 1/(1 — f).

Lemma. Assume =", a(s)y.. Then E(8%ly,s)= 6 if and only if ai(s) = a(s)
for all i € s.

That is § = a(s) Y, i = na(s)y,.

Remark. In Case 3, s carries no information and a;(s) = a;.
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Theorem. Consider 6= > e ai(s)y; and E(6*ly,s) = 6. Assume (3) holds. Then

E(k) = % ~Land k= 1/(1 - f) can be applied.

Let us look at some special cases:

1. With a(s) = 1/n, same as in Section 3.1, we see that (21) holds.

2. Regression coefficient for regression through the origin, 8 = S i/ >k xi. Here
(21) is satisfied with a = 1/ x;, and hence k = 1/(1 — f).

3. A case where (21) does not hold is estimating the regression coefficient in usual linear
regression where 8 = S — X)yi/ S (x; — ©)°. Here, a; = (x; — X)/Z;'Zl(xj - %),
not independent of i. One can show that E(,é*ly) ~ p,,é (exact "np'—__]l,é). Hence,
for regular regression problems hot-deck imputation cannot work. We note that from
Section 3.3 one can use k = 1/(1 — f) with residual imputation.

Obviously, when y is correlated to known x in a nonresponse group, one should utilize this
in the imputations regardless of the estimation problems under consideration.

7. Discussion

We have shown that it is possible to develop a general theory for multiple imputation that
does not require that the imputations are random draws from a Bayesian posterior
distribution. For stratified samples with stratified estimates there is a need for further
studies on which variance estimate to apply, either (8) using separate stratum
combinations given by (10) or the overall combination (1) with k given by (12).

We see from the cases presented in this article that the non-Bayesian MI formula depends
typically on a measure of the proportion of missing information in the response sample as
compared to the full sample. In the simplest case in Section 3.1 the missing information is
measured by 1/(1 — f), the inverse of the response rate. The higher this factor is, the more
weight on the between-imputation component. In the ratio model in Section 3.2 with
residual hot-deck regression imputation, the measure of missing information is the inverse
of the proportion of the x-total in the response sample compared to the full sample. We note
that in simple linear regression with the variance term independent of the explanatory
variable, the missing information is again measured by 1/(1 — f). A suggestion for further
study is to examine the possibility of generalizing this result by defining relevant measures
of missing information, using the basic defining formula (5) for determining k.

It also remains to study the performance of related confidence intervals. Some
preliminary simulation studies not included in this article show that for simple linear
regression with residual imputation and k& = 1/(1 — f), confidence intervals of the form
B+ z, /2\/W (where zq/, is the upper o/2-point in the N(O,1)-distribution) achieve
approximately the nominal level (1 — «).

A. Appendix

A.1.  Multiple Imputation for the Ratio Model in Section 3.2

Consider first the Condition (3) which is equivalent to E(62) = 2. Let

Bur =320y ¥ [Xurs and G = 521y = Buxi*/(nar = 1). Here, m,, =n — n,.
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Then one can express ¢ in the following way:

Xanr A A \2
X (Br Bnr))

1
G2 = ((nr - DG + (n,, — )62 +

4_Tl

In this case, E(Y; [yops) = Brxi + e\/xi, where e = Y e;/n,, and Var(Y; |yo) = xis2,
where se2 = nl Zs,(ei — 2)°. Using this, it can be shown that

i 4c, n— 1>

E@6Y = o*(1-—L - -
G2 U< n—1 (n—Dn, ¢ n-n,

where ¢y, ¢y, c3 lie in the interval (0,1). Hence, E(6%) = &2 and (3) holds for moderate and
large n,.

Next, we look at Var(B*|yoss) and E(B*|y.s). We see that B* = (B, X, + BuXn)/X,
and E(Burlyons) = Br + @/Xur) Yy, % and Var(Burlyons) = s2/X,r. This gives us
E(B*yors) = Br + @/X) >, /5 and Var(B*[yoss) = (X,r/X?)s2. It follows that

=, 5

S8y S8,

VarE(B* |yops) = Var(B,) + Var(e) + 27— Cov(B,,e)

X2
Now, Cov(B,,2) = 0. Using Cauchy-Schwarz inequality, (Zaibi)z =Y a?> b} with
a; =./x and b; =1, we see that (27:1\/971)2 = nX. It follows that Var(e) =
@2 /n)(1 = (X, v%)’/nX,) = (1 —d)o?/n, 0=di = 1, and (2, %)’ /X2 =
dyn, X, /X?,0 = d, = 1. Hence,

A o (1 —d)donyX, o2
VarE(B |yops) = — + o zmmrdnr 2
arE(B ) = G s "

Next we find that E(sez) =1 — nl) — Var(e) = o*(n, +d; — 2)/n,, which gives us

. X, o2
EVar(B |y0hs) = F —n+d —2)
ny

A.2.  Multiple Imputation in Simple Linear Regression in Section 3.3. A Summary
Proof of:

n—2

r

E(é*)=0'2E( -%),wheref=(n—n,)/n

67 =—15(SS,+SSm") where SSL=>", (v;—&" = B'x)* and SS"=3"  (v] — & — %)’
We can express the two residual sums of squares on the form

SSZ = Z(yi — & — ,érxi)2 + Z[(dr - &*)2 + (,ér - B*)xi]z

S =2 1= @y = Bt 4 > @, — &)+ (B, — Bl
5=5 S=8
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*

Here 4, é are the estimates based only on the imputed y;",i € s — s,.. It follows that

nr

E(SSE|Yobs) = np52 + 1, Var(@”lyops) + (fo) Var(B 1yobs) + 2n:%,Con(@”, B |obs)

= nrsf + 1 —f)se2 + 1 - cr)Sch,sez/SSx + 2nr)’c,f)'c,1,.s62/SSx

(with Xy = in J(n — nr))

S—8,

= ESS,lyons) = s {ne + £ =)+ c(1 = )+ 205 %uf (1SS} )

After some algebraic manipulations, we find that
E(SSY Iyons) = Y Var(Y] = Yy lyons) + > (i = %ur) Var(B,,|yons)
=23 (i = %) Cov(Y] = ¥, B, |yobe)
Ky
+(n = n)Var(G,, = &"lyoss) + ¢,58:Var(B,, = B"lyons)
+ 2(” - nr)xllrcov(d:r - aA*a BA:r - BA*lyObS)

1
22
+Xx
n—n, nrte SSx,nr

=(n—n,—1)s>+s? —2s3+<n—nr>{(1 ~f)s;

2 1 1
+c¢SSss; -

c 1
- 2(n— ) Xnr Xpr — Xnr 2
SSX7,1,+SSX SSX) +2(n—n,)x <fx SESS XnrS )

where  8S., = (xi—X,)’. We see that SS.,=>  x}—(n—n)xl=
¢SS, — (n—n,)x2., and therefore ¢SSy /SSxpr=14+(n— n,)xﬁr/SSx‘,m. It follows that

ESSY [yops) =57 ((n—=n,— D) +(1 —f ) +c; —2¢,+2f%, (n—n,)/SS,) (23)
From (22) and (23) we find that
A 2 1 - = 2
(n— 2)E(O%|yubs) =S, (I’l _f —c¢+ 2f_-xnrn-x) =S5, (n _f —cy)
SS,

Since E(c,ln,)zéZ?E(l —Riln)x?=(1—n,/n)=f, we have

(n=2)E(GD)=Es;(n—f —c)=E(n—f = c)E(s;s)=En—f - cr)n’n_ 252

,
n-—2

n,

= O'ZE{nr _ 2(n —f—E(c,|n,)} :O'ZE{

n,

(=20}

A.3. Logistic Regression with Binary Explanatory Variable. Separate Classes
Combination

We shall determine E([;l* [¥1.06s) and Var(ﬁl* [¥1.055)-
Conditional on  yy ,ps, nfl is binomially distributed (n; — ny,, 7).
Hence, E(n{||yiops) = (n1 — ni)#1,  and  Var(ng||yiops) = (11 — ny,) (1 — 7).
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Conditional on yj ,ps, ﬁ: is of the form T = log{(a+2)/(b— Z)}, where Z is
binomial (n,p) and a and b are constants. Taylor linearization around E(Z) = np
gives T = log {(a +np)/(b — np)} + (Z — np)(a+ b)/{(a + z)(b — z)} and

E(T) ~ +np
-

dVar(T) = ath ’ 1- 24
and Var(T) = @ =m0 np(1 —p) (24)

It follows that, witha = nllrand b=n, —nn E(B1 [¥1.06s) = B, and Var(B1 [V1.05s) =
(n1/{ny Aypmi (1 — 7Tlr)}) (ny — my) (1 — 7y,). Let fi = (ny — ny,)/ny be the non-
response rate in stratum s;. We see that

1 1
Var(131 [¥1,085) = fia Y =f11 = f1)-

n] 'ﬁ-lr(l - 7?-lr) nlrﬁ-lr(l - ﬁ'lr)

=f£1 = VB

A.4. Logistic Regression With Missing Values in a Binary Explanatory Variable

To determine Var(,é* ly, Xops) and E(B* ly, xops) We need to represent ,li in a different way
than in Section 5.2 for it to be the sum of two independent terms, conditional on the
observed data (y, x,p,):

(ﬂ11r+"1*1)(n00r+n50): 1 (nur +ny) 1 (nl()r+n1*0) Al A0

(m10r + ny9)(n01- + ;) (o1, +ng;) (noor + 1)

and Var(B:ly, Xons) = Var(ﬁlly,xhobs) + Var(B(ily,xopbs). Conditional on (y, Xop), 1y
is binomial (n} —n3,, p') where p' =ny,/nj,, and nj, is binomial (1, —n., p°)
where p° ”10r/”0r Then, from (24), we find that approx1mately E(B [y, X1 06s) =
log {p'/(1 4 1)} and Var(BLy, x1.05) = ( e (= p)) —nlr)p (1=ph.
Then Var(BLly, xi, obs) = [/ {nip' (1 = pHYy =11 = f! )/{nlrp 1I-p )} Similarly,
E(BL1y, 21 05s) = log (p°/(1 = p®)} such that E(B.ly, xup) =f. Also, Var(BLly, o) =
SO ngp°(1 = p) =101 = £9)/{ng,p°(1 — p°)}. We have that
1 o 11 1 I

,
_ = = + and ——M8M —— = —
n,p' (L —pYY npne,  nmi o neir ngp°(1 —p%  nyor  noor

and it follows that Var(B«|y, xops) = f'(1 — fHG- + 1) + £0(1 — FO L

nir nOl nior nOUr

).

A.5.  Proofs of Lemma and Theorem in Section 6

In order to prove Lemma and Theorem in Section 6 we need some facts. In all three cases
described in Section 6:

(a) n, is binomial (n, p,) and independent of s

(b) s, given n,,s is a simple random sample from s of size n,

(¢) PRR; = 1ln,)=n,/nand P(R; = 1,R; = 1|n,) =2 - % (follows from (b))
(d) E(Y*lyobv) =y (= E(Y*|Yas;nr) = )_)9 = E(Y*ly;s) =)

(e) Var(Y;lyops) = "’_1 6?2, where 0' 71 Zza,(yt 3,)°
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(f) E(67ly,s,n,) = 6% where 62 = -L-5" (y; — 3,)
(= Var(Y[ly,s,n,) = "1 6% = 6?)

(g) Var(le)Ia s,ny) :fél/nr = 62(% - %)

Proof of Lemma

E0°ly,s) = ESE[ > ais)yi+ > _ai$)YYons | |y, s

€5, ies—s,

=@ E(Z ai(s)yilyv S) +E< Z ai(S)le)IaS)

i€s, ies—s,

First term:

E(Z m(s)y,-ly,s) = E{E(Z ais)yiRily, s,nr> ly, s}

€5, i€s

n, A
= F (Z ai(s)yi; ly, S) =@ p,6

i€s

Second term:

_ 1
E( > ai(S)Yr|Y7S> = E{E (n—z > ais)y(l — Ri)Rj|Y7S7nr> Iy,S}

i€s—s, ries jes

1 n, n n—1
—O B[S 3 aoy (-t ‘
(n al(v)”(n n n—l)ly’g>

I ies jesjAi

1-p 1—p A
—(@ r . = " (na v —
=0 L% S aitsy =L (natsng, — )

iCs jEsjti n—1
where a(s) = Za,-(s)/n
i€s

This implies that E(8|y,s)=p,0+ lni"’l’ (n2a(s)y, — 0) and (21) < 6= na(s)y, =
a(s) > e, vi

Proof of Theorem

From Lemma, 6 = a(s) 3_,c, yi = na(s)y, and 6* = a(s) (Z vi + Z yf)

i€s, ies—s,

E(é*l Yobs) =D a(s)(n,y, + (n — n,)y,) = na(s)y,

n—1 ,
O-V

Var(0*| yors) = {a(s)}*(n — n,)

'
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Hence,
VarE(0*|Y ) = Var(na(s)Y,) = E{n*{a(s)}*Var(Y,|Y,s)} + Var{na(s)E(Y,|Y,s)}
=n’E([a(s)*{E{Var(Y,|Y ,s,n)|Y,s} + Var{E(Y,|Y,s,n,)|Y,s})
+ Var{na()E{E(Y,|Y,s,n,)|Y,s}} = n’E([a(s){ *E{(1/n,) — 1 /n)|s}
+Var(Y,|Y,s) +Var(na(s)Ys} = nE ([a(s) G*[E(1 /p,ls) = 11+0)
+ Var§=% n(E(1/p,) — DE([a(s)I*6?) + Var@
Next,

ny

EVar(9°|Y spy) = E([a(s)]z(n — )= 1 &3)

= E{(n — n)(1 = 1/np)a(s)PEG]IY, s,n,)} = E{(n — n,)(1/n, — Dla(s)]*67}
=@ {n(1 — p,) — (E(1/p,) — DYE([a(s)]*6?)

We find now, from (5),

(E(1/p,) — DE{[a(s))*6} B (EQ1/p) — 1)

Ek) = I - i
{A—p)— ;(E(l/i?r) - D}E{[a()]*¢?} 1 —p, — Z(E(l/ﬁr) -1

~Wp)-1 1
1_pr Pr
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