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Nonresponse Imputation with Multiple Sources
of Nonresponse
R. L. Hinde' and R. L. Chambers'

Abstract: This paper extends recent develop-
ments in imputation techniques which allow
for sample design effects as well as non-
ignorable nonresponse. A model which
incorporates multiple sources of nonresponse
is developed and a case study on data from
a survey of farms is presented.

1. Introduction

This paper further develops the regression
based approach to imputation for non-
ignorable item nonresponse in finite popula-
tion samples that was described in Chambers
(1988). In particular, improvements and
refinements to the algorithm in that refer-
ence are presented, as well as an extension to
allow for multiple sources of nonresponse.
Throughout, our emphasis is on imputation
in order to improve point estimation of
population quantities. The related issue of
imputation as a method of recovering popu-
lation variability, and hence improved
coverage properties for interval estimates, is
left for another time.

In the estimation of population quantities
it is not always necessary to impute for indi-
vidual nonrespondents. A class of estimation
schemes which adjust for nonresponse with-
out imputation are those which modify the
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sample weights (Oh and Scheuren 1983). A
special case of this approach is to simply
ignore the nonrespondents and treat the
respondents as the full sample. Such
approaches tend to be arithmetically equiv-
alent to imputation schemes, so that they
can be considered to impute implicitly.
Several techniques for item imputation
exist. One can substitute external or
previous information (Platek and Gray
1983). Bayesian methods have been devel-
oped (e.g., Chiu and Sedransk (1986) for
small sample surveys) but these have not
had a great effect in this field. Hot-decking
(Chapman 1976; Ford 1983) involves
judicious selection of a respondent’s value
for the imputed value. While this technique
is generally satisfactory and quite widely
used, it is difficult to assess analytically. In
hot-decking it is presumed that the variable
of interest is related to other variables
known for each unit, for example, stratum
or size variables. Imputation is achieved by
choosing an imputed value from among the
values of the respondents whose predictor
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variables are in some sense similar to those of
the nonrespondent. Regression imputation
(Little 1983) works on the same presump-
tion. A regression model is fitted to the
respondents’ data and imputed values for
the nonrespondents are obtained by using
their known predictor variables in the fitted
model.

In applying regression imputation to
sample nonresponse, two problems need to
be addressed. Firstly, one has to decide
whether the regression model used in
imputation should reflect sample charac-
teristics or whether it should reflect popu-
lation characteristics. In the latter case,
sample design effects need to be allowed
for by using design adjusted methods to fit
this model (Chambers 1986). The second
problem occurs if the nonresponse mechan-
ism is not ignorable (Little 1983; Little and
Rubin 1987; Rubin 1987), that is, where the
probability of nonresponse is related to the
value of the variable of interest. The use of
non-ignorable nonresponse models as well
as design adjustment for regression impu-
tation were considered in Chambers (1988)
and this paper continues with this approach.

Throughout this paper we assume that
nonresponse can be characterised by
the operation of a selection mechanism
(Heckman 1979). That is, the probability of
a nonresponse depends on the underlying
data value that we are attempting to
measure. Selection mechanisms are particu-
larly suited to the economic variables with
which we are mainly concerned. In par-
ticular, those variables for which non-
response is a problem are continuous and
become increasingly “sensitive” to public
disclosure as they either increase or
decrease. With the additional assumption
of underlying normality for the regression
residuals, such models have the further
advantage of being estimable from the
respondent data.
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Balanced against this, however, is the fact
that it is effectively impossible to test how
well the assumption of a normal selection
mechanism fits the observed nonresponse,
since the data required to verify such an
assumption (the nonrespondents’ data) are,
by definition, unavailable. If the nonresponse
is small, the distribution of nonrespondents
may not differ markedly from that of all
cases, and correct identification of the non-
response mechanism is not an important
issue. However, if the nonresponse is exten-
sive there is the possibility that the non-
normality induced by a selection mechanism
can become confounded with misspecifica-
tion of the regression model itself (Little and
Rubin 1987). In such cases, the analyst
should take some care when specifying a
model for the nonresponse process, and
other mechanisms for nonresponse should
also be considered, for example, a mixture
mechanism where each individual is first
classified as a respondent or nonrespondent,
and data values are then generated con-
ditional on this status. Models which
incorporate such a mixture mechanism are
easy to work with. Unfortunately, they
suffer from the drawback that they are
non-estimable (without access to the non-
respondents’ data) unless the nonresponse
is assumed to be ignorable or a Bayesian
approach is taken with appropriately speci-
fied priors for the parameters underlying the
distribution of the nonrespondent data
(Rubin 1987).

In the situation considered in this paper,
a follow-up survey of nonrespondents is not
possible. Given the essential non-identifi-
ability of the underlying nonresponse mech-
anism from the respondents’ data, our
approach therefore is to focus on a par-
ticular class of models for the nonresponse
(the normal selection models) which seem
subjectively suited to the variables of goncern
to us and to empirically evaluate their per-
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formance. Alternative nonresponse models
are therefore not considered any further in
this paper.

In Section 2.1 we introduce the basic
model for the item to be imputed. This
consists of a standard linear regression
linked to a selection mechanism that allows
for non-ignorable nonresponse. In Sections
2.2 and 2.3 respectively, we develop within
stratum and across stratum applications of
this model. In both, the selection component
of the model is fitted by a probit analysis
while the regression component equations
are solved via the EM algorithm. Section 2.4
compares these approaches to more standard
regression based imputation methods which
treat the nonresponse as ignorable. Sec-
tion 2.5 extends the methods developed in
Sections 2.2 and 2.3 to the case of multiple
sources of nonresponse. Section 3 provides
some empirical evidence for the perform-
ance of these methods by applying them to
survey data containing multiple sources of
nonresponse. Finally, Section 4 provides
some discussion on issues in nonresponse
imputation.

2. Derivation of Imputation Strategies

2.1. Preliminaries

Assume a finite population made up of
i =1,..., N units which can be split into
h =1,..., H relatively homogeneous sub-
populations or strata, each of size N,. Let
i € h denote a unit in subpopulation h. For
each i define a dependent variable Y; and a
column vector X; of p associated explana-
tory variables. Put Z, = (1, X/)’, where ’
denotes transpose, and let Y denote the
population column vector (Y;, ..., Yy)
and Z the corresponding N x (p + 1)
matrix (Z,,...,Zy). Nonresponse is
assumed to be a problem only with the vari-
able Y;. Throughout this paper the subscript
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0 will denote restriction to sample respon-
dents, 1 to sample nonrespondents and r to
non-sample units, while s will denote the
complete set of n sampled units. Expressions
such as Y,q, Z,,, and n,, then follow.

Given the assumption of within stratum
homogeneity, the vectors (Y;, X;)’, i € h will
be assumed to be independently and identi-
cally distributed, with

i K,
E [ ] [ " ] and
X, Hax

|:Y,:| |: Ohnyy C;IXY:|
cov = .

X, Onxy Onxx
We further assume that, for each unit i € A,

conditioning on X; leads to

Y|X, = ZB, + U

Y

(M

@

where the U, are independent (0, o32)
random variables. Note that if (1) is extended
to assume multivariate normality, (2) then
follows, with B, and o; functions of the
parameters in (1).

The nonresponse component of the model
assumes that there exists, for every unit, a
fixed but unknown threshold value C; and
an unobservable random variable V;, such
that unit i responds for ¥; whenever V; < C,.
These V, are assumed to be independent
9t(0, 1) random variables. In general, V;and
Y, may be related, so the nonresponse is
potentially non-ignorable. We model this
link by assuming that, fori e A

cov (Y, Vil|X) = @, >0
and

G = W

where W, is a vector of ¢ known predictor
variables, and A is an unknown parameter
vector. Because V;is normally distributed, it
follows that the probability that V< .C; is
®(W;’L), where @ denotes the standardized
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normal distribution function (and ¢ will
later be used to denote the corresponding
standardized normal density function). The
vector W, may or may not contain some of
the variables that occur in X;.

2.2.  Within stratum imputation

In this section we develop an imputation
strategy for the missing data vector Y,
that depends only on information from the
sample in stratum 4. The underlying regres-
sion model used in imputation therefore
reflects only the relationship between Y; and
X; for the sample units in this stratum. Note
that this information consists of:

i Y

. Z,
iii. That V,, < C,, holds
iv. That V,, > C,, holds

where < and > denote componentwise
inequality. The imputation methods described
in this paper rely heavily on taking expec-
tations conditional on this information.
Estimates of these conditional expectations
will be denoted E,,(.) in what follows.

Item (iii), combined with the fact that
cov (Y;, Vi|X;) = w, for all ie h, means
that the ordinary least squares estimator for
B, in (2), based only on the respondents’
data, is biased when ®, # 0. The infor-
mation (iii) and (iv) can be incorporated
into the model (2) by assuming joint nor-
mality of U; and V. Given X;, Y, and V] are
then jointly normal

X, ~N , (3)
| 0 o, 1

with independence between different (Y;, V;)’
vectors.

From this form of the model, estimates
for the unknown parameters B,, c;, and ®,

Journal of Official Statistics

in (3) can be calculated via the EM algor-
ithm (Dempster, Laird, and Rubin 1977,
Little and Rubin 1987). In the M-step of this
algorithm, maximum likelihood estimating
equations for these parameters are obtained
assuming Y,, Z, and V, are all observed. The
log-likelihood function is then

log L(By» o3, @43 Yi» Zy, V)
= —1N,log 2m) — N, log (o} — ©})
= 3ViVh = (Y, — Z,By — o, V)
X (Y, — Z,By — o, V})

and differentiation with respect to B, yields
the full information maximum likelihood
estimating equation

Zy(Y, — Z,By — 0, V) =0

with similar equations for o} and w,. In the
E-step the various functions of Y,, Z, and
V, contained in these full information esti-
mating equations are replaced by their
conditional expectations given the actual
sample information (i)-(iv), and the
equations solved. Since these conditional
expectations will typically depend on the
unknown parameters, they are calculated on
the basis of initial estimates of these par-
ameters. These two steps are then iterated
until the solutions to the likelihood estimat-
ing equations above converge. After some
algebra we can show that this process of
iterative substitution leads to maximum like-
lihood estimating equations with solutions:

Br = (ZinAwZi) ' ZigAw Yio “4)

. E, (Vi)Yo — ZiBs)

(’“)h = A , (5)
Ey(Vio Vio)

& = & + Yidw(Yo — ZwB)lme (6)

_ Ehs(Vw )Ehs( Vh;))

A, = 1 —
S A,
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L, is the n,y % n,y identity matrix and, for
1€ Sy

E,(V) = &Y, — ZiB,/6;
— oud(CI0(C) Q)
and
E,(V}) = [E.(V)F
+ ¢l = Lol

— o)) ®)
with
o = (1 — @}fep)n
and

5;‘ = (G — &h[Yz - Z;Bh]/ai)/(bh-

Equations (7) and (8) are derived by noting
that if i € s,, V; conditioned on the stratum
h sample data has a N(w,[Y; — Z/B,]/c3,
1 — w}/o?) distribution truncated to values
below C;.

Equations (4)—(8) depend on the unknown
quantities C; of the nonresponse component
of the model given in Section 2.1. These can
be replaced by C, = W/, where X is the
estimate of A obtained after fitting a stan-
dard probit model (see Kotz and Johnson
1986), with covariates W, to the indicator
vector for sample response and nonresponse.
Thus the estimation of B,, 62 and w, is done
in two stages: a probit stage to obtain the C;,
followed by a regression stage of iterating
(4)-(8), with C, used for C,. Imputed values
for the missing data vector Y, then follow
from

th = Ehs(Ym) = ZhlBh+ é)hEhs(Vhl)
)

where, for i € s,

E.(V) = o)l — oG] (10)
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2.3.  Across stratum imputation

The within stratum imputation scheme
derived in the previous section may be
unstable, especially if stratum sample sizes
are small. A lower mean square error may
be obtained by replacing B, in (9) by a
common P estimated across all the strata.
While this would produce a higher model
bias, this may be outweighed by its lower
sampling variability. One approach to con-
structing such a P is via an “average” popu-
lation level regression model of the form

E[Y|X] = ZB.

That is, a model for the conditional expec-
tation of Y; given X; where i is some arbi-
trarily chosen population unit. It can be
shown (Chambers 1986; Chambers 1988),
that, given (2), estimation of B in such
an ‘“‘average” model requires one to simul-
taneously adjust for differential stratum
sampling fractions and the non-ignorable
nonresponse mechanism operating within
each of the strata. This leads to an estimator
B of B of the form

~ AN AN
B = (Z'2)'(2Y)

(11)
where
N N,
z2zZ = Y272, (12)
n Hy
and
N\
'Y =

M’ ’ ;7
Z - (Z’IO ),hO + lel Ehx()/hl ))
h

(13)

Here E,,(Y,,) is the vector of within stratum
imputations (9). Final across stratum impu-
tations for the vector Y, are then given by

?hl = ZhlB + d)hEhs(Vhl) (14)

where E, (V) is derived from (10).
It has been pointed out by a referee that
the definition of an “average” B via (11)
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above does not represent the only way one
can stabilize the imputation process. Other
possibilities include fitting models of the
form

EY|X;ieh = o + X/B

corresponding to the assumption of common
slope parameters across strata. Although we
do not consider this model further here, it
does represent an alternative to the within
stratum model considered in Section 2.2,
and would be well worth considering if the
estimated slope coefficients from (4) were all
“close” to one another.

2.4. Regression imputation techniques that
assume ignorable nonresponse

If one is prepared to assume nonresponse is
ignorable then the simplest imputation
method is to fit (2) via ordinary least squares
to the respondent data within each of
the poststrata and then impute via Y, =
Z, Bh,OLS where

E’h,OLs = (ZiZiw) ' Zi Y- (15)

On the other hand, if one assumes (2)
holds at population rather than stratum
level then standard design adjustment ideas
(Chambers 1986) lead to weighted least
squares (WLS) imputations defined by
Yy = Zy Bwis where

- N, !
BWLS = (Z — Z;rOZhO>

h o

N, ~
X Z — Z10ZyoBrovs-

h Mo

(16)

The imputation methods developed in
Sections 2.2 and 2.3 are extensions of these
ignorable nonresponse imputation methods.
To see this, consider the situation where the
nonresponse model developed in Section 2.1
has constant C; values, so the nonresponse is
ignorable. One would then expect the C, also
to be constant apart from random variation.
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Table 1. Relationships between regression
imputation procedures

Regression model Type of nonresponse

Missing at Selection

random mechanism
Varies between OLS Within
poststrata Procedure Stratum
Procedure
“Average” WLS Across
population level  Procedure Stratum
model Procedure

It can be shown that if the C, are constant
then the within stratum imputations in
equation (9) reduce to the OLS imputations
defined by (15). Thus the OLS imputations
provide a convenient benchmark which can
be used to assess whether the probit stage of
the within stratum procedure is effective.
It can also be shown that if the C, are
constant then the across stratum impu-
tations in (14) reduce to ¥,, = Z,,p with

R N, R/ R
B = <Z L Zl:ths> z -2 ZZ,, Bh,OLS'
n My n hy
a7

This is similar to the WLS formula (16), the
difference being that (17) contains a design
adjustment that allows for the known non-
respondents’ predictor variables Z,,. Once
again, the WLS procedure, given by (16),
provides a benchmark which can be used to
assess the effectiveness of this extra level of
design adjustment and the probit stage.
The relationships between these different
imputation schemes are shown in Table 1.

2.5. Multiple sources of nonresponse

Consider the situation where nonresponse
can be categorised as due to any of K
possible causes, and is non-ignorable. This
can be modelled by the movement of K
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independent censoring variables (V:
k=1,...,K) across K thresholds (C,:
k =1,..., K).Aresponse corresponds to

all K censoring variables staying below their
thresholds simultaneously while for a non-
response to occur, at least one of the V;
must exceed the corresponding C,,. Keeping
the same W, to model each of the K cat-
egories of nonresponse, the model (3) now

becomes, foralliehandk =1,..., K
Lo 02 2] e
Vi 0 o, Iy
and
Ce = W'k 19
where now V,= Vi, ..., Vy), o, =

(@45 - - -, W), Ok 1s the zero vector of order
K and I is the identity matrix of order K.

For practical reasons, we restrict our-
selves to the situation where each nonres-
pondent is uniquely allocated to a single
known nonresponse category. The infor-
mation from the sample in stratum % will
then include (i)—(iii) of Section 2.2, where ¥,
is now the n, x K matrix whose rows
consist of the V; for the respondents in
stratum 4 and the corresponding rows of C,,
consist of the vectors C/ = (C;y, . .., Ck)
for the same i. Let ¥V, denote the matrix
whose rows consist of the V; for the cat-
egory k nonrespondents in stratum A, with
C,x defined similarly. The sample infor-
mation about the ¥, depends upon the
process determining this allocation. For
example, suppose the censoring is carried
out in a sequential manner, so that ¥V}, is
determined prior to V,,, and so on, until
either a censoring event takes place, or all
Vi < Cy. The sample information about
the values in V), is then:

(iv) That V,, > C, and Vj

y

., k — 1, hold.

< G,

j=1,..
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Notice there is no sample information about
the V;, j > k, since it is assumed that
these values have no effect on a category k
nonrespondent.

The application of the EM-algorithm for
K categories is a straightforward extension
of the single category case. It turns out
that the probability process by which non-
respondents are allocated to a unique
nonresponse category has no effect on the
algorithm’s solution, which is

B = (ZinAwZi) ' ZigAw Yio (20)
o, = (Ehs Vio VhO)_IEA‘hs(Vh/O)(YhO - ZhOBh)
(21)
& = @0, + Yiodn(Yie — ZioBu)/mo
(22)

where

AhO = IhO - Ehs(Vho)(Ehs(Vhﬁ V;xo))_l
X EAhs(VhE))'

From (18) we see that

VIY, X, ~ R(e,[Y; — ZB,l/oi,

Iy — 031103;,/0/21)'

Ideally, the conditional expectations of V,
and V3 V,oin A,, above are then obtained by
appropriate integration of this K-dimensional
distribution over that region of #£* defined
by the restrictions Vj,, < Cj,. In general,
this will require numerical integration. First
order approximations to these conditional
expectations can be obtained by setting
the off-diagonal entries in the conditional
variance-covariance matrix of V; above to
zero. Using this approach gives (7) and (8)
where V,, &,, ¢, and {, are now K x 1
vectors, and all operations on vectors are
taken as being elementwise. Imputed values
of Y, for category k nonrespondents in
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stratum /4 are then obtained from

Y = E(Yw) = ZubBy + Eu(Vi)d,.
(23)
Unfortunately, evaluation of E, (V;) for
i € 5, depends on the method of allocation
to the nonresponse categories. Under (iv)
" above, this will be, for a category k non-
respondent

- &(C)Io(C;) j<k

EV; = (bl — @€y j=k
0 j>k

24

Similarly, the across stratum imputation
method of Section 2.3 can be extended to
allow for multiple nonresponse categories.
In particular, (11) still holds, but with

//\ Nh ’ ’
'Yy = Zn_ Zy Y + ;thEhs(th)
h h

(25)
where E, (Y,,) is the within stratum impu-
tation (23). It follows that the across stratum
imputation for category k nonresponse in
stratum £ is

I?hk = thB + Em(th)&h~ (26)

Note that the OLS and WLS imputation
methods described in Section 2.3 depend
only on respondent data, and are there-
fore unaffected by multiple sources of non-
response.

3. Application

In this section we apply the techniques
developed in Section 2 to data from the
Australian Agricultural and Grazing Indus-
tries Survey (AAGIS). This is an annual
survey carried out by the Australian Bureau
of Agricultural and Resource Economics
(ABARE). The survey covers Australian
farms involved in cereal crops and livestock
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production. AAGIS data from an earlier
survey were used in a case study of single
source nonresponse imputation by Cham-
bers (1988).

The surveyed variable of interest here,
and one for which nonresponse occurs, is
total farm debt (). Each sampled farm i in
the AAGIS has weight a; > 0 associated
with it. This weight is calculated by a
modelling procedure (Bardsley and Cham-
bers 1984) which reflects both the sampling
fraction within the farm’s stratum as well as
its associated size variables. In forming
estimates of population averages for vari-
ables (e.g., Y above) for which there is non-
response, current practice is simply to delete
sample farms for which the variable is not
available, and not reweight the remaining
responding farms. Mean farm debt is
therefore estimated by

M- Tav/Ta

ieso iesg

@7

where s, denotes those sample farms which
provided debt information in the survey. It
can be seen that (27) implicitly imputes the
weighted mean M for debt nonrespondents.

This approach can lead to bad item
imputations, as well as bad overall estimates
of average farm debt, for two reasons. The
first, as already noted, is that there can be a
relationship between the response probabil-
ity and the value of the debt variable, given
the size characteristics of the farm, leading
to non-ignorable nonresponse and hence a
biased estimate. In this situation the debt of
nonrespondents will actually follow a dif-
ferent regression model to that of respon-
dents. The second is that even if no such
relationship exists, nonresponse can still
lead to a biased estimate because of differ-
ences between the size characteristics of
respondent and nonrespondent farms. This
is the so called ““unconfounded” or “‘missing
at-random” situation (Pfeffermann 1988;
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Rubin 1976). In either case, it should be
possible to improve on (27) by modelling
the relationship between farm debt and
other covariates for which there is no non-
response, including a nonresponse com-
ponent to allow for possible non-ignorable
nonresponse, and generating imputed
values for the nonresponding farms accord-
ing to the theory developed in the previous
section. :

In practice, debt nonresponse for AAGIS
farms is allocated to one of three different
categories:

i. Business structure too complex. Debt
exists but not collected.

ii. Refusal by sample farm to provide
debt information.

iii. Sample farm has debt but is unsure
about debt details.

The distinction between these three types
of nonresponse is made because there is
reason to suppose that very different debt
models and nonresponse mechanisms may
apply to them. One would expect all three
categories of nonrespondents to have non-
representative size characteristics so that
the regression stage of the model should
improve the imputation process. However,
one would not expect nonresponse to be
non-ignorable in all cases. In particular,
category (ili) nonrespondents typically
represent farms who are willing to provide
debt information, but whose accounts are
unavailable at the time of interview. Debt
details for some of these category (iii) non-
respondents are obtained from their account-
ants at a later date, thus providing data for
checking on the adequacy of the nonresponse
imputation carried out for these farms.
Since such farms represent “late” respon-
dents, rather than nonrespondents, it is not
unreasonable to expect that the selectivity
bias adjustment in the procedures described
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in Sections 2.2 and 2.3 should not improve
the imputations for category (iii) nonrespon-
dents in these data.

The imputation formulae derived in
Section 2.5 implicitly assumed that it was
possible to decide on the underlying method
by which nonresponse categories were
allocated. In particular, it was suggested
that units are allocated to these categories in
a sequential manner. Such sequential behav-
iour is not inconsistent with the ordering of
nonresponse categories above, and this
approach was therefore taken. Other, more
complex allocation schemes are possible
to formulate for this situation, but it is
expected that the difficulties in applying
formulae analogous to (24) would outweigh
any potential advantages.

By definition, nonrespondent farms in
categories (i) and (iii) have non-zero debt. It
was assumed that the category (ii) non-
respondent farms also have non-zero debt,
as a farm with zero debt is unlikely to refuse
to provide debt information. All responding
farms with zero debt (about 20% of the
sample respondents) were therefore excluded
from the modelling process. This resulted in
an effective sample size of 753 consisting of
626 respondents, 33 category (i), 26 category
(ii), and 68 category (iii) nonrespondents.

Various combinations of predictor vari-
ables were examined. For the probit com-
ponent of the model, the final set of predic-
tor variables used in the W, were: wheat
production, number of sheep, number of
beef cattle, and two zero-one flags indicat-
ing whether a farm was new to the sample
and whether it was a family farm. For the
regression stage, the final set of X; predictor
variables were: interest paid, total cash costs,
total cash receipts, depreciation, and change
in land value, based on a one-year period.
Since a preliminary inspection of the regres-
sion of Y; on X; had indicated substantial
residual heteroskedasticity, all variables
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Table 2. Total debt ($1000’s) of the 29
category (iii) nonrespondents for which debt
details eventually became available

Poststratification

scheme

L1 L2 L3
Actual Debt 8,140 8,140 8,140
Current Procedure 2,330 2,330 2,330
OLS 7,640 7,030 7,200
WLS 7,000 7,320 7,260
Within Stratum 26,150 16,500 9,150
Across Stratum 6,960 6,800 7,380

included in the regression analysis (includ-
ing farm debt) were transformed to the
logarithmic scale before fitting (2). A square
root transformation was also investigated,
but did not control the heteroskedasticity as
well. Since imputations are required in the
original untransformed scale, all values
generated by the imputation procedure
applied to the transformed variables were
corrected for transformation bias before use
as imputations in the original scale.

The analysis was performed at three dif-
ferent levels of poststratification, denoted
L1, L2, and L3 in Table 2 above. These
correspond to increasing levels of aggre-
gation of the sample farms on a geographic
by industry basis. At each level, the analysis
compared the current mean imputation
procedure to the within stratum, across
stratum, OLS, and WLS imputation tech-
niques. (In equation (22), n,, was replaced
with (n,, — p — 1) to reduce the esti-
mator’s bias.)

As noted earlier, the actual data available
for this analysis allowed a partial verifi-
cation of these imputation techniques. For
nonrespondents in category (iii), debt
details are sometimes obtained at a later
date, through direct access to farmers’
accounts. Consequently, the actual debt
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values for 29 of the 68 category (iii) non-
respondents eventually became available.
By comparing the results of the different
imputation schemes for these late respon-
dents, as shown in Table 2, an idea of their
performance can be gained.

Any general conclusions concerning the
effectiveness of the various imputation
methods based on the data in Table 2 must
be tempered with caution since 29 is a small
number of observations and, as we shall see
later, those category (iii) farms for which
debt data are finally obtained are certainly
not representative of all category (iii) non-
respondents. However, the following points
are worth making:

e The within stratum imputation pro-

cedure is quite unstable.

e The current practice of using the mean
debt of respondents to impute for the
debts of nonrespondents also appears
to be inferior to both the OLS and WLS
approaches. (However, this observation
needs to be qualified: The data used
in simulating the current approach
in Table 2 were based on preliminary
debt values obtained from responding
farms. These values are subsequently
updated as accountant data become
available for these farms. It is known
that this updating process leads to an
overall increase in debt values, so that
imputations derived from the current
approach can be expected to under-
estimate final debt values.)

o There are only marginal differences in
performance between the across stratum
imputation method, which allows for
non-ignorable nonresponse, and the
OLS and WLS imputation methods,
both of which assume ignorable non-
response. From this we conclude that
the probit stage (which is meant to cor-
rect for non-ignorable nonresponse)
has not improved debt imputation for
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Table 3. Estimated mean debts and standard errors' ($1000’s) based on imputed data®

Current WLS Across
Procedure Stratum
New South Wales 88.3 89.9 90.8
8.4) 7.7 (7.4)
Victoria & Tasmania 45.2 47.7 47.8
6.1) 5.9 (6.0)
Queensland 101.0 102.9 102.8
(25.1) (22.5) (22.5)
South Australia 81.8 82.4 83.4
(5.6) 4.9) 4.8)
Western Australia & 109.9 115.3 113.5
Northern Territory (14.6) (13.0) (13.2)
Australia 80.5 83.6 83.7
(5.4) (5.0) (5.0)
Type (i) nonresponse 80.5 58.4 42.1
(5.4) (2.0) (10.0)
Type (ii) nonresponse 80.5 56.4 63.3
(5.4) 1.7 (8.3)
Type (iii) nonresponse 80.5 156.9 159.8
(5.49) (4.6) 8.1

Note: 1. Standard errors computed via jackknifing.
2. L2 poststratification for WLS and across stratum procedures.

these 29 units. This result was not
unexpected since, as mentioned earlier,
there was no reason to expect category
(iii) nonresponse to be non-ignorable.

e The OLS and WLS procedures give

similar results for these farms.

Given the observed instability of the
within stratum procedure in Table 2 and
since the OLS procedure is equivalent to the
within stratum procedure without the probit
stage, only the current mean imputation
methodology and the WLS and across
stratum procedures were investigated
further. In the case of the latter two impu-
tation procedures, we also confined atten-
tion to the L2 poststratification, since this
seemed to achieve the best balance between
allowing different regression regimes for
different farm “types” and large enough
sample sizes within poststrata so as to
stabilize the maximum likelihood esti-

mates calculated under these imputation
procedures.

Table 3 shows the overall mean estimates
generated by these three imputation
schemes using all the data after deletion of
obvious outliers. The numbers in brackets
are jackknifed estimates of standard error
for these estimates. Note that these imputed
means are all weighted as in (27) and include
zero debt respondents.

The data in Table 3 clearly show the
current imputation procedure leads to esti-
mates of average debt that are biased down-
wards for category (iii) nonrespondents. On
the other hand, category (i) and category (ii)
nonrespondents appear to have smaller
average debts than suggested by the current
procedure. Furthermore, estimates of
average debt based on across stratum
imputed debt values for all types*of non-
response are less stable than those generated
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by the WLS procedure. For category (ii) and
(iii) nonresponse it was therefore concluded
that the probit stage of the across stratum
imputation approach had no significant
modelling advantage over the simpler WLS
procedure, that is, there appeared to be no
evidence that the nonresponse was not mis-
sing at random. For category (i) non-
response, although the standard error of the
across stratum imputed mean was high
($10,000) the estimate was 1.6 standard
errors away from the WLS estimate. While
this result is inconclusive, it suggests
that this category of nonresponse is non-
ignorable (so that the probit stage is reduc-
ing bias in this case), but this is being
masked by the small number of data points
(33 category (i) nonrespondents) and the
conservative nature of the jackknife vari-
ance estimator used to assess the signifi-
cance of the bias.

As an aside, it is interesting to note that
the 29 category (iii) nonrespondents for
whom debt details subsequently became
available, have disproportionately large
debts when compared with the 68 category
(iii) nonrespondents in the survey in total.
This can be seen by comparing mean debt
estimates for the WLS and across stratum
imputations of category (iii) nonrespon-
dents in Table 3 ($156,900 and $159,800)
with the corresponding imputed average per
farm debt implied by the data for the L2
stratification in Table 2 ($252,413 and
$234,483). Thus although the debt data for
.category (iii) farms can be considered as
missing at random, it is clear that there is a
large variation in the X; values for these
farms which is exploited by regression
imputation, but not by mean imputation.

4. Conclusions

Recently developed imputation techniques
(Chambers 1988) have combined the use of

Journal of Official Statistics

linear regression adjusted for sample design
effects and a normal selection mechanism
for non-ignorable nonresponse. This paper
has streamlined the use of the iterative EM
algorithm in fitting this model as well as
developed it further to account for multiple
sources of nonresponse.

A case study on farm debt nonresponse
imputation in the Australian Agricultural
and Grazing Industries Survey has given
mixed support for these techniques. It has
demonstrated that regression based impu-
tation with allowance for sample design
effects can improve considerably over less
sophisticated mean imputation techniques.
It has also given some indication that
inclusion of a selection mechanism can
further reduce bias due to non-ignorable
nonresponse. However, the price paid for
this bias reduction is a substantial increase
in variability of the survey estimates of
interest, so that the overall benefit is debat-
able. Thus one could argue that a “missing
at random” imputation strategy (e.g., WLS)
should be the method of choice unless there
are strong a priori reasons to believe that
nonresponse is strongly non-ignorable, in
which case an imputation methodology like
the across stratum method investigated in
this paper could be considered. Further
studies may clarify this.

Finally, both an associate editor and a
referee have queried the sensitivity of the
suggested imputation procedures to the
assumption of normality. In the context of
the regression model specification, this
assumption relates to the distribution of the
population regression residuals after appro-
priate transformations of Y, and X, and is
therefore unremarkable. What is of some
concern is the assumption of a selection
mechanism for the non-ignorable non-
response. As Little and Rubin (1987) point
out, finding the “right” transformation
under selection type nonresponse (that is,
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one that transforms the distribution of the
population residuals to normality but leaves
sample selection effects unchanged) may be
impossible given only respondent data since
any a priori non-normality in these data will
be confounded by non-normality induced
by the nonresponse selection mechanism.
This is certainly an issue that needs to be
considered if there is extensive nonresponse.
However, for the application we have in
mind (the AAGI survey), the nonresponse is
not extensive, and there does not seem to be
any reason to worry unduly about such con-
founding in this case.
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