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On Autoregressive Model Identification

Ette Harrison Etuk!

Abstract: Since Cleveland (1972) introduced
the inverse autocorrelation function, it has
been recognized as a competitor to the partial
autocorrelation function as a time series
model identification tool. By using simulated
and real data, we have demonstrated that
neither of these is consistently more powerful
than the other for identification of autore-
gressive (AR) models. However when the
underlying AR process is of full order, the
partial autocorrelation function invariably is
the superior. But when a subset order AR

1. Introduction

Since Yule (1927) introduced autoregressive
modelling, it has played a significant role in
the analysis of data recorded sequentially in
time or space. The basic component of all
time series models is the white noise process
defined as a sequence {g} of uncorrelated
zero mean and constant variance random
variables. A mean corrected time series { X}
is said to be an autoregressive process of order
p (designated AR(p)) if it is a stationary solu-
tion of the following difference equation.

X+ oy Xy + X,
+...to, X, ,=¢,

(1.1)

where the a; ’s are constants. For stationarity,
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model generates the data, the inverse auto-
correlation function is generally more infor-
mative. On the whole the partial autocorrela-
tion function exhibits better performance.
For instance, in two of the three cases of real
series used it clearly outperforms the inverse
autocorrelation function.

Key words: Autoregressive model identifica-
tion: partial autocorrelation function;
inverse autocorrelation function.

the characteristic polynomialﬁ oz, o, =1,
must have zeros outside the 1111101t circle.

Any stationary time series can be expres-
sed as an infinite-order autoregression. Auto-
regressive modelling therefore involves the
approximation of the autoregression by a
finite order one of the form (1.1). Thus the
order, in essence, constitutes an additional
parameter to be estimated. This order deter-
mination represents a major obstacle since
underfitting increases the residual variance
while overparametrization decreases the reli-
ability of the model. Model identification
involves more than order determination; the
relative contribution of the parameters to the
model structure should also be estimated.

A diagnostic aid for autoregression order
determination is the partial autocorrelation
function (PACF), advocated for this pur-
pose by Box and Jenkins (1976). It is known
to cut off at lag p for (1.1). Hence its estimate
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indicates a possibility of an AR(p) compo-
nent of the underlying model, if it fails to be
significant after lag p. A similar tool, the
inverse autocorrelation function (IACF), has
been introduced by Cleveland (1972).

The question of which is better in AR
model identification has engaged the atten-
tion of many researchers since the introduc-
tion of the IACF. Cleveland (1972), Chat-
field (1979), Hipel, McLeod, and Lennox
(1977), and Oyetunji (1985) to mention a
few, believe that the IACF is the better.
However, McLeod, Hipel, and Lennox
(1977) observe that in certain time series ap-
plications, the PACF is comparatively better
in specifying the model. Abraham and
Ledolter (1984) have demonstrated that the
PACEF is more powerful in identifying purely
AR processes.

It is the objective of this work to further
investigate the relative merits of the two
methods. Like Abraham and Ledolter
(1984), we simulate AR models and observe
the frequency with which the functions detect
certain features of the model. We observe
the effect of the nature of roots of the char-
acteristic equation of the underlying model,
the sample size, and the distance of the
model from the boundary of stationarity on
their comparative performance. Another
factor of variation of interest is whether the
model is full order or subset order. Inspired
by the work of Bhansali (1983), we use the
intuitively appealing autoregressive esti-
mates of the TACF, having generated AR
models. Since the estimation of the func-
tions, especially that of the PACEF, is inextri-
cably tied to that of the model, the nature of
their estimates depends on the mode of
model estimation. Our Monte Carlo study
uses the Yule-Walker approach to auto-
regression estimation. However in Section 6
we use also Burg’s estimates of the IACF and
PACEF, to illustrate our results on some real
series.
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2. Partial Autocorrelation Function (PACF)

Suppose we write (1.1) more specifically as

Xt + OlplX,_l + apz‘Xt_Z + ... +0.p = 8, (2.1)

p
where o is the jth coefficient of an AR(i)
model. The last coefficient a,, is called the
partial autocorrelation of lag p.

The sequence {a,,}, regarded as a func-
tion of p, is the PACF of {X,}.

Letu = E (X)), vk = E[(Xr0) (X )] =
y_k,andgk=z—k ,k=0,%1,%2,.. bethe

o
mean, autocovariance of lag k, and autocor-

relation of lag k, respectively, of {X,}. They
can be estimated by
- 1 N 1 N - -—_
X= N 2 X, C =N 3 (XrX) (X X),
i=1 t=k+1
Ck
=—=,k=0,1,2,3, ...
andrk CO > s 15 >

respectively, from a realization, X;, Xo,...,
Xy, of {X}}.

Contemporary techniques of AR model-
ling use automatic order determination crite-
ria whose minimum within a specified order
range gives the optimum order.

Criteria like

FPE (p) = 6X(1 +ﬁ ), p=0,1.2,...,
(Akaike (1969))

FPEa(p) = (1+ B‘A-[p—) (1—Wp)_16,2,,

a>0,p=0,1,2,...,
(Bhansali and Downham (1977))

AIC (p) = Ninc} +2p,p=0,1.2,...,
(Akaike (1977))

BIC (p) = NinG2- (N-p) In (1-5) +pinN
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G
+pln {p™! (5_ 1)}p=012,.,
? (Akaike (1977))

SIC (p) = Nln&,z, +plnN,p=0,12,...,
(Schwarz (1978))
1o 1y 1 _
~n (Z @)-5r=12
CAT,(p) =
~-(1+
( N) (Parzen 1977))
1 £ 1 1
CAT3(P)—_( Z 62)_ Az s
]
p=0,12,.., (Tong (1977))
Sy(p) = (N +2p) Gg,p =0,1,2,...,

(Shibata (1980))

¢ (p) =InGz + N'2pcinin N,c>1,p=0,1,2,...

(Hannan and Quinn (1979))

are to mention a few, where 63 and &; are the

least squares and maximum likelihood esti-
mates of the residual variance, respectively.

An approximate least squares estimate

(Yule-Walker estimate) of (2.1) can be
obtained by the use of the recursive formula:

k

rk+1—j§1akj Tit1-

Pres1 = Qs 1, k41 = k. >
1- 2 ay;r;
=1 kit

&k+1,j = &k,j‘ Or+1 &k,k—j+1,j =12,.,k

Another method of autoregression estima-
tion is the maximum entropy method pro-
posed by Burg and formalized by Andersen
(1974).

Under the hypothesis of an AR (p) model,
it is well known that the estimated partial
autocorrelations of order p+1 and higher are
approximately independently distributed
with E (a,) = 0, and
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2.2)

3. Inverse Autocorrelation Function (IACF)

For a stationary stochastic process {X,} with
spectral density function f(w), Cleveland
(1972) has defined the inverse autocovari-
ance of lag k as

7T
yik=f ek fi(w)dw =yi, k=0,1,2,...
-

where fi (w) = f ( y The inverse autocorrela-

tion function is defined as

Ve
Ol = vi, ,k 0, 1,2,... .

An equivalent but time-domain definition of
vi, is given by Chatfield (1979).

Using the duality between AR and moving
average processes, it has been shown (Cleve-
land (1972); Chatfield (1979)) that for the
AR (p) process (1.1), i, is given by

p-k
(ak+ /El a]-a]-+k)/ 1+]§1a
Qi = k==x1,...,%p
0,|k|>p 3.1)
and
p
(1 +2a )o?, (3.2)
where
o? = var (g,). -
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Cleveland (1972) has suggested two meth-
ods of estimating @i, stemming from two
methods of spectrum estimation, viz., the
autoregressive and window methods. The
autoregressive method, which is quite popu-
lar, consists of approximating the process by
an AR model of sufficiently high order p for
a good fit, estimating the parameters of the
model and using the estimates in equations
(3.1) and (3.2) to obtain an estimate of
IACF.

The subjectivity introduced in choosing p
poses problems. Hipel, McLeod, and Lennox
(1977) suggest trying four values of p between
10 and 40 (where p < N/4) and choos-
ing the value of p which gives the most
representative graph of the resultant inverse
autocorrelation estimate ri, against lag k.
Chatfield (1979) advises against the use of
automatic criteria like the AIC, BIC, etc.
since for determining p optimal parametric
parsimony is not of interest. He however
warns that p must not be so large as to make
the variance of the estimates too high; the
choice of p must be such that for high lags,
the estimates of the inverse autocorrelations
approach zero. He suggests some form of
trial and error until the foregoing criteria are
met. Hosking (1980) suggests that p should
vary with the sample size N. In their work
Abraham and Ledolter (1984) use the values
of 5 and 10 for p since their simulated models
had lower orders and report the results for p
= 10 after observing the results for the two
values to be similar.

The window method involves smoothing
the periodogram. A good exposition on this
approach is given by Priestley (1981). Other
methods of estimation of IACF include those
proposed by McClave (1978) and Chatfield
(1979).

Hosking (1980) has shown that for a station-
ary time series, N'? (ri, — i;) is normal with
mean zero and covariances given by
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cov (i, Fig+,)

[e o]

1 .. . .
= _]V vz {le 0Ly + Oy k1 Oly+k

—00

— 20y Qi — 2Qik+ Ofy Qlyy} a8 N — 0.

Thus for an AR (p) process, asymptotically,

p
var(rik)'—*-]%/— {1+2% 0i,%},k>p. (3.3)
v=1

4. Simulated Data

Eight AR(2) series with (0;, a,) equal to
(~1.68, 0.70), (0.00,-0.78), (-0.66, 0.10),
(0.00,-0.15), (-1.08, 0.77), (0.00, 0.89),
(-0.46, .0.08) and (0.00, 0.10) are simulated
independently twenty times each. In the
sequel, we shall refer to them as series I
trough VIII, respectively. Table 1 shows
which of them have characteristic equations
with real or complex roots and those close to
or far from the boundary of stationarity.

Table 1. Categories of simulated series

i Realroots Complex roots
Close I, 1T Vv, VI
Far I, 1v VII, VIII

The motivation for this choice of models is
the need to cover the parameter surface. We
also use sample sizes of 50, 150, and 250 for
each series.

The white noise process for each simula-
tion is a sequence of pseudorandom numbers
generated using the RAN function of the
FORTRAN 77 language. The sequence is
made approximately standard normal.

-
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5. Results

We, as did Abraham and Ledolter (1984),
use the critical region +2 N1 for assessing
the performance of both criteria. We also use
p=>5 and p=10 and compare the results.

Like that of Abraham and Ledolter (1984)
our observation is that the PACF detects the
significance of the lag two coefficient more
than the IACF for all the models. This is
especially true for full-order models, those
with characteristic equations having real
roots and those close to the boundary of sta-
tionarity. Both the performance of each cri-
terion and the relative performance of the
IACF increase with sample size. IACF also
performs better for p = 5 than for p = 10.
We have observed also that both functions
are good at detecting zero third-order com-
ponents.

Table 2. Frequencies of the events
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To examine their relative power in order
determination, we note the frequency with
which each has a significant second-lag value
and a non-significant third-lag value. Coeffi-
cients at higher lags were observed to be non-
significant. Table 2 shows our results. Clea-
rly, the PACF excels for all the models and
for both lags. The larger the sample size, the
better the comparative performance of the
IACF.

Comparing their potential for correctly
detecting a;, we find that while the IACF
excels for subset-order models, the PACF
excels for full-order models. Our result for
the subset-order models supports the claims
of Cleveland (1972) and Chatfield (1979), to
mention a few. The details of the results are
in Table 3. The IACF is more powerful espe-
cially when the underlying subset-order

{ Q15 Oaa, Giz):| Gy | > 2NT2, | Qg3 | < 2N'2} and {riy, ri, ris} < | iy | > 2N7"2, | riy | <2N712)

N=50 N=150 N =250 Total
Series IACF 0 0* 1 1* 5 5* 6 6*
PACF 12 13 10 5
SeriesII IACF 18 20* 18 20* 15 20* 51 60*
PACF 19 20 18 57
Series ITT IACF 0 0* 0 0* 4 5* 4 5*
PACF 2 2 11 15
SeriesIV IACF 3 0* 4 1* 10 11* 17 12*
PACF 3 3 11 17
Series V IACF 10 5* 20 20* 20 19* 50 44*
PACF 19 19 20 58
Series VI IACF 20 20* 16 20* 19 19* 55 59*
PACF 19 20 20 59
Series VII IACF 2 1* 5 4* 5 4* 12 9*
PACF 3 7 5 15
Series VIII IACF 0 0* 7 8* 7 5* 14 13*
PACF 1 6 7 14
Total 53 46* 71 74* 85 88*
78 90 99

* For p = 10.
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Table 3. Frequencies of the events
{ (&”, &22, &33) : | dll | > 2N‘1/2} and { (ril, ri2, ri3) . I ril | > 2N_1/2}

N=50 N =150 N =250 Total

Series I IACF 20 20* 20 20* 20 20* 60 60*
PACF 20 20 20 60

SeriesII IACF 0 1* 0 0* 1 0* 1 1*
PACF 9 8 9 26

Series I1I IACF 20 20* 20 20* 20 20* 60 60*
PACF 20 20 20 60

Series IV IACF 2 0* 0 0* 0 0* 2 0*
PACF 3 2 1 6

Series V IACF 20 19* 20 20* 20 20* 60 59*
PACF 20 20 20 60

Series VI IACF 0 0* 0 0* 0 0* 0 0*
PACF 0 0 0 0

Series VII IACF 8 8* 20 20* 20 28* 48 56*
PACF 12 20 20 52

Series VIII IACF 2 0* 0 0* 0 0* 2 0*
PACF 3 0 0 3

Total 72 68* 80 80* 81 88*

87 90 90

* For p = 10.

model is close to the boundary of stationarity Assessing the overall relative performance

or has a characteristic equation with real of the two functions in correctly determining

roots and for p = 10. the subset-order models, we find as evident

Table 4. Frequencies of the events
{(&,11, &22, &33): l &.11 | = 2N_1/2, | &22 ‘ > 2N_1/2,| &.33 I = 2N~1/2} and {(ri], riz, ri3):| ri1 I $2N_]/2,
| riy | > 2N"'2, | riy | < 2N} for the subset-order models

N=50 N=150 N=250 Total
SeriesII IACF 18 18* 18 20* 15 19* 51 57*
PACF 10 12 10 32
Series IV IACF 3 0* 4 1* 10 12* 17 13*
PACF 3 3 11 17
Series VI IACF 20 20* 16 20* 19 19* 55 59*
PACF 19 20 20 59
Series VIII IACF 0 0* 7 8* 7 5* 14 13*
PACF 1 6 7 14
Total 41 38* 45 49* 51 55*
33 41 48

* For p = 10.
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from Table 4 that the IACF is the better for
all the models and for all the sample sizes.
Abraham and Ledolter (1984) base their
use of £ 2N for the assessment of both
functions on the hypothesis of independence
of observations. They also see the rationale for
using 22N {1 + 2 (ri2 + ... + rij;)}” for
testing the significance of ri, (on the basis of
(3.3)), but rightly argue that its use would
worsen its performance for determining the
order of their models, all being full order.
However, when the underlying subset model
has some non-significant ri’s,the IACF is
likely to detect the significant non-zero lag

Table 5. Frequencies of the events
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coefficients more often than otherwise. In
particular, for our subset-order models, the
relative power of the IACF is higher with the
non-null critical region than with + 2N"12,
The integral + 2N""2 {142 (ri3+... + riZ ) }1?
is not adequately wider than the null critical
region. An effect of this is that IACF is not
much worse than the PACF in detecting the
significance of the lag two coefficients. In
addition, the IACF correctly suggests a zero
value for the lag three coefficient more often.
It even supersedes the PACF in this sense,
especially for p = 10 (see Table 5).

{ (G, G, Gz3) 2 | Gy | S 2N, | Gy | > 2N712, | O3y | < 2N7'2)} and {(riy, riy, ris) : | ri |
S2N2 | riy | > 2N2 (1 + 2722, | riy | < 2N [ 1 + 2 (rif? + 1i)]"2) for the following

subset-order models

N=50 N=150 N =250 Total
Series IT IACF 19 20* 20 20* 17 20* 56 60*
PACF 10 12 10 32
Series IV IACF 2 0* 4 2% 11 12* 17 14*
PACF 3 3 11 17
Series VI IACF 20 20* 20 20* 20 20* 60 60*
PACF 19 20 20 59
Series VIII IACF 0 1* 7 8* 7 5* 14 14*
PACF 1 6 7 14
Total 41 41* 51 50* 55 57*
33 41 48
* For p = 10.

6. Practical Examples

For the Yule-Walker (Y-W) approach, full
order and subset order AR models were fit-
ted using the above outlined order determi-
nation criteria. For Burg’s maximum entropy
(ME) approach we fitted only full-order
models. For the criterion ¢ we used ¢ = 1.50
and for FPEa o = 4. Diagnostic checks were
made by the use of Box-Jenkins (1976) port-
manteau test statistic, which we denote by R.

6.1. Series A (Box and Jenkins (1976, pp.
525))

For the Y-W approach, BIC, ¢, SIC, S and
FPE4 recommend the full order AR(2)

X,-0.427X,,-0.252X,, = ¢, (6.1)

6’ = 0.1002
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with R = 100.03. The Box-Jenkins (1976)
portmanteau test rejects the model. AIC,
FPE, CAT,, and CAT; choose the AR (7):

X,~0.373X,, - 0.197X, , — 0.020X, 5
~0.014X,, + 0.015X, 5 — 0.062X,¢

~0.156X, 5 = ¢, (6.2)

6° = 0.0950

which, with R = 22.44, is not discredited by
the portmanteau test.

For the ME approach, BIC, ¢, SIC, and
FPE4 choose an AR(2) very close to (6.1)
and for which R is also significant. FPE, AIC,
S, CAT,, and CAT;, however, choose an
AR(7) very close to (6.2) and which is also
recommended by the R-test.

Applying the subset AR modelling algo-
rithm of Haggan and Oyetunji (1984), for a
maximum lag of 15 gave the following subset
models: BIC, S, SIC, ¢, and FPE4 recom-
mend the model:

X,-0.381X,,—0.216X,,-0.188X,; =
& (6.3)
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6% = 0.0955,
R =24.31.
CAT, and CAT; pick (6.1). AIC chooses:

X,—0.388X,, - 0.220X, ,— 0.174X, ,
—0.126X,_14 + 0.122X__15 =&, 62 =

0.0934 (6.4)

R =20.15.

FPE selects the full order AR(15). Both
(6.3) and (6.4) were found adequate by the
R-test. To confirm the result of the R-test,
Etuk (1987) has shown that the models (6.2),
(6.3), and (6.4) have spectra which closely
agree with an estimate of the raw spectrum;
(6.1) does not. The model (6.3) is the most
adequate used here since it is the most parsi-
monious amongst the adequate models (6.2),
(6.3), and (6.4). Cleveland (1972) has also
suggested the model

Xt + OL]X,_I + a2X,_2 + (17X[_7 = E,.

Table 6. A comparison of the PACF and IACF for series A

Y-W Burg’s

Y-W AR(10) AR(10) Burg’s

Lag PACF IACF IACF PACF
1 0.57 -0.31 -0.30 0.57
2 0.25 -0.16 -0.15 0.25
3 0.07 -0.02 -0.02 0.08
4 0.07 -0.01 -0.02 0.09
5 0.07 0.01 0.02 0.07
6 0.12 -0.06 -0.07 0.14
7 0.15 -0.14 -0.16 0.19
8 -0.03 0.02 0.03 -0.04
9 0.01 -0.02 -0.02 0.01
10 -0.02 0.01 0.01 -0.01

With 2/ /N = 0.14, we see that the IACF not
only correctly recommends an order of 7, but

also better suggests zero parameter values
for lags 3, 4, 5, and 6, especially for lag 6.
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6.2. Canadian lynx numbers (1821 — 1934)
(Campbell and Walker (1977, pp. 430))

The well-analyzed logarithm transformation
has been used. For the Y-W method for full-
order modelling, BIC, ¢, and SIC pick the
order 2 which though recommended by the
R-test has a spectrum which does not tally
with the estimated raw spectrum. However,
the AR(11) selected by FPE, AIC, S, CAT,,
CAT;, and FPE4 is found adequate by both
diagnostic checking criteria. For the ME
technique, BIC and ¢ pick an order 2 also
found to be inadequate by the spectrum test,
although its R value is nonsignificant. SIC, S,
CAT,, CAT;, and FPE4 pick the AR(11)
found to be adequate by both tests. FPE and
AIC pick the likely overparametrized
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AR(12). For the full-order modelling order
11 has been found to be the best (Etuk
(1987)).

For subset-order modelling, BIC, ¢, SIC,
and FPE4 recommend an order 11 with signif-
icant lags 1, 2, 4, 10, and 11. CAT, and
CAT; select the model with significant lags 1,
2, and 4. FPE chooses the full order AR(15).
Etuk (1987) has shown that the subset model
withlags1,2,4,10, and 11 is the best model.

Table 7 gives the PACF and IACF. With
N=114,2/ VN = 0.19. Therefore, the PACF
suggests an order of 4, 7, or 11. The IACF,
however, suggests an order of 1. The PACF
is significant at lags 1, 2, 4, 7, 10, and 11
which tallies better with the identified model.
Evidence here is therefore in favour of the
PACF.

Table 7. A comparison of the PACF with the IACF for the log transform of the lynx data

Y-W Y-W Burg’s Burg’s
Lag PACF AR(15) AR(15) PACF
IACF IACF

1 0.79 -0.40 -0.39 0.79
2 -0.72 0.17 0.17 -0.74
3 -0.14 -0.07 -0.09 -0.12
4 -0.21 0.10 0.12 -0.21
5 0.12 -0.05 -0.06 0.14
6 0.08 0.05 0.06 0.07
7 0.21 -0.03 -0.03 0.23
8 0.12 0.03 0.03 0.13
9 0.10 -0.06 -0.06 0.12
‘10 -0.19 -0.04 -0.05 -0.22
11 -0.31 0.06 0.07 -0.35
12 -0.10 0.08 0.06 -0.13
13 0.10 -0.04 -0.00 0.05
14 -0.04 -0.00 -0.03 -0.01
15 -0.02 0.01 0.01 -0.04

6.3.  Wolfer’s sunspot series (1700 - 1955)

Data on sunspots are available from 1700
onwards (see Waldmeier (1961)). We used
256 values from 1700 to 1955.

For the Y-W approach for full-order model
selection FPE, AIC, and CAT; recom-

mend an AR order of 9; FPE4, ¢, and S re-
commend 8; SIC recommends 3, CAT, zero,
and BIC 2. For the ME technique, FPE and
AIC pick an AR(18); BIC, SIC, and ¢ pick
AR(8); CAT; and FPE4 choose the AR(9);
CAT, selects the AR(0) and S the AR(10).



122

For subset modelling, BIC, SIC, ¢, and
FPE4 recommend a model withlags 1,2, and
9. AIC pick the lags 1,2,3,4,5,and 9. CAT;
choose the lags 1, 2, and 3; S choose the lags
1,2,3,and9. The BIC subset model has been
shown to be the most adequate model (Etuk
(1987)).

The critical value for both functions is
0.125. With PACF significant lags are 1,2, 3,
6, 7, 8, and 18, so that the suggested orders
are 3, 8, and 18. The IACF indicates an order
of 2 (see Table 8).
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We therefore observe an agreement of the
PACEF with BIC, SIC, and ¢ in choosing an
order of 8, with AIC in choosing an order 18.
The IACF agrees with BIC in the choice of
order 2. The two diagnostic checking meth-
ods used here do not discredit an order of 8.
The order of 18 is therefore an overestima-
tion. The orders 2 and 3 are too low for the
model.

Thus we find that PACF is the better
model identifier.

Table 8. Comparison of IACF and PACF for sunspot series

Y-W Y-W Burg’s

Lag PACF AR(15) AR(20) Burg’s
IACF IACF PACF

1 0.81 0.41 0.41 0.82
2 -0.66 0.15 0.14 -0.67
3 -0.15 0.07 0.07 -0.14
4 0.04 -0.08 -0.09 0.05
5 -0.07 0.08 0.07 -0.07
6 0.17 -0.05 -0.03 0.18
7 0.14 0.03 0.01 0.19
8 0.22 -0.04 -0.04 0.23
9 0.10 -0.05 -0.05 0.12
10 0.01 0.04 0.03 0.03
11 0.07 -0.06 -0.06 0.07
12 -0.07 0.02 0.02 -0.07
13 0.00 0.04 0.05 0.00
14 0.06 -0.05 -0.06 0.07
15 -0.09 0.03 0.04 -0.10
16 -0.06 -0.01 -0.00 -0.07
17 -0.10 -0.02 -0.02 -0.11
18 -0.13 0.05 0.06 -0.16
19 -0.01 -0.02 -0.02 -0.00
20 0.03 0.01 0.01 -0.02

7. Conclusion

Evidence here is not conclusive as to the bet-
ter criterion. However, we have seen that the
PACEF is definitely the better in identifying
non-zero lag coefficients and determining
order. Invariably, the PACF outperforms
the TACF for full-order AR models. The

reason for this is that though, as observed by
Abraham and Ledolter (1984), chances are
that | &; | >|¥; | Vj=1,2,..., the variance
of the PACEF is the smaller, for any given lag.
For the same reason, the IACF more often
correctly detects zero coefficients, especially
where they are intervening. -
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We have observed that the PACF outper-
forms TACF for two of the three real series
we used. Even for the lynx data for which a
subset AR model is suggestive, PACF fares
the better. However, our Monte Carlo study
shows that the IACF is generally the better
for subset-order modelling.

We have also noticed a tendency of over-
estimation with the PACF and of underesti-
mation with the IACF. Exclusive preference
of one to the other may therefore not be
advisable.

The TACF and PACF of an AR model is
the autocorrelation function (ACF) and
inverse partial autocorrelation function
(IPACEF) respectively of the inverse moving
average (MA) model. Comparision of the
IACF and PACF in AR model identification
is tantamount to that of the ACF and IPACF
in MA modelling. Therefore, we suggest the
application of all four functions: ACF,
IACF, PACF, and IPACEF in autoregressive
moving average (ARMA) modelling.
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