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National Statistical Institutes often use repeating surveys to estimate measures of change in
the levels of the statistics estimated by the surveys. In order to assess the significance of any
measured change it is necessary to have an estimate of the variance of this change. An
important component of this variance is the covariance between successive estimates of level.
This covariance depends very much on the rotation scheme used to determine the overlap
between successive samples. This article presents a general solution for this covariance in
situations where measures of change are based on Horvitz-Thompson estimators. This
solution applies exactly or approximately for a very large class of rotation schemes, including
the most commonly applied ones. The article also presents an unbiased estimator for the
covariance and compares the general solution with specific solutions previously published.
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1. Introduction

Many National Statistical Institutes produce estimates of economic or other statistics on a

regular basis, monthly, quarterly or annually. These series of estimates are usually based

on rotating surveys, for both practical and methodological reasons. Very often, the focus of

interest in these series is the change in the estimate from one period to the next (the change

in the volume of retail sales, for example).

Given this interest in the change between two estimates, the literature on estimating the

variances of such changes is surprisingly sparse. Economic and social decisions are often

made on the basis of estimates of change, and lack of knowledge of the accuracy of these

estimates could well lead to erroneous decisions being made, if they are based on measures

which are insufficiently accurate.

There is some literature on estimating the variance of changes in index numbers, for

example Valliant (1991). However, index numbers are a special case because they are

usually based on a fixed panel of units observed over an extended period of time and do not

suffer from the complications of changing but overlapping samples within a changing

population. A similar restriction applies in area probability surveys, where a fixed panel of

primary selection units allows covariances over time to be approximated from the ultimate

cluster estimates (see for example, Hansen et al. 1953).
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This article addresses the issue of covariances over time in the context of rotating samples

but confines its attention to Horvitz-Thompson estimators (Horvitz and Thompson 1952).

These estimators are not the most efficient estimators of either levels or changes in levels.

Model-based estimators, for example, are usually much more efficient, although they may

be subject to model bias and estimation of their variances and covariances depends on the

model specified. However, a large and frequently used class of efficient estimators such as

ratio estimators and generalised regression estimators is based on the application of

functions of Horvitz-Thompson estimators (see for example, Särndal et al. 1992).

As Nordberg (2000) describes, the variances of these more efficient estimators and the

variances of changes in these estimators may be approximately expressed as linear

combinations of the variances and covariances of the component Horvitz-Thompson

estimators. For these, formulae for variances and for covariances between different

response variables from the same population and time period are well known (Särndal et al.

1992) but there are no general formulae for the covariances between Horvitz-Thompson

estimators for different periods. This is an essential and still missing component for

estimating the variances of changes in the general class of efficient estimators based on

Horvitz-Thompson estimators. This article concentrates on this specific aspect.

There is some published literature with regard to special cases. Tam (1984) presented

covariance formulae for two rotation schemes (“Sampling Plans” in his terminology) in

the context of simple random sampling from a fixed population. Laniel (1987) extended

these to allow for a changing population, although some approximations were applied.

Nordberg (2000) used a different technique, applying a computer program to generate

estimates of covariance by averaging over a set of conditional covariances. Berger (2004a,

2004b) based his estimates of the variance of change also on the aggregation of conditional

covariances, using a Poisson sampling approximation. However, his method involved a

variety of matrix operations and no explicit covariance formulae were presented.

This article presents general formulae for the covariance and an unbiased estimator of

the covariance between two related Horvitz-Thompson estimators. These formulae apply

exactly for a special class of rotation schemes and approximately for a much larger class

that includes the majority of commonly used rotation schemes. Section 2 describes the

problem and derives the required formulae. Section 3 analyses the effect of deviations

from the conditions under which the covariance formulae are exact and demonstrates the

approximate validity of the formulae for a much larger class of rotation schemes. Section 4

compares the general formulae in Section 2 with the more specific formulae produced by

Tam (1984), Laniel (1987) and Nordberg (2000) and examines the effect on these special

cases of deviations from the conditions required for exact application of the formulae.

Section 5 presents a brief discussion and conclusion.

2. Derivation of Covariance Formulae

We consider the situation where a National Statistical Institute, or other organisation,

conducts repeating surveys of a finite population. Repetition of the survey may be

monthly, quarterly, annually or with some other periodicity. During the course of these

surveys, the study population itself may change, through the departure of units that cease

to exist in the population (deaths) and the appearance of new units in the population
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(births). The survey samples will be affected by these changes in the population and by

actions of the surveying organisation to replenish the sample to compensate for the losses

due to deaths, to ensure that a representative proportion of births is included in the sample

and to apply controlled rotation of units out of and into the sample, in order to spread the

respondent burden across the whole population.

Often, users wish to compare estimates of population characteristics for different periods.

Usually, this comparison will be for adjacent periods but comparisons may also be applied

between nonadjacent periods. The development in this article is sufficiently general that it

applies to either case (that is, for comparisons between adjacent or nonadjacent periods).

Clearly, these comparisons will be affected by changes in the population and sample, as

discussed above, as well as by changes in the observed characteristics themselves.

Consider, then, two different periods, which may not be adjacent. We use the subscripts 1

and 2 to distinguish these two periods. Denote the (different) study populations for these

two periods as U1 and U2. Denote the common population, the set of units that exist in both

periods, as Uc ¼ U1 > U2. Denote the corresponding samples as s1, s2 and sc ¼ s1 > s2.

I assume complete knowledge at the time Sample s1 is drawn of which units exist in

Population U1 and their corresponding inclusion probabilities. I also assume complete

knowledge at the time Sample s2 is drawn of which units exist in Population U2 and their

corresponding inclusion probabilities, both marginal and conditioned on the responses for

Sample s1. I make no other assumptions. In general, I allow the inclusion probabilities for

Period 2 to depend on the observed responses for Sample s1 but the results of this article

are exactly valid only when the conditional inclusion probabilities conform to the

constraints defined by Conditions (3) and (4) below. Section 3 discusses more fully

the effects of varying the extent to which the Period 2 inclusion probabilities depend on the

observed responses for Sample s1.

Consider now a set of survey estimates based on Horvitz-Thompson estimators, as

discussed above. For some measurable characteristic, we have, from Samples s1 and s2,

Estimators T̂1 and T̂2 of population totals T1 and T2. We have

T1 ¼
k[U1

X
y

1k

where y1k is the value of the response variable in Period 1 for unit k in Population U1 and

T̂1 ¼
k[s1

X y1k

p1k

¼
k[U1

X y1k

p1k

I1k

where p1k is the probability of including unit k in Sample s1 and I1k is a random indicator

variable, taking the value 1 when unit k is in Sample s1 and 0 otherwise.

Similar expressions apply to the population total T2 and its Estimator T̂2.

The variance of the difference between Estimators T̂1 and T̂2 is

VarðT̂2 2 T̂1Þ ¼ VarðT̂1Þ þ VarðT̂2Þ2 2 CovðT̂1; T̂2Þ ð1Þ

As discussed above, formulae for VarðT̂1Þ and VarðT̂2Þ and their estimators are well

known and we concentrate on the covariance term and its estimator.
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We have

CovðT̂1; T̂2Þ ¼ Cov
k[U1

X y1k

p1k

I1k;
l[U2

X y2l

p2l

I2l

0
@

1
A ¼

k[U1

X
l[U2

X y1ky2l

p1kp2l

CovðI1k; I2lÞ

¼
k[U1

X
l[U2

X y1ky2l

p1kp2l

ðp1k2l 2 p1kp2lÞ ð2Þ

where we use the term p1k2l to denote the joint inclusion probability that unit k from

Population U1 is in Sample s1 and unit l from Population U2 is in Sample s2.

Determination of p1k2l depends on the rotation scheme used to generate the overlap

between Sample s1 and Sample s2. In this article, I base the analysis on a central class of

rotation schemes which have the following two properties:

Prðl [ s2jk [ s1 & l [ s1Þ ¼ Prðl [ s2jk � s1 & l [ s1Þ ¼ Prðl [ s2jl [ s1Þ ð3Þ

and

Prðl [ s2jk [ s1 & l � s1Þ ¼ Prðl [ s2jk � s1 & l � s1Þ ¼ Prðl [ s2jl � s1Þ ð4Þ

for k – l.

For this class of rotation schemes, the conditional probability that any unit is in Sample

s2, conditioned on Sample s1, depends only on the presence or absence of that same unit in

Sample s1, not on the presence or absence of any other unit in Sample s1. Conditions (3)

and (4) apply, exactly or approximately, to most rotation schemes in common use by

National Statistical Institutes. Section 3 contains a discussion on the general significance

of Conditions (3) and (4). Section 4 discusses in more detail the significance of these

conditions with regard to the rotation schemes presented in Tam (1984), Laniel (1987) and

Nordberg (2000).

For the class of rotation schemes defined by Conditions (3) and (4), we have the result:

Result 2.1

p1k2l ¼

p1kp2l : l � U1 or p1l ¼ 1

p1klp2j1;l þ
ðp1k 2 p1klÞðp2l 2 p1lp2j1;lÞ

ð1 2 p1lÞ
: l [ U1 & p1l , 1

8><
>: ð5Þ

where p1kl is the joint inclusion probability that both units k and l are in Sample s1 and

p2j1;l ¼ Prðl [ s2jl [ s1Þ is the conditional inclusion probability that unit l is in Sample s2

given that it was previously selected for Sample s1.

To demonstrate this, we first express the joint inclusion probability p1k2l as:

p1k2l ¼ Prðk [ s1 & l [ s2Þ

¼ Prðk [ s1 & l [ s1 & l [ s2Þ

þ Prðk [ s1 & l � s1 & l [ s2Þ

¼Prðl [ s2jk [ s1 & l [ s1Þ

Prðk [ s1 & l [ s1Þ þ Prðl [ s2jk [ s1 & l � s1ÞPrðk [ s1 & l � s1Þ

ð6Þ
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So, if Conditions (3) and (4) apply

p1k2l ¼ Prðl[ s2jl[ s1ÞPrðk[ s1 & l[ s1ÞþPrðl[ s2jl� s1ÞPrðk[ s1 & l� s1Þ ð7Þ

Note that Equation (7) also applies when k ¼ l because Prðl [ s1 & l [ s1Þ ¼ Prðl [ s1Þ

and Prðl [ s1 & l � s1Þ ¼ 0. Moreover, Equation (7) applies for k ¼ l under all

circumstances, regardless of whether Conditions (3) and (4) are met for k – l, because it

follows directly from Equation (6).

We may therefore write

p1k2l¼Prðl[ s2jl[ s1ÞPrðk[ s1 & l[ s1ÞþPrðl[ s2jl� s1ÞPrðk[ s1 & l� s1Þþdkl ð8Þ

where

dkl¼ Prðl[ s2jk[ s1 & l[ s1Þ2Prðl[ s2jl[ s1Þf gPrðk[ s1 & l[s1Þ

þ Prðl[s2jk[ s1 & l� s1Þ2Prðl[ s2jl� s1Þf gPrðk[ s1 & l� s1Þ

¼p1k2l2Prðl[ s2jl[ s1ÞPrðk[ s1 & l[s1Þ2Prðl[ s2jl� s1ÞPrðk[s1 & l� s1Þ

is the difference between the joint inclusion probabilityp1k2l and the expression in Equation

(7). Clearly, dkl¼0ðk– l Þ only when Conditions (3) and (4) apply but note that dkk¼0 is

always true, even if Conditions (3) and (4) do not apply, as is obvious from Equation (6).

Under the assumption that Conditions (3) and (4) apply and Equation (7) holds, consider

first the special cases l � U1 and p1l ¼ 1. If l � U1 then Prðl [ s1Þ ¼ 0 and, from

Equation (7), p1k2l ¼ 0 þ p2lp1k ¼ p1kp2l. If unit l exists in Population U1 and p1l ¼ 1

then p1k2l ¼ p2lp1k þ 0 ¼ p1kp2l. This proves the first component of Result 2.1.

For each of these special cases, the associated term in the double summation of Equation

(2) contributes nothing to the covariance. Nonzero contributions to the covariance

therefore arise only from those units l for which l [ U1 and p1l , 1. Since, by definition,

l [ U2 we also have l [ Uc. For these units:

p2l ¼ p2j1;lp1l þ Prðl [ s2jl � s1Þð1 2 p1lÞ

Hence, since p1l , 1

Prðl [ s2jl � s1Þ ¼
p2l 2 p2j1;lp1l

ð1 2 p1lÞ
ð9Þ

Also

Prðk [ s1 & l � s1Þ ¼ Prðk [ s1Þ2 Prðk [ s1 & l [ s1Þ ¼ p1k 2 p1kl ð10Þ

Substituting Expressions (9) and (10) and the definition p2j1;l ¼ Prð l [ s2jl [ s1Þ into

Equation (7) gives:

p1k2l ¼ p2j1;lp1kl þ
ðp2l 2 p2j1;lp1lÞ

ð1 2 p1lÞ
ðp1k 2 p1klÞ ð11Þ

With some minor rearrangement, this proves the second component of Result 2.1.

Result 2.1 demonstrates that, for the class of rotation schemes which satisfy Conditions

(3) and (4), the joint inclusion probability across the two samples may be expressed in

terms of single and joint inclusion probabilities within each sample and the conditional
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inclusion probabilities p2j1,l. For this class of rotation schemes, p2j1,l does not depend on

which units, other than unit l, are included in Sample s1. The conditional inclusion

probabilities p2j1,l should therefore be easily determined from the specification of the

rotation scheme. There may be some complications in calculating p2j1,l if Periods 1 and 2

are very far apart, if Conditions (3) and (4) are not met or if it is desired to allow for unit

nonresponse or other uncontrolled effects. In general, this article does not consider such

complications and treats the conditional inclusion probabilities p2j1,l as known but

Section 4 contains examples of these complications relating to the rotation schemes

examined in Tam (1984) and Laniel (1987). See also the discussion after Result 2.5 below.

It is now straightforward to apply Result 2.1 in Equation (2) and so obtain the required

expression for the population covariance:

Result 2.2

CovðT̂1; T̂2Þ ¼
k[U1

X
ðp1l–1Þ
l[Uc

X y1ky2l

p1kp2l

ðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

1 2 p1l

þ
k[U1

X
ðl–kÞ
l[Uc

X y1ky2l

p1kp2l

dkl

<
k[U1

X
ðp1l–1Þ
l[Uc

X y1ky2l

p1kp2l

ðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

1 2 p1l

ð12Þ

with equality if Conditions (3) and (4) apply.

The first line of this result is exact but it contains the residual covariance term

k[U1

P
ðl–kÞ
l[Uc

P y1ky2l

p1kp2l
dkl, which is zero only when Conditions (3) and (4) apply and is difficult to

estimate when these conditions do not apply. The next section demonstrates that the

designation “residual covariance” is appropriate because, under normal circumstances,

this term is negligible and the second line of Result 2.2 may be used. Appendix A presents

the detailed derivation of the second line and also the derivation of the following unbiased

estimator.

Result 2.3

CôvðT̂1; T̂2Þ ¼
k[s1

X
ðp1l–1Þ

l[s2ð1Þ

X y1ky2lðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

p1kp2l p1klðp2j1;l 2 p2lÞ þ p1kðp2l 2 p1lp2j1;lÞ
� � ð13Þ

where s2(1) contains those units in Sample s2 which are in Population U1 (that is,

s2ð1Þ ¼ s2 > U1).

The following alternative version of Equation (13) highlights more clearly the relationship

between the estimator and the population covariance of Equation (12):

CôvðT̂1; T̂2Þ ¼
k[s1

X
ðp1l–1Þ

l[s2ð1Þ

X y1ky2lðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

p1kp2l p1kp2lð1 2 p1lÞ þ ðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ
� �

Under simple random sampling without replacement (SRSWOR), we may drop the

subscripts k and l because p1k ¼ p1l ¼ p1, p2l ¼ p2 and p2j1;l ¼ p2j1. We then obtain the

following simplified expression for the population covariance, ignoring the residual

covariance
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Result 2.4

CovSRSðT̂1; T̂2Þ ¼ N1

p2j1

p2

2 1

� �
k[Uc

X
ð y1k 2 �y1Þy2k

N1 2 1
ð14Þ

where N1 is the number of units in Population U1 and �y1 is the mean response in Period 1

for Population U1.

The corresponding unbiased estimator is

Result 2.5

CôvSRSðT̂1; T̂2Þ ¼

nc 1 2
p2

p2j1

� �

p1p2 1 2
p1p2j1

p2n1

� � y1y2

� �
sc
2

p1p2j1n2ð1Þ

p2nc
�ys1 �ys2ð1Þ

� �
ð15Þ

where n1 is the number of units in Sample s1, nc is the number of units in the common

Sample sc ¼ s1 > s2, n2(1) is the number of units in Sample s2(1), �ys1
is the mean response

for Sample s1, �ys2ð1Þ
is the mean response for Sample s2(1) and ðy1y2Þsc is the mean cross-

product of the response variables over the common Sample sc ¼ s1 > s2.

Appendix B presents the detailed derivation of Equations (14) and (15).

It is worth noting that it is not possible, for the special case of SRSWOR, to express the

ratios p2=p2j1 and p2j1=p2 as ratios of known sample and population sizes because

p2j1 ¼ E½nc�=p1Nc ¼ N1E½nc�=n1Nc. Hidiroglou et al. (1995) present an estimator for

p2=p2j1 in this form: n1n2Nc=N1N2nc. This or other estimators may be useful in situations

where the conditional inclusion probabilities p2j1,l are difficult to calculate exactly.

Investigation of such estimators is worth further study.

Note that, in Equation (15), the finite population correction factor is ð1 2 ðp2=p2j1ÞÞ and

the bias correction factor is 1=ð1 2 ðp1p2j1=p2n1ÞÞ. Hence the implicit number of degrees

of freedom for the estimator is ðnc 2 ðp1p2j1nc=p2n1ÞÞ, rather than the more familiar

nc 2 1. This arises because the mean responses in the second term of the covariance

expression are based not on the common Sample sc but on the larger Samples s1 and s2(1).

Note that p1p2j1nc=p2n1 # 1 because nc # n1 and p2 $ p1p2j1. Also, the expected value

of the premultiplying factor of the product of sample means, E½p1p2j1n2ð1Þ=p2nc�, is

approximately equal to one because E½n2ð1Þ� ¼ p2Nc and E½nc� ¼ p1p2j1Nc.

3. Conditions for Valid Application of the Covariance Formulae

The results of Section 2 are strictly valid only when Conditions (3) and (4) apply. We now

consider the significance of these conditions and under what circumstances the formulae

may be used as approximations when the conditions are not met.

First, note that Condition (3) clearly applies when the conditional inclusion probability

Prðl [ s2js1Þ is a constant for all Samples s1 which contain unit l. Similarly, Condition (4)

applies when the conditional inclusion probability Prðl [ s2js1Þ is a constant for all

Samples s1 which do not contain unit l.
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It is not necessary that Prðl [ s2js1Þ be a constant over the relevant set of Samples s1 for

Conditions (3) and (4) to apply. For example, if Sample s1 has a random sample size, it is

possible for Prðl [ s2js1Þ to depend on the observed Sample size n1, provided that the

expected value of Prðl [ s2js1Þ over the subset of samples which contain unit k ðk – l Þ is the

same for all units k [ U1ðk – l Þ. This is most easily achieved by applying simple random

sampling with replacement. Devising an unequal probability sampling scheme with this

property would be extremely difficult. Note that dependence on the observed sample size n1

is not equivalent to dependence on the retained sample size n1(2). Dependence on n1(2) does

not allow conformity with Conditions (3) and (4). Examples of this are examined in the

discussion in Section 4 on the rotation schemes in Laniel (1987) and Nordberg (2000).

It is also possible for Condition (3) to apply when the conditional inclusion probabilities

depend on the observed responses for Sample s1. For example, we may define a fixed, cut-off

limit L for which p2j1,l depends on whether y1l , L or y1l $ L. Since the resultant,

conditioned probabilities do not depend on whether any other unit is in the sample,

Condition (3) applies. However, in this situation, the marginal probabilities {p2l} are not

known for those units not included in Sample s1 because the conditional probabilities

{p2j1,l} are not known. Since such a situation is not acceptable in the context of Horvitz-

Thompson estimation, it follows that the imposition of Conditions (3) and (4), and so

the exact validity of the results of Section 2, requires that the conditional probabilities

Prðl [ s2jl [ s1Þ and Prðl [ s2jl � s1Þ do not depend on the observed responses for

Sample s1.

Unfortunately, it is common for the conditional inclusion probabilities for the selection of

Sample s2 to depend on the outcome of Sample s1. This may arise as a matter of policy, when

the size of Sample s2 or the marginal inclusion probabilities {p2l}, possibly determined by

population auxiliary variables, are dependent on the observed results for Sample s1 – that is,

if Sample s2 is treated as the second stage of a two-stage sampling scheme. More subtly, the

conditional inclusion probabilities may be affected by the random inclusion of deaths in

Sample s1 or births in Sample s2. The examination of the rotation schemes from Laniel

(1987) and Nordberg (2000) in Section 4 identifies examples of these effects.

It is therefore important to assess the effect of deviations from Conditions (3) and (4).

This effect is expressed in the residual covariance
k[U1

P
l[U2

P y1ky2l

p1kp2l
dkl.

Note that, because dll ¼ 0, as discussed in the comment after Equation (8), the residual

covariance may also be expressed as:

k[U1

X
l[U2

l–k

X y1ky2l

p1kp2l

dkl ¼
k[U1

X
l[U2

X y1ky2l

p1kp2l

dkl ð16Þ

To assess the magnitude of the residual covariance, note that:

k[U1

X
l[U2

l–k

X
dkl ¼

k[U1

X
l[U2

X
dkl ¼ Cov n1; n2 2

l[s1ð2Þ

Xp2j1;l 2 p2l

1 2 p1l

8<
:

9=
;

2
4

3
5 ð17Þ

as demonstrated in Appendix C.

If Sample s1 has a fixed size, Expression (17) is zero. If n1 is random, Expression (17)

may not be zero because the second covariate in the expression is certainly random.
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However, Expression (17) is likely to be very small. First, the dominant covariance terms

Cov½I1l; I2l� are missing from Expression (17) – that is the relevance of the adjustment

term { 2
l[s1ð2Þ

P
ðp2j1;l 2 p2lÞ=ð1 2 p1lÞ} in the second covariate. Also, each term

ðp2j1;l 2 p2lÞ=ð1 2 p1lÞ may be expressed as

p1lðp2j1;l 2 p2lÞ

p1lð1 2 p1lÞ
¼

Cov½I1l; I2l�

Var½I1l�

In this light, Expression (17) is likely to be small in most circumstances. If the inclusion

indicators I1l and I2l are highly correlated, the second covariate in Expression (17) is close

to n2 2 n1(2), which is the additional number of units required to make up the second

sample and is unlikely to be correlated with the total number of units in the first sample

(unless, for example, n2 is fixed, in which case there would be a negative correlation

between n1 and n2 2 n1(2), but this would be extremely unusual in practice). If the

inclusion indicators I1l and I2l are not highly correlated, the selection of Sample s2 is

almost unrelated to the selection of Sample s1 and Expression (17) is also small.

Obviously, the actual value of Expression (17) depends on the sample designs and

rotation scheme used and there may be occasions when this value is not negligible, but there

is clearly a wide range of circumstances in which the value of Expression (17) is exactly or

approximately zero. This provides an aid to assessing the magnitude of the residual

covariance in Expression (16). If Expression (17) is zero or negligible and there is negligible

correlation between dkl and y1ky2l=p1kp2l, the residual covariance is also negligible. In

these circumstances, the results of Section 2 may be applied as approximations.

Further empirical research will be necessary to identify the circumstances under which

the results of Section 2 are not reliable but such circumstances are likely to be rare. If the

marginal inclusion probabilities are approximately proportional to size, the terms

{y1ky2l=p1kp2l} are approximately constant, the correlation between dkl and y1ky2l=p1kp2l

is negligible and the residual covariance should also be negligible. If the marginal

inclusion probabilities are constant, as under SRSWOR, the correlation between dkl and

y1ky2l=p1kp2l should also be negligible, again leading to a negligible residual covariance.

The examples in the next section contain explicit formulae for the residual covariance in

the context of SRSWOR sampling. These formulae demonstrate that, for these cases at

least, the residual covariances are zero or negligible.

4. Comparison of Covariance Formulae

4.1. Comparison with Tam (1984)

Tam (1984) considered the special case of SRSWOR for a constant population (that is,

U1 ¼ U2 ¼ U and N1 ¼ N2 ¼ N) under three different rotation schemes (or Sampling

Plans, in his terminology). These are described briefly below, to highlight the relevant

attributes for this comparison. See Tam (1984) for the full descriptions.

For each sampling plan, a fixed n1 units in Sample s1 are first selected from Population

U by SRSWOR. A fixed n2 units for Sample s2 are then selected according to the sampling

plan, as follows.
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Sampling Plan A: a fixed nc units are selected by SRSWOR from Sample s1 and a further

n2 2 nc units are selected by SRSWOR from the population excluding those units in

Sample s1.

Sampling Plan B: a fixed nc units are selected by SRSWOR from Sample s1 and a further

n2 2 nc units are selected by SRSWOR from the population excluding only the

previously selected nc units. That is, the n1 2 nc units rejected from Sample s1 are

eligible for reselection in Sample s2, which is not the case in Sampling Plan A.

Sampling Plan C: the fixed n2 units are selected by SRSWOR from Population U,

independently of Sample s1.

We compare the general result given by Equation (14), under SRSWOR, with the results

from Tam (1984), under the assumption that Equation (14) is valid. The validity of

Equation (14) is considered at the end of this subsection.

Assuming that N1 ¼ N2 ¼ N, Equation (14) becomes:

CovSRSðT̂1; T̂2Þ ¼ N
p2j1

p2

2 1

� �
k[U

X
ð y1k 2 �y1Þð y2k 2 �y2Þ

ðN 2 1Þ
ð18Þ

Modifying Tam’s notation to conform to the notation used above and multiplying by N 2

to allow for the fact that Tam’s formulae are expressed in terms of means, Tam (1984)

presents the covariance term in the general form

ð1 2 f Þ
N 2nc

n1n2

Sxy ð19Þ

where Sxy ¼
k[U

P
ð y1k 2 �y1Þð y2k 2 �y2Þ=ðN 2 1Þ and f depends on the sampling plan.

Clearly, the term Sxy is identical to the rightmost component of Equation (18) and the

premultiplying factor in Equation (19) may be written as Nððnc=n1p2Þ2 ð fNnc=n1n2ÞÞ,

since p2 ¼ n2=N.

Under Sampling Plan A, f ¼ n1n2=Nnc and the premultiplying factor is

Nððnc=n1p2Þ2 1Þ. Clearly, in this plan p2j1 ¼ nc=n1 and Tam’s result accords with

Equation (18). Note also that Prðl [ s2 l � s1j Þ ¼ ðn2 2 ncÞ=ðN 2 n1Þ.

Under Sampling Plan B, f ¼ ðn1n2=NncÞ2 ððn1 2 ncÞðn2 2 ncÞ=ðN 2 ncÞncÞ and the

premultiplying factor is

N
nc

n1p2

2 1 þ
Nðn1 2 ncÞðn2 2 ncÞ

ðN 2 ncÞn1n2

� �
¼ N

nc

n1p2

þ

1 2
nc

n1

� �
ðn2 2 ncÞ

ðN 2 ncÞp2

2 1

8>><
>>:

9>>=
>>;

In this plan, p2j1 ¼ ðnc=n1Þ þ ð1 2 nc=n1Þððn2 2 ncÞ=ðN 2 ncÞÞ and, again, Tam’s result

accords with Equation (18). Note also that Prðl [ s2 l � s1j Þ ¼ ðn2 2 ncÞ=ðN 2 ncÞ.

Under Sampling Plan C, f ¼ 1 and the covariance is zero. In this case, p2j1 ¼ p2 and

the result is also in accord with Equation (18).
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It is clear that the comparisons above are exactly valid because the relevant conditional

inclusion probabilities are constant, as shown above, Conditions (3) and (4) are met and

Equation (14) applies exactly.

4.2. Comparison with Laniel (1987)

Laniel (1987) considered the special case of SRSWOR for a changing population using

two different rotation schemes, or sampling plans. These are described briefly below,

using the notation of this article, to highlight the relevant attributes for this comparison.

See Laniel (1987) for the full descriptions.

For each sampling plan, a fixed n1 units in Sample s1 are first selected from Population

U1 by SRSWOR. For Sample s2, a fixed nb units are selected from the births by SRSWOR

and n1(2) units are selected from the common Population Uc according to the sampling

plan, as follows.

Sampling Plan A: a predetermined proportion r of the n1(2) units in Sample s1ð2Þ ¼ s1 > U2

is selected by SRSWOR. That is, selection is from the n1(2) units which were selected

for Sample s1 and remain in Population U2. A further (1 2 r)n1(2) units are selected

by SRSWOR from the common Population Uc excluding those units in Sample s1.

Sampling Plan B: a predetermined proportion r of the n1(2) units in Sample s1ð2Þ ¼

s1 > U2 is selected by SRSWOR. A further (1 2 r)n1(2) units are selected randomly

from the common Population Uc excluding only the previously selected rn1(2) units.

That is, the (1 2 r)n1(2) units rejected from Sample s1 are eligible for reselection in

Sample s2, which is not the case in Sampling Plan A.

It is of interest to note that rn1(2) is equivalent to nc in Tam (1984) and Tam’s ratio nc=n1 is

equivalent to r. This is because the sampling plans in Laniel (1987) are extensions of those

in Tam (1984) to cover overlapping but different populations. For a constant population, as

considered in Tam (1984), n1ð2Þ ¼ n1. For a changing population, as considered in Laniel

(1987), n1(2) is random. This is relevant to the applicability of the results of Section 2, as

considered at the end of this subsection.

A feature of Laniel’s sampling plans is that, for Period 2, births are sampled separately

from units in the common population. In addition, the number of units in Sample s2 which

belong to the common Population Uc is set equal to the (random) number of units in

Sample s1 which belong to Uc. That is, n2ð1Þ ¼ n1ð2Þ. A consequence of this, acknowledged

implicitly in Equation 10 of Laniel (1987), is that, for units in the common population,

p2 ¼ p1.

To compare Equation (14) with the results from Laniel (1987), we can rewrite it as

CovSRSðT̂1; T̂2Þ ¼ N1

p2j1

p2

2 1

� �
k[Uc

X
ð y1k 2 �y1cÞð y2k 2 �y2cÞ þ ð�y1c 2 �y1Þ

k[Uc

X
y2k

ðN1 2 1Þ
ð20Þ

where �y1c and �y2c are the means over the common Population Uc of the {y1k} and {y2k},

respectively.
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The equivalent expressions from Laniel (1987), modified to use the notation of this

article, may be written as

CovSRSðT̂1; T̂2Þ ¼ Nc

R

p1

2 1

� �
k[Uc

X
ð y1k 2 �y1cÞð y2k 2 �y2cÞ

ðNc 2 1Þ
ð21Þ

where R depends on the sampling plan.

Consider first the weighting factors ððp2j1=p2Þ2 1Þ and ððR=p1Þ2 1Þ.

Under Sampling Plan A, R ¼ r and r is the predetermined proportion of the n1(2) units in

Sample s1ð2Þ which is selected by SRSWOR for inclusion in Sample s2. Since, for this

sampling plan, these are the only units from Sample s1 which are included in Sample s2, r is

therefore, in principle, the conditional probability that a unit in the first sample is selected

for the second sample. If rn1(2) is an integer, this result is exact. Laniel (1987) does not

discuss how to apply SRSWOR in the much more likely event that rn1(2) is not an integer.

One possibility, denoting the integer part of rn1(2) as [rn1(2)], is to select either [rn1(2)]

or [rn1(2)] þ 1 units with probabilities [rn1(2)] þ 1 2 rn1(2) and rn1(2) 2 [rn1(2)],

respectively. The resultant, conditional inclusion probability for each unit is then

{½rn1 2ð Þ� þ 1 2 rn1 2ð Þ}
½rn1 2ð Þ�

n1 2ð Þ

þ {rn1 2ð Þ 2 ½rn1 2ð Þ�}
½rn1 2ð Þ� þ 1

n1 2ð Þ

¼
rn1 2ð Þ

n1 2ð Þ

¼ r

On this basis, we therefore have p2j1 ¼ r. It is clear from Equation 14 of Laniel (1987)

that this is the intention underlying Laniel’s analysis, whatever modification of SRSWOR

is applied. In addition, as discussed above, we have p2 ¼ p1 for units in the common

population. So ððr=p1Þ2 1Þ ¼ ððp2j1=p2Þ2 1Þ and Laniel’s weighting factor accords with

Equation (20).

Under Sampling Plan B, R ¼ r þ ð1 2 rÞ2E½n1ð2Þ=ðNc 2 rn1ð2ÞÞ�.

Under this sampling plan, using the same argument as under Sampling Plan A and

with reference to Equation 14 of Laniel (1987),

p2j1 ¼ r þ ð1 2 rÞE½ð1 2 rÞn1ð2Þ=ðNc 2 rn1ð2ÞÞ� ¼ R

and, again, Laniel’s weighting factor accords with Equation (20).

[In fact, Laniel (1987) presents the expression equivalent to

R ¼ r þ ð1 2 rÞE½n1ð2Þ=ðNc 2 rn1ð2ÞÞ�

but this inadvertently omits the squaring of the term (1 2 r). The squared term (1 2 r)2 is

evidently necessary from the version for Sampling Plan B of Equations 14 and 15 in Laniel

(1987).]

Although the weighting factors are equivalent, there are two differences between

Equations (20) and (21). The bias correction factors N1=ðN1 2 1Þ and Nc=ðNc 2 1Þ are

different and Equation (21) omits the term ð�y1c 2 �y1Þ
k[Uc

P
y2k. These differences relate,

respectively, to differences in the sizes and mean values in Period 1 of Populations U1 and

Uc. These differences are negligible if both populations are large and overlap to a

large extent (that is, there are few deaths). Both these conditions are necessary to justify

Laniel’s simplifying approximation that the probability of there being no units from the

common population in the first sample is negligible. In essence, Laniel (1987) has

assumed that U1 and Uc are almost identical.
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Considering now the applicability of Equation (14) to Laniel’s sampling plans, note first

that the sampling schemes of Laniel (1987) and Nordberg (2000) have the common

features that n1 is fixed and sampling is by SRSWOR. So Expression (17) is zero and there

should be negligible correlation between dkl and y1ky2l=ðp1kp2lÞ. The residual covariance

should therefore also be close to zero and, on first inspection, the results of Section 2 may

be applied as approximations. We now consider Laniel’s sampling plans in more detail.

For Sampling Plan A, p2j1 ¼ r, a predetermined constant, as demonstrated above, and

Condition (3) applies. However, Condition (4) does not apply universally. It does apply for

births, because they are sampled independently of units in Population U1. For unit

l [ U1 with l � s1; Prðl [ s2js1Þ ¼
ð1 2 rÞn1ð2Þ

Nc 2 n1ð2Þ

which is not a constant but a random variable. The conditional probability

Prðl [ s2jk [ s1 & l � s1Þ therefore depends on whether unit k is a death or survives

into the common population. Although the presence of unit k in Sample s1 affects the value

of n1(2), this value does not depend on which particular unit has died or survived because

sampling is by SRSWOR. The set {dkl : l [ Uc} therefore includes only two distinct

numerical values, which we denote as dc for units k in the common population and dd for

deaths.

Algebraic development presented in Appendix D leads to the following approximate

expression for the relative error in Expression (14) (defining the relative error as the

residual covariance divided by Expression (14))

ð12rÞ

ðp2j12p2Þ

ðN12NcÞ{Ncð�y1c2 �y1dÞ�y2c2C12}

{N1ðNc21ÞC12þNcðN12NcÞð�y1c2 �y1dÞ�y2c}

ðNc21Þ

ðNc22Þ
12

ðN12NcÞ

ðN12n1ÞðNc22Þ

� �
ð22Þ

where �y1d¼

k�Uc

k[U1

P
y1k=ðN12NcÞ is the mean response in Period 1 for deaths and: C12¼

k[Uc

P
ð y1k2 �y1cÞy2k=ðNc21Þ is the finite population covariance between the response in

Period 1 and the response in Period 2 for units in the common population.

If Ncð�y1c 2 �y1dÞ�y2c is negligible compared to C12, this ratio is of order

ðN1 2 NcÞ=ðN1NcÞ. If Nc < N1, as required by Laniel’s sampling plans, the ratio is of

order N22
1 , so the residual covariance is immaterial even for relatively small values of N1.

If Ncð�y1c 2 �y1dÞ�y2c is dominant, the ratio approaches the value ð1 2 rÞ=ðp2j1 2 p2Þ and

is determined by the rotation and inclusion probabilities. For Sampling Plan A, p2j1 ¼ r

and the ratio is less than one if r . (1 þ p2)/2. Note that, for Laniel’s sampling

plans, the term Ncð�y1c 2 �y1dÞ�y2c is the main mechanism through which correlation

between dkl and y1ky2l=ðp1kp2lÞ gives rise to potentially nontrivial values for the residual

covariance.

For relatively small common population sizes, the rightmost adjustment term

{1 2 ððN1 2 NcÞ=ðN1 2 n1ÞðNc 2 2ÞÞ} acts to reduce the magnitude of the residual

covariance, counteracting the tendency of the other terms in Expression (22) to increase

the residual covariance when the common population size is small. This gives further
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support to the claim that the residual covariance is usually small. However, the

approximate relative error above is valid only for relatively large values of Nc. For small

values of Nc, a more detailed and rigorous analysis would be required than is

presented here.

Under Sampling Plan B, p2j1 ¼ R ¼ r þ ð1 2 rÞE½ð1 2 rÞn1ð2Þ=ðNc 2 rn1ð2ÞÞ, so even

Condition (3) is not met because for units l [ U1 with l [ s1

Prðl [ s2js1Þ ¼ r þ
ð1 2 rÞ2n1ð2Þ

Nc 2 n1ð2Þ

which is a random variable. However, Equation (28) in Appendix D still applies and

further algebraic development in Appendix D presents derivations for the required

conditional inclusion probabilities. These are more numerous and more complicated than

for Sampling Plan A but they have the same general form and the general conclusions from

the discussion for Sampling Plan A also apply for Sampling Plan B.

4.3. Comparison with Nordberg (2000)

Comparison with Nordberg (2000) is difficult because he does not present explicit

formulae for the covariance or its estimator. The nearest equivalent is an expression for the

covariance estimator, conditioned on the sample sizes (his Equation 3.9). The

unconditional estimator is obtained by taking the mean of the conditioned estimators

over a set of computerised simulations of sample sizes.

The context is one of stratified simple random sampling, where the two populations are

subject to different stratifications. The conditional covariance estimator is expressed as a

sum of a standard formula over all possible combinations of strata for Population U1 with

strata for Population U2. For the present purpose, we may regard any one such

combination as representing two overlapping populations under SRSWOR, allowing

comparison of Nordberg’s Equation 3.9 with Equation (15) above.

Using the notation of this article, each term in the double summation for Nordberg’s

Equation 3.9 is equivalent to:

nc 1 2
n1ð2Þn2ð1Þ

ncNc

� �

p1p2 1 2
nc

n1ð2Þn2ð1Þ

� � y1y2

� �
sc
2�ys1ð2Þ �ys2ð1Þ

n o
ð23Þ

This is similar in form to Equation (15) but the finite population correction factor and

the bias correction factor both contain random sample sizes (Formula (23) is, of course,

conditioned on the sample sizes). The premultiplying factor for the product of sample

means is exactly 1. We have already noted in Section 2 that the expected value of the

corresponding factor in Equation (15) is approximately 1. Finally, the mean response for

Sample s1 is taken over those units in the common population only, whereas the

corresponding mean in Equation (15) is for the whole of Sample s1.

Since Formula (23) is conditioned on the sample sizes, we may take the expected values

of these sample sizes in the finite population correction factor and the bias correction factor

Journal of Official Statistics66



to obtain an approximate direct comparison with Equation (15). This approximation is

nc 1 2
p2

p2j1

� �

p1p2 1 2
p2j1

p2Nc

� � y1y2

� �
sc
2�ys1ð2Þ �ys2ð1Þ

n o

For this approximation, the finite population correction factor is equivalent to that in

Equation (15) but the bias correction factor contains the term Nc, rather than the term

n1=p1 ¼ N1 of Equation (15). This reflects the reduced number of degrees of freedom for

estimating the sample covariance because Nordberg’s sample mean for the first sample is

only taken over units in the common population. This comparison is similar to the

comparison of Equation (14) against the covariance formula from Laniel (1987), which

also uses Nc instead of N1. This shared difference arises because both Laniel (1987) and

Nordberg (2000) consider the decomposition of the covariance into the expected value of

conditional covariances and the covariance of conditional expected values

CovðT̂1; T̂2Þ ¼ EV CovðT̂1; T̂2jVÞ
� �

þ CovV E T̂1jV
� �

;E T̂2jV
� �� �

where V is a random set of sample sizes.

Laniel (1987) assumes that the second component, the covariance of the conditional

expected values, is negligible. Nordberg (2000) estimates this component by computer

simulations, a consequence of which is that a straightforward comparison with the

formulae presented in this article is not possible.

The contribution from this second component arises because the random selection of

relatively small or large numbers of deaths in the sample has an effect on the size of the

common sample and thus a potential effect on the covariance. The covariance is affected

only if the mean response for deaths is different from the mean response for the other units

in Population U1. The final term in Equation (20) specifies the magnitude and direction of

this effect. For the usual occurrence that �y2c . 0, a relatively low mean response for deaths

will produce an increase in the covariance and a relatively high mean response for deaths

will produce a reduction in the covariance.

To assess the applicability of Equation (15) to Nordberg’s sampling scheme, we need to

understand how Nordberg’s rotation scheme affects the conditional inclusion

probabilities. Nordberg (2000) applies rotation based on the use of permanent random

numbers (PRNs), a common occurrence in National Statistical Institutes, but does not

describe the rotation method applied in any detail. In principle, the start of the PRN range

is moved forward a predefined amount and thereby defines the constant, conditional

inclusion probability Prðl [ s2jl [ s1Þ. The end of the PRN range is then moved forward

to select sufficient units to produce the intended sample size for Period 2. In practice, it can

happen that, if there is a large excess of births over deaths in this PRN range, more units

need to be removed from rather than added to the sample to achieve the intended sample

size for Period 2. Since the probability of this happening depends on whether unit k [ s1 is

a death or survives, it follows that Conditions (3) and (4) are violated when this occurrence

can arise.
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To assess this effect, it is helpful to redefine the PRN rotation scheme in a manner

similar to the descriptions in Laniel (1987), using the following steps.

1 We select by SRSWOR a sample of size n1 from Population U1.

2 For each of the n1(2) units which remain in PopulationU2, we randomly decide whether

to retain that unit in the sample, for each unit independently and with probability r of

retention and probability 1 2 r of rejection. This process corresponds to shifting the

start of the PRN range forward. Independence arises because the PRNs are assigned to

units independently. The effect is Bernoulli sampling from Sample s1(2). Denote the

resultant random number of retained units in the common sample as n
*

c.

3 For each of the N2 2 Nc births in Population U2, we randomly decide whether to add

that unit to the sample, for each unit independently and with probability rp1. This

process corresponds to the appearance of births in the shifted PRN range. Again,

independence arises because the PRNs are assigned to units independently and the

effect is Bernoulli sampling, this time from the population of births. Denote the

resultant number of selected births as n
*

b and the total number selected as

n
*

2 ¼ n
*

b þ n
*

c.

4 The final action depends on the value of n
*

2.

a If n
*

2 , n2, select n2 2 n
*

2 units by SRSWOR from the N2 2 n1ð2Þ 2 n
*

b units in

Population U2 not already selected for Sample s1 or s2. This corresponds to the

process of extending the end of the PRN range until the desired sample size n2 is

achieved. I ignore the implausible possibility that the end of the PRN range

circles round to pass the start of the original PRN range. That is, I assume that

n2 # N2 2 ðn1ð2Þ 2 n
*

cÞ for all possible values of n1(2) and n
*

c. This condition is

met if n2 # N2 2 n1.

b If n
*

2 ¼ n2, no further action is required because the desired sample size n2 has

been achieved. In the analysis below, for convenience, I shall treat this action as

a special case of action 4a above, with n2 2 n
*

2 ¼ 0.

c If n
*

2 . n2, select n2 units by SRSWOR from the n
*

2 units selected in Steps 2 and

3. This corresponds to the process of reducing the length of the PRN range until

the desired sample size n2 is achieved.

We thus have

p2j1 ¼ E
n

*

cn2

n1ð2Þn
*

2

n
*

2 . n2

		
 �
Prðn

*

2 . n2Þ þ E
n

*

c

n1ð2Þ

n
*

2 # n2

		
 �
1 2 Prðn

*

2 . n2Þ
n o

¼ r 2 E
n

*

cðn
*

2 2 n2Þ

n1ð2Þn
*

2

n
*

2 . n2

		
 �
Prðn

*

2 . n2Þ ð24Þ

So Condition (3) is met only if Prðn
*

2 . n2Þ ¼ 0.

We also have

Prðl [ s2jl [ U1 & l � s1Þ ¼ E
n2 2 n

*

2

N2 2 n1ð2Þ 2 n
*

b

n
*

2 # n2

		
 �
1 2 Prðn

*

2 . n2Þ
n o

ð25Þ
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and

Prðl [ s2jl � U1Þ ¼E rp1

n2

n
*

2

n
*

2 . n2

		
 �
Prðn

*

2 . n2Þ

þ E rp1 þ
n2 2 n

*

2

N2 2 n1ð2Þ 2 n
*

b

n
*

2 # n2

		
 �
1 2 Prðn

*

2 . n2Þ
n o

¼rp1 2 rp1E
n

*

2 2 n2

n
*

2

n
*

2 . n2

		
 �
Prðn

*

2 . n2Þ

þ E
n2 2 n

*

2

N2 2 n1ð2Þ 2 n
*

b

n
*

2 # n2

		
 �
{1 2 Prðn

*

2 . n2Þ}

ð26Þ

So Condition (4) is not met, even if Prðn
*

2 . n2Þ ¼ 0. We thus have a situation

analogous to that for Laniel’s sampling plans. If Prðn
*

2 . n2Þ ¼ 0, Condition (3) applies

but not Condition (4). This is similar to the situation under Laniel’s Sampling Plan A, and

the same arguments used there may be applied here.

If Prðn
*

2 . n2Þ . 0, neither Condition (3) nor Condition (4) applies and a more

complicated analysis, similar to that under Laniel’s Sampling Plan B, is required. In fact,

the analysis for Nordberg’s sampling scheme is even more complicated than for Laniel’s

because, as is evident from Equation (26), dkl – 0 also for births. However, this difference

is essentially one of scale because it is clear from Equations (24) to (26) that the {dkl} for

births are almost exactly equal to linear combinations of the {dkl} for units in the common

population. The general arguments made above in this and the previous subsection

therefore still apply.

5. Discussion and Conclusion

This article has presented general formulae for the covariance and an unbiased estimator

of the covariance between Horvitz-Thompson estimators obtained in different periods of a

repeating survey. These formulae apply exactly or almost exactly for a large class of

rotation schemes, which should encompass all but the most unusual and exceptional

circumstances. The formulae are also consistent, insofar as this can be determined, with

previously published formulae for special cases, as presented in Tam (1984), Laniel (1987)

and Nordberg (2000).

The fundamental Result 2.1 expresses the important joint inclusion probability p1k2l in

terms of single and joint inclusion probabilities within each sample and the conditional

inclusion probabilities p2j1,l. This result is exact when Conditions (3) and (4) apply. When

Conditions (3) and (4) do not apply, Equation (6) provides a means of determining p1k2l

from the joint inclusion probabilities for Sample s1 and conditional inclusion probabilities

for Sample s2.

Result 2.2 provides an expression, with unequal inclusion probabilities, for the

population covariance when the populations are known. Result 2.3 provides a corresponding

unbiased covariance estimator. Results 2.4 and 2.5 provide, respectively, simplified

versions of these for the special case of simple random sampling without replacement.
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All these results are exact when Conditions (3) and (4) apply. The analyses in Sections 3

and 4 demonstrate that they are also approximately correct for a much wider range of

circumstances. Further empirical work to identify the circumstances for which these results

are unreliable would be useful. As the examples in Section 4 demonstrate, calculating exact

covariance formulae when Conditions (3) and (4) do not apply is excessively complicated

and it would be helpful to be able to use the relatively simple formulae of Section 2.

The analysis at the end of Subsection 4.2 on the residual covariance for Laniel’s Sampling

Plan A suggests that, for this sampling plan and possibly more generally, the conditions

which lead to relatively large values of the residual covariance are, singly or in combination:

. a relatively small common population

. a large difference between units in the common population and deaths for the mean

value of the response variable in Period 1

. large inclusion probabilities for Period 2

. small probabilities of retaining units selected for Sample s1.

These conditions are most likely to arise when Periods 1 and 2 are far apart, in which case

the applicable rotation scheme is most likely to be the net effect of a series of defined

rotation schemes over intervening periods. In such circumstances, the relative simplicity

of the results in Section 2 is even more advantageous. These circumstances also give rise

to low values of the covariance between estimates for Periods 1 and 2, so that even large

relative errors in the covariance formulae of Section 2 may be unimportant in the context

of estimating the variance of changes in estimates.

The covariance estimators in Results 2.3 and 2.5 require the combination of data from

samples and populations in different periods. Such estimators may be difficult to calculate in

practice. Further work, to determine under what conditions simpler, biased estimators may be

preferable, is now possible. The covariance formulae in Results 2.2 and 2.4 enable the

application of simulation studies to estimate the biases and mean squared errors of alternative

estimators. Such studies would ideally be based on sample designs and rotation schemes

which satisfy Conditions (3) and (4), to ensure exact validity of the covariance formulae.

Appendix A. Derivation of the Covariance and Its Estimator

From Equations (2) and (8), we have:

CovðT̂1;T̂2Þ¼
k[U1

X
l[U2

X y1ky2l

p1kp2l

Prðl[s2jl[s1ÞPr k[s1 & l[s1ð Þ

þPrðl[s2jl�s1ÞPr k[s1 & l�s1ð Þ

þdkl2p1kp2l

8>>>><
>>>>:

9>>>>=
>>>>;

¼
k[U1

X
l[U2

X y1ky2l

p1kp2l

Prðl[s2jl[s1ÞPr k[s1 & l[s1ð Þ

þPrðl[s2jl�s1ÞPr k[s1 & l�s1ð Þ

2p1kp2l

8>>>><
>>>>:

9>>>>=
>>>>;
þ
k[U1

X
l[U2

X y1ky2l

p1kp2l

dkl
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Ignoring the residual covariance
k[U1

P
l[U2

P y1ky2l

p1kp2l
dkl and using Result 2.1, we have

CovðT̂1; T̂2Þ ¼
k[U1

X
l[Uc

ðp1l–1Þ

X y1ky2l

p1kp2l

p1klp2j1;l þ
ðp1k 2 p1klÞðp2l 2 p1lp2j1;lÞ

ð1 2 p1lÞ
2 p1kp2l

� �

¼
k[U1

X
l[Uc

ðp1l–1Þ

X y1ky2l

p1kp2l

p1klp2j1;l 2 p1klp2j1;lp1l þ p1kp2l 2 p1kp1lp2j1;l

2p1klp2l þ p1klp1lp2j1;l 2 p1kp2l þ p1kp2lp1l

ð1 2 p1lÞ

8>>><
>>>:

9>>>=
>>>;

¼
k[U1

X
l[Uc

ðp1l–1Þ

X y1ky2l

p1kp2l

p1klp2j1;l 2 p1kp1lp2j1;l 2 p1klp2l þ p1kp2lp1l

ð1 2 p1lÞ

� �

¼
k[U1

X
l[Uc

ðp1l–1Þ

X y1ky2l

p1kp2l

ðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

1 2 p1l

� �

To obtain an unbiased estimator for this covariance, we multiply each term in the double

summation by the random, inclusion indicator variables I1k and I2l and divide by the

expected value of their product, p1k2l. This gives

CôvðT̂1; T̂2Þ ¼
k[U1

X
l[Uc

ðp1l–1Þ

X y1ky2l

p1kp2l

ðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

1 2 p1l

� �
I1kI2l

p1k2l

¼
k[s1

X
l[s2ð1Þ

ðp1l–1Þ

X y1ky2l

p1kp2l

ðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

ð1 2 p1lÞp1klp2j1;l þ ðp1k 2 p1klÞðp2l 2 p1lp2j1;lÞ

� �

¼
k[s1

X
l[s2ð1Þ

ðp1l–1Þ

X y1ky2lðp1kl 2 p1kp1lÞðp2j1;l 2 p2lÞ

p1kp2l p1klðp2j1;l 2 p2lÞ þ p1kðp2l 2 p1lp2j1;lÞ
� �

Appendix B. Derivation of the Covariance and Its Estimator Under SRSWOR

Under simple random sampling, we have p1k ¼ p1l ¼ p1, p2l ¼ p2, p2j1,l ¼ p2j1,

p1kk ¼ p1k ¼ p1 and p1kl ¼ p1ðN1p1 2 1Þ=ðN1 2 1Þ for k – l.
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Substituting these values into Equation (12) and assuming p1 , 1 gives

CovSRSðT̂1;T̂2Þ¼
k[Uc

Xy1ky2k

p1p2

p12p2
1

� �
ðp2j12p2Þ

ð12p1Þ

þ
k[U1

X
l[Uc

l–k

Xy1ky2l

p1p2

p1ðN1p121Þ

N121
2p2

1

� �
ðp2j12p2Þ

ð12p1Þ

¼
k[Uc

X
y1ky2k

p2j1

p2

21

� �
þ
k[U1

X
l[Uc

l–k

Xy1ky2l

p1p2

N1p
2
12p12N1p

2
1þp2

1

� �
ðp2j12p2Þ

ðN121Þð12p1Þ

¼
k[Uc

X
y1ky2k

p2j1

p2

21

� �
2

1

N121k[U1

X
l[Uc

l–k

X
y1ky2l

p2j1

p2

21

� �

¼
p2j1

p2

21

� � N1

k[Uc

X
y1ky2k2

k[U1

X
l[Uc

X
y1ky2l

( )

N121

¼N1

p2j1

p2

21

� �
k[Uc

X
y1ky2k2 �y1

l[Uc

X
y2l

( )

N121

¼N1

p2j1

p2

21

� �
k[Uc

X
ð y1k2 �y1Þy2k

N121

Substituting into Equation (13) gives

CôvSRSðT̂1; T̂2Þ ¼
k[sc

X y1ky2k p1 2 p 2
1

� �
ðp2j1 2 p2Þ

p1p2 p1ðp2j1 2 p2Þ þ p1ðp2 2 p1p2j1Þ
� �

þ
k[s1

X
l[s2ð1Þ

l–k

X y1ky2l

p1ðN1p1 2 1Þ

N1 2 1
2 p 2

1

� �
ðp2j1 2 p2Þ

p1p2

p1ðN1p1 2 1Þ

N1 2 1
ðp2j1 2 p2Þ þ p1ðp2 2 p1p2j1Þ

� �
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¼
k[sc

X y1ky2k

p1p2

1 2
p2

p2j1

� �

þ
k[s1

X
l[s2ð1Þ

l–k

X y1ky2l N1p
2
1 2 p1 2 N1p

2
1 þ p 2

1

� 
ðp2j1 2 p2Þ

p1p2 N1p
2
1 2 p1

� �
ðp2j1 2 p2Þ þ N1p1p2 2 p1p2 2 N1p

2
1p2j1 þ p 2

1p2j1

� 

¼
k[sc

X y1ky2k

p1p2

1 2
p2

p2j1

� �
þ

k[s1

X
l[s2ð1Þ

l–k

X 2y1ky2l p1 2 p 2
1

� �
ðp2j1 2 p2Þ

p1p2 2N1p
2
1p2 2 p1p2j1 þ N1p1p2 þ p 2

1p2j1

� �

¼
k[sc

X y1ky2k

p1p2

1 2
p2

p2j1

� �
2

k[s1

X
l[s2ð1Þ

l–k

X y1ky2lðp2j1 2 p2Þ

p1p2ðN1p2 2 p2j1Þ

¼
k[sc

X y1ky2k

p1p2

1 2
p2

p2j1

� �
2

k[s1

X
l[s2ð1Þ

l–k

X y1ky2l 1 2
p2

p2j1

� �

p1p2 N1

p2

p2j1

2 1

� �

¼

1 2
p2

p2j1

� �

p1p2 N1

p2

p2j1

2 1

� � N1p2

p2j1 k[sc

X
y1ky2k 2

k[s1

X
l[s2ð1Þ

X
y1ky2l

8<
:

9=
;

¼

1 2
p2

p2j1

� �

p1p2 1 2
p2j1

p2N1

� �
k[sc

X
y1ky2k 2

p2j1

N1p2 k[s1

X
y1k

l[s2ð1Þ

X
y2l

8<
:

9=
;

¼

nc 1 2
p2

p2j1

� �

p1p2 1 2
p1p2j1

p2n1

� � y1y2

� �
sc
2

p1p2j1n2ð1Þ

p2nc
�ys1 �ys2ð1Þ

� �

Appendix C. Deviations from Conditions (3) and (4)

To demonstrate Expression (17), we have, using the random indicator variables I1k, I1l and

I2l introduced in Section 2

dkl¼p1k2l2Prðl[s2jl[s1ÞPrðk[s1 & l[s1Þ2Prðl[s2jl�s1ÞPrðk[s1 & l�s1Þ

¼E½I1kI2l�2Prðl[s2jl[s1ÞE½I1kI1l�2Prðl[s2jl�s1ÞE½I1kð12I1lÞ�

¼E½I1k�E½I2l�þCov½I1k;I2l�2Prðl[s2jl[s1Þ{E½I1k�E½I1l�þCov½I1k;I1l�}

2Prðl[s2jl�s1Þ{E½I1k�E½ð12I1lÞ�þCov½I1k;12I1l�}
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¼p1kp2lþCov½I1k;I2l�2Prðl[s2jl[s1ÞPrðl[s1Þp1k

2Prðl[s2jl[s1ÞCov½I1k;I1l�2Prðl[s2jl�s1ÞPrðl�s1Þp1kþPrðl[s2jl�s1ÞCov½I1k;I1l�

¼Cov½I1k;I2l2I1l{Prðl[s2jl[s1Þ2Prðl[s2jl�s1Þ}�

We thus have

k[U1

X
k[U2

l–k

X
dkl ¼

k[U1

X
l[U2

X
Cov½I1k; I2l 2 I1l{Prðl [ s2jl [ s1Þ2 Pr l [ s2ð jl � s1Þ}�

¼ Cov
k[U1

X
I1k;

l[U2

X
I2l 2

l[U2

X
I1l{Prðl [ s2jl [ s1Þ2 Prðl [ s2jl � s1Þ}

2
4

3
5

¼ Cov n1; n2 2
l[Uc

X
I1l p2j1;l 2

p2l 2 p2j1;lp1l

1 2 p1l

� �2
4

3
5

because I1l ¼ 0 for I1l � U1

ð27Þ

¼ Cov n1; n2 2
l[s1ð2Þ

Xp2j1;l 2 p2l

1 2 p1l

0
@

1
A

2
4

3
5

Appendix D. Derivation of Residual Covariances for Laniel (1987)

Under Laniel’s sampling plans

dkl ¼

0 : l � Uc

dc : k; l [ Uc & k – l

dd : k � Uc; l [ Uc

8>><
>>:

Because n1 is fixed we have, from Expression (17)

k[U1

X
l[U2

l–k

X
dkl ¼ 0 ¼

k[U1

k�Uc

X
l[Uc

X
dd þ

k[Uc

X
k[Uc

k�Uc

X
dc ¼ ðN1 2 NcÞNcdd þ NcðNc 2 1Þdc
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Hence ðN1 2 NcÞdd ¼ 2ðNc 2 1Þdc and the residual covariance is

k[U1

X
l[U2

l–k

X y1ky2l

p1p2

dkl ¼
k[U1

k�Uc

X
l[Uc

X y1ky2l

p1p2

dd þ
k[Uc

X
l[Uc

l–k

X y1ky2l

p1p2

dc

¼ 2
Nc 2 1

ðN1 2 NcÞk[U1

k�Uc

X
l[Uc

X y1ky2l

p1p2

dc þ
k[Uc

X
l[Uc

X y1ky2l

p1p2

dc 2
k[Uc

X y1ky2k

p1p2

dc

¼

ðNc 2 1ÞNcð�y1c 2 �y1dÞ�y2c 2
k[Uc

X
ð y1k 2 �y1cÞy2k

p1p2

dc

ð28Þ

where �y1d ¼
k[U1

k�Uc

P
y1k=ðN1 2 NcÞ is the mean response in Period 1 for deaths.

Note that this general result applies to both Sampling Plan A and Sampling Plan B.

Under Sampling Plan A, Prðl [ s2jl � s1Þ ¼ E½ð1 2 rÞn1ð2Þ=ðNc 2 n1ð2ÞÞ�. As Laniel

(1987) notes, n1(2) has a hypergeometric distribution. His Equation 19 presents a second

order approximation to E½ð1 2 rÞn1ð2Þ=ðNc 2 n1ð2ÞÞ� but the second order term is of order

1/Nc. Assuming that Nc < N1, as required by Laniel’s sampling specification, we confine

our attention to the first order approximation

Prðl [ s2jl � s1Þ < ð1 2 rÞE½n1ð2Þ�=ðNc 2 E½n1ð2Þ�Þ in order to simplify the analysis

below.

In the current context, the expectation in the previous paragraph is applied only to those

samples for which l � s1. That is, we require

Prðl [ s2jl � s1Þ ¼ E
1 2 rð Þn1ð2Þ

Nc 2 n1ð2Þ

l � s1j


 �

Since the condition l � s1 reduces by one the number of units available for the random

selection process in both Populations U1 and U2, n1(2) has a hypergeometric distribution

with parameters N1 2 1, Nc 2 1 and n1. This gives the following first order approximation

Prðl [ s2jl � s1Þ <
ð1 2 rÞn1ðNc 2 1Þ=ðN1 2 1Þ

Nc 2 ðn1ðNc 2 1Þ=ðN1 2 1ÞÞ
¼

ð1 2 rÞn1

N1 2 n1 þ ððN1 2 NcÞ=ðNc 2 1ÞÞ

<
ð1 2 rÞn1

N1 2 n1

1 2
ðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 1Þ

� �

To obtain a similar expression for Prðl [ s2jk [ s1ð2Þ & l � s1Þ we need to assess the

effect of the additional condition k [ s1ð2Þ on the probability distribution of n1(2). Since the

additional condition reduces by one more unit the number of units available for the random

selection process in both populations and in the sample for Period 1, n1(2) 2 1 has a
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hypergeometric distribution, with parameters N1 2 2, Nc 2 2 and n1 2 1. So:

Prðl [ s2jk [ s1ð2Þ & l � s1Þ <
ð1 2 rÞ 1 þ ððn1 2 1ÞðNc 2 2Þ=ðN1 2 2ÞÞ

� 
Nc 2 1 2 ððn1 2 1ÞðNc 2 2Þ=ðN1 2 2ÞÞ

¼
ð1 2 rÞ{ððN1 2 2Þ=ðNc 2 2ÞÞ2 1 þ n1Þ}

N1 2 1 2 n1 þ ððN1 2 2Þ=ðNc 2 2ÞÞ

¼
ð1 2 rÞ{ððN1 2 NcÞ=ðNc 2 2ÞÞ þ n1Þ}

N1 2 n1 þ ððN1 2 NcÞ=ðNc 2 2ÞÞ

<
ð1 2 rÞ{ððN1 2 NcÞ=ðNc 2 2ÞÞ þ n1}

N1 2 n1

1 2
ðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ

� �

Hence

Prðl [ s2jk [ s1ð2Þ & l � s1Þ2 Prðl [ s2jl � s1Þ

<
ð1 2 rÞðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ
1 2

ðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ

� �

and

dc ¼ {Prðl [ s2jk [ s1ð2Þ & l � s1Þ2 Prðl [ s2jl � s1Þ}Prðk [ s1 & l � s1Þ

<
ð1 2 rÞðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ
1 2

ðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ

� �
n1ðN1 2 n1Þ

N1ðN1 2 1Þ

¼
p1ð1 2 rÞðN1 2 NcÞ

ðN1 2 1ÞðNc 2 2Þ
1 2

ðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ

� � ð29Þ

Substituting Equation (29) into Equation (28) thus gives

k[U1

X
l[U2

l–k

X y1ky2l

p1p2

dkl <
ð1 2 rÞðN1 2 NcÞðNc 2 1Þ

p2ðN1 2 1ÞðNc 2 2Þ
{Ncð�y1c 2 �y1dÞ�y2c 2 C12}

£ 1 2
ðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ

� � ð30Þ

where: C12 ¼
k[Uc

P
ð y1k 2 �y1cÞy2k=ðNc 2 1Þ is the finite population covariance between the

response in Period 1 and the response in Period 2 for units in the common population.

To compare this with Equations (14) and (20), we may rewrite Equation (20) as

CovSRSðT̂1; T̂2Þ <
ðp2j1 2 p2ÞN1

p2ðN1 2 1Þ
ðNc 2 1ÞC12 þ

Nc

N1

ðN1 2 NcÞð�y1c 2 �y1dÞ�y2c

� �
ð31Þ
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The relative error in the approximate covariance of Equation (14) is therefore

approximately the ratio of Expression (30) to Expression (31)

ð1 2 rÞ

ðp2j1 2 p2Þ

ðN1 2 NcÞ{Ncð�y1c 2 �y1dÞ�y2c 2 C12}

{N1ðNc 2 1ÞC12 þ NcðN1 2 NcÞð�y1c 2 �y1dÞ�y2c}

ðNc 2 1Þ

ðNc 2 2Þ

£ 1 2
ðN1 2 NcÞ

ðN1 2 n1ÞðNc 2 2Þ

� �

For SamplingPlanB, Conditions (3) and (4) are not met. For units l [ U1 and l � s1, we have

Prðl [ s2jl � s1Þ ¼ E
ð1 2 rÞn1ð2Þ

Nc 2 rn1ð2Þ

				l � s1


 �

and, using similar arguments as for Sampling Plan A

Prðl[s2jl�s1Þ<
ð12rÞ{n1ðNc21Þ=ðN121Þ}

Nc2ðrn1ðNc21Þ=ðN121ÞÞ
<
ð12rÞn1

N12rn1

12
ðN12NcÞ

ðN12rn1ÞðNc21Þ

� �

Prðl[s2jk[s1ð2Þ& l�s1Þ<
ð12rÞ{1þððn121ÞðNc22ÞÞ=ðN122Þ}

Nc2r2rððn121ÞðNc22ÞÞ=ðN122Þ

¼
ð12rÞ{ððN122Þ=ðNc22ÞÞ21þn1}

N122þðð22rÞðN122ÞÞ=ðNc22Þ2rðn121Þ

¼
ð12rÞ{ðN12NcÞ=ðNc21Þþn1}

N12rn1þð22rÞððN12NcÞ=ðNc21ÞÞ

<
ð12rÞ{ððN12NcÞ=ðNc21ÞÞþn1}

N12rn1

12
ð22rÞðN12NcÞ

ðN12rn1ÞðNc21Þ

� �

Similarly

Prðl[ s2jl[ s1Þ ¼ E rþ
ð12 rÞ2n1ð2Þ

Nc 2 rn1ð2Þ

				l[ s1


 �

< rþ
ð12 rÞ2{1þ ððn1 2 1ÞðNc 2 1ÞÞ=ðN1 2 1Þ}

Nc 2 r2 rððn1 2 1ÞðNc 2 1ÞÞ=ðN1 2 1Þ

¼ rþ
ð12 rÞ2{ððN1 2 1Þ=ðNc 2 1ÞÞ2 1þ n1}

N1 2 1þ ðð12 rÞðN1 2 1ÞÞ=ðNc 2 1Þ2 rðn1 2 1Þ

¼ rþ
ð12 rÞ2{ððN1 2NcÞ=ðNc 2 1ÞÞ þ n1}

N1 2 rn1 þ ð12 rÞððN1 2NcÞ=ðNc 2 1ÞÞ

< rþ
ð12 rÞ2{ððN1 2NcÞ=ðNc 2 1ÞÞ þ n1}

N1 2 rn1

12
ð12 rÞðN1 2NcÞ

ðN1 2 rn1ÞðNc 2 1Þ

� �
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Prðl[ s2jk[ s1ð2Þ & l[ s1Þ ¼ E rþ
12 rð Þ2n1ð2Þ

Nc 2 rn1ð2Þ

				k[ s1ð2Þ & l[ s1


 �

< rþ
ð12 rÞ2 2þ ððn1 2 2ÞðNc 2 2ÞÞ=ðN1 2 2Þ

� 
Nc 2 2r2 rððn1 2 2ÞðNc 2 2ÞÞ=ðN1 2 2Þ

¼ rþ
ð12 rÞ2{ðð2ðN1 2 2Þ=ðNc 2 2ÞÞ2 2þ n1}

N1 2 2þ 2ðð12 rÞðN1 2 2ÞÞ=ðNc 2 2Þ2 rðn1 2 2Þ

¼ rþ
ð12 rÞ2{ð2ðN1 2NcÞ=ðNc 2 2ÞÞ þ n1}

N1 2 rn1 þ ð2ð12 rÞðN1 2NcÞÞ=ðNc 2 2Þ

< rþ
ð12 rÞ2{2ðN1 2NcÞ=ðNc 2 2Þ þ n1}

N1 2 rn1

12
2ð12 rÞðN1 2NcÞ

ðN1 2 rn1ÞðNc 2 2Þ

� �

Substituting these expressions into the relevant equations, in the same way as for

Sampling Plan A, produces corresponding expressions for the residual covariance and the

relative error for Sampling Plan B. Because these expressions have the same form as with

Sampling Plan A, the considerations and resultant conclusions are also the same.
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