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On the Design of Interpenetration Experiments
for Categorical Data Items
S. Lynne Stokes and Mary H. Mulry’

Abstract: The variance of the ANOVA esti-
mator of the variance component for a bal-
anced one-way random model which has a
categorical response variable is derived, with-
out making any distributional assumptions
for the random effect. The tightest possible
bounds for this variance are determined from
the Markov-Krein Theorem by assuming
knowledge of only the first two or three
moments and the range of possible values of
the random effect. The bounds are shown to
be useful for planning the survey design,
including the sample size requirements, of an
interpenetration experiment to estimate the

1. Introduction

Errors introduced in the measuring, editing,
or coding of responses in a sample survey
contribute substantially to the bias and/or
variance of the estimators obtained from the
sample. When these errors are positively cor-
related within the sample, as they might be
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correlated component of response variance
for a categorical item in a sample survey.
Examples illustrate that the resulting required
sample sizes may deviate greatly from that
which would be appropriate for estimating
the correlated component for a continuous
response variable assumed to meet the norm-
ality assumptions of the classical variance
components model.

Key words: Variance component; interpen-
etration; interviewer variance; survey non-
sampling error; Markov-Krein Theorem.

when a single operator, such as an interview-
er or coder, handles a number of cases, the
increase in the variance of estimators of
means and totals can be particularly severe.
To see why this is true, let y; denote the
recorded response of the jth unit in the ith
operator’s assignment, where i = 1,...,k and
j=1,...,m. Then
Var(y) = (6km)[1 + (m-1)g],

where j = =2 y;/km, o’ = Var(y;) and oo’ =
Cov(y;;, y,»j’).ISo if the operator’s assignment
is large, even a small value of o can substanti-
ally increase Var(y). This increase is known
as the correlated component of response
variance.
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Because of its potentially large effect, the
U.S. Bureau of the Census has included esti-
mation of the correlated component of
response variance due to interviewers, also
called interviewer variance, as part of its eval-
uation programs for the last four decennial
censuses. As aresult of the first of those stud-
ies in 1950, the operation of the 1960 and
subsequent censuses was changed to pre-
dominantly self- enumeration so that the
impact of the interviewer errors would be
reduced.

Now there is interest within the Census
Bureau and other survey research organiza-
tions in estimating interviewer variance for
key items in sample surveys as well. In addi-
tion to providing a way to adjust the variance
of estimates, it may help identify items sub-
ject to large interviewer errors, which could
then be mitigated by questionnaire redesign
or increased interviewer training.

Most methods for estimating the correlat-
ed component require interpenetration of
operators, a technique introduced by Maha-
lanobis (1946). In its most basic form, inter-
penetration requires the random sample of
size n from a population of size N to be ran-
domly divided into k subsamples of size m =
n/k, and each subsample to be assigned to a
single interviewer. Thus each interviewer’s
sample is randomly distributed over the
entire population, requiring increased travel
for each interviewer.

In personal visit sample surveys, in con-
trast to censuses, the sample units may be
sparsely distributed. Even when the popula-
tion is divided into subpopulations, each
covering less area, the added expense in time
and money of the increased interviewer trav-
el may be enormous. Even locating groups
of interviewers whose usual enumeration
areas are in close enough proximity that
interpenetration is feasible may be difficult.
For that reason, careful planning of the sample
design for interpenetration experiments is

Journal of Official Statistics

important. If sufficiently precise estimation
of interviewer variance would require a larg-
er number of interpenetrated interviewer
assignments or a larger number of sample
units than can be afforded, then this should
be known before, rather than after the data
are collected.

To solve the sample size problem complete-
ly, the researcher must know the distribution
of the estimator of interviewer variance.
Samplers rarely have such complete informa-
tion about their estimators when planning a
survey, however. They generally must make
sample size decisions from knowledge of the
behavior of the mean and variance of their
estimator only.

Several estimators of interviewer variance
have been suggested (Kish (1962), Fellegi
(1974), Biemer and Stokes (1985), and most
of them are actually ANOVA or MINQUE
(Hartley, Rao, and La Motte (1978)) estima-
tors of variance components from random or
mixed ANOV A models. The mean and vari-
ance of these estimators are known, at least
for balanced designs, when all variance
components and the response variable itself
are normally distributed. Most survey data
are categorical, however, and when analysis is
performed, each category is treated as a
dichotomous variable. Little has been writ-
ten about the distribution of the estimators of
variance components in that case.

Williams (1982) and Anderson and Aitkin
(1985) have suggested estimators of a pa-
rameter measuring interviewer variability (but
which is not interviewer variance) for dichot-
omous variables based on maximum likeli-
hood. The advantage of their methods is that
other factors besides the interviewer that
may affect the responses, such as geographical
area, may be included in the model. How-
ever, neither of them supplies expressions for
the variance of their estimators which could
be used for planning sample designs.

In other studies of interviewer variance,
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empirical variance estimation techniques,
such as the jackknife (McLeod and Krotki
(1979)) and ultimate cluster methods (Bailey,
Moore, and Bailar (1978)) have been used
for evaluating the precision of estimators of
interviewer variance on categorical data
items. These methods are not useful for the
planning of sample designs for interpenetra-
tion studies, however. For interpenetration
studies, of course, measures of the precision
of the estimator are needed before the data
collection process begins.

The problem of determining the number of
interviewers needed to participate in an
interpenetration experiment whose goal was
to estimate interviewer variance for dichoto-
mous items led to the development of the
methods discussed in this paper. Here, the
approach taken is to at least determine

bounds for the variance of the usual estima- |

tor of interviewer variance for dichotomous
items from balanced interpenetration experi-
ments, without making unsubstantiated
distributional assumptions about the errors
interviewers make. These bounds can then
be used to determine a lower bound for the
number of interviewers needed to achieve a
specified precision for the estimate of inter-
viewer variance. As more is known about the
way in which interviewers make errors, the
researcher may be willing to make more
stringent distributional assumptions, thus
narrowing the interval of possible values for
the estimator’s variance.

A striking observation from the analysis
which follows is the discrepancy in the sample
sizes which may be required between the
categorical and continuous (normal) data
cases. Since researchers sometimes use the
theory of the normal model for designing
interpenetration experiments for surveys
whose key items are categorical, this discrep-
ancy could lead to estimators with insuffi-
cient precision.

In Section 2, two commonly used estima-

tors of interviewer variance are presented,
along with their variances, for the continuous
and categorical data models. In Section 3,
methods for obtaining bounds on the vari-
ances of these estimates for dichotomous items
are suggested. The methods are illustrated in
Section 4 by numerical example. A discus-
sion follows in Section 5.

2. The Estimator and Its Variance

Assume that k interviewer assignments are
interpenetrated and that each interviewer
has m assigned units. Let y; denote the
response of the jth unit in interviewer is
assignment. When the characteristic being
observed is membership in a category, so that
the response y;; is limited to 0 or 1, Bailar and
Biemer (1984) model the mechanism causing
the correlated errors in the following way.
For each category, an interviewer can make
two types of errors: 1, is the probability that
interviewer i records a unit reporting that it
belongs to the category as not belonging toit,
and 0, is the opposite kind of probability.
Then (n;, 6,) is considered to be a random
vector associated with the ith interviewer.
But consideration of individual characteris-
tics of m; and 0, can be avoided by defining a
new random variable p; = E(y;|i) = Prly; =
1|i] to be the conditional probability that
interviewer i records a randomly chosen unit
as belonging to the category. Then we may
write

yi=u+ (Pi—w +g; (2.1)
where u = Ep;, = E[E(y;|i)] = E(y;), which
implies that E(g;) = 0. Since y; is limited to
either O or 1, g; is restricted to—p; or 1 —p; =
g;, with conditional probabilities g; and p;
respectively, for each i. Thus V(g;) =
E[V (g5l )] + VIE(g;])] = Epigi = u(1-n) -
¢y, where ¢; = V(p;). Similarly, one can
show that Cov(e;,p;) = Cov(geg’) = 0.
When written in this form, it is obvious why
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estimators of variance components are
appropriate, even in the categorical case, for
estimating the interviewer variance ¢, and
the intra-interviewer correlation @ =
Cov(y.yi)/ Var(yy') = ¢1/u(1-p).

The ANOVA estimator from the design
just described, in which k interviewers ran-
domly split mk units, with y; denoting the jth
unit in interviewer is assignment, i = 1,... k;
j=1,..,mis

&1 = (s3-s53)/m, (22)
where

5= [m/ (k-D] 20~ 5)2, 23)

and s;, = [k (m—l)]“,Z JZ(Yij -¥)% (2.4)

In the dichotomous case, (2.3) and (2.4) can
be rewritten as

s = [/ (- D2~ p)?
and 53 = [k(m-1)] " £p,(1-p,),

where p; = Z y;/m, p = Z p;/k.
] 1

This estimator can be used only when it is
feasible for all interviewers to have units cho-
sen from the total population. For example,
it was used by Kish (1962) in a survey of em-
ployees of a factory. It might also be used in
some telephone surveys since assignment of a
random subsample of the total population to
each interviewer does not generate the addi-
tional costs of increased travel.

For personal visit interviews, however,
interpenetration experiments require in-
creased amounts of travel by all interviewers
and thus are constrained by the cost of that
travel. For many surveys, such as the Current
Population Survey (CPS) conducted by the
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U.S. Bureau of the Census, finding enumera-
tion areas close enough together that interpen-
etration of large numbers of interviewer
assignments is feasible, with the time and
cost constraints required, is difficult. For that
reason, interpenetration in personal visit
interviewing is generally restricted to pairs of
interviewer assignments, and a larger sample
of interviewers is achieved by increasing the
number of interpenetrated pairs r, rather
than by increasing k. Then the estimator of
interviewer variance is taken to be

¢ = 2 bulr, 2.5)

where &)1,« is the estimate of interviewer vari-
ance (computed from (2.2) with k = 2) for
the ith pair.

The classical one-way random ANOVA
model has the same form as (2.1), but y; is
generally assumed to be a continuous ran-
dom variable and V(g;|i) is assumed to be
homogeneous, say equal to ¢, over all
groups. If, in addition, both p; and ¢; were
assumed to be normal, the variance of the
ANOVA estimate of ¢, §; as given by (2.2),
is known (e.g., from Searle (1971, p. 474) to
be

V(1) = 2(k-1)" [@1° + 29190/m +
o3/m?] + 0(m™>). (2.6)
If the assumption of normality of p; is discard-
ed, we have from Appendix 1

V(1) = k' [ = ((k-3)/ (k-1))0] +
4 G109/ (k=1)m + 203/ (k-1)m* +

0(m™), @7
where p, is the 4th central moment of the p;s.
It is clear that when the kurtosis of p;, §, =
us/0,> > 3, the expression in (2.7) is greater
than that in (2.6). When 8, < 3, it is smaller,
and when 3, = 3, as in the normal distribu-
tion, (2.6) and (2.7) are identical. Ideally,
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then, the kurtosis of the distribution of the p; s
should be considered when planning sample
designs for estimating interviewer variance
for continuous variables.

When y;; is dichotomous, we have seen that
the distribution assumed for the variance
component p; determines the distribution of
&;, 50 that their distributions cannot be speci-
fied separately. Furthermore, the condition-
al variance of the error term, V(g;|i) = p,g;,
is not homogeneous across interviewers
unless ¢; = 0. Therefore, (2.6) and (2.7) are
not appropriate expressions for V(&)l) and so
cannot be used for survey design as they can
in the continuous case. It can be shown,
however, following the method described in
Appendix 1, that for y; following model

V($1) = k' [wa— (k=3)/ (k1)) 93]
+4¢,E(pigi) | (k-1)ym + 2EX(p,q) | (k-1)m?
+4A, lkm + 2B, lkm* + 0(m™),  (2.8)

where A, = E{pql(p;~ 1)’ - ¢,]} and B, =
V(pg:) + E [pgdq: —p)(pi~w)]. The first

three terms of (2.8) are identical to those of
(2.7), with E(p,q;) replacing ¢,. A, and B, are
functions of the first four moments of p; and
can be either positive or negative. So the
discrepancy between V(¢,) for the normal
and the dichotomous variable models (i.e.,
between (2.6) and (2.8)) may arise not only
from p;s non-normality, but also from A,
and/or B, being non-zero.

From (2.5) we have

V($) =Z V(i (2.9)

where V((f)li) can be obtained from (2.6),
(2.7), and (2.8) with k = 2.

Since no other methods have been avail-
able, researchers have used (2.6) to plan
sample designs even when the variables of
interest are categorical. Table 1 shows that
this procedure can lead to either over- or
under-estimation of V((i),). It gives, for several
specified distributions of p;, the ratio of V()

Table 1. Distributions for p and resulting precision of q‘>,

f(p) u Q ﬁl 62 Rc,n
9 if45<sp=<.55
a. 25 if.5<p=<.75 .500 .013 0 8.91 1.21
or.25<p< .45
0 otherwise
b. Beta(.5,.5,.418,.582)* .500 .013 0 1.50 0.93
C. Beta (37,37,0,1) .500 .013 0 2.92 0.99
d. Beta (1,10,0,.5) .045 .040 2.31 5.78 1.64
€. Beta (1,20,0,.5) .024 .022 2.99 7.07 1.84
f. Beta (1,10,.25,.75) .295 .008 2.31 5.78 1.08

*Beta (r,s,a,b) denotes a random variable having density function
fp) = (@-a)' (b-p)'/B(r,s)(b-a)**" forasp<b.
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for the dichotomous data model (from (2.8))
to that of a normal model (from (2.6)) having
comparable variance components (¢g
E(p,q))), where m = 50 and k = 2. This ratio
is denoted by R, ,. The distributions repres-
ented in the table were chosen to have a vari-
ety of shapes and to have intra-interviewer
correlations covering a range of typical
values for g. Distribution (c) is very close to
normal and has R, , close to 1. From (a) and
(b) we see that symmetric distributions can
have R., values either greater or smaller
than 1, depending on whether the kurtosis of
p; is large or small. The positively skewed
distributions, i.e., those having B, = u%d,**> 0
(d, e, and f) all have R_,> 1. These distribu-
tions have large , as well, however, since
,> 1+ B, for any random variable (see, e.g.,
Kendall and Stuart (1977, p. 95)). In general,
it appears from the table as though the kurtosis
of p;determines whether the precision of (f)l is
higher or lower for dichotomous variables
than for the case where all variance compo-
nents are normally distributed. We noted
earlier that when y; is continuous and V(y;|i)
homogeneous, a similar statement holds.
The criterion which is often used for deter-
mining an adequate sample size for an unbi-
ased estimator is that of achieving for it a
specified coefficient of variation (CV(cf)l) =
[Var(¢,)/$:%]"). For example, in a survey in
which it is known that interviewers can com-
plete m interviews during the allotted survey
period, we might be interested in deter-
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mining the number of interpenetrated inter-
viewer assignments (k) needed to achieve a
specified CV for (f)]. If y; were a continuous
variable and all the assumptions required for
the validity of (2.6) held, then the required &
is that satisfying

(CV)* = 2{1 + 2[(1-0)/el/m

+ [(1-e)/e)m*}/(k-1) + 0(m™),  (2.10)

where ¢ = ¢/(¢; + ¢p). The values of k deter-
mined from (2.10) to achieve CV = 0.5 for
some specified values of g and m are shown in
Table 2.

The number of pairs of interpenetrated
interviewer assignments, r, needed to
achieve a specified CV for ¢, can also be
determined from (2.9) and (2.10) by setting k
= 2. The results from this computation for
CV = 0.5 are also reported in Table 2.

If the sample designer plans to use (2.8) to
determine the needed number of interview-
ers to participate in an interpenetration
experiment to estimate ¢; for categorical
items, he or she must first make assumptions
about the first four moments of p;. Even an
assumption of normality alone for p; is not
sufficient, since in the dichotomous case,
C V((f),) depends on Ep; = u, which it does not
for the continuous model. Furthermore, an
assumption of normality for p; is not natural,
since p; denotes a probability and, as such, is
restricted to the interval [0,1].

Table 2. Required r and k to achieve CV = 0.5 for normal model

Number of interviewers

r (Interpenetration of pairs)

k (Complete interpenetration)

0 .01 .025 .05 .10 .01 .025 .05 .10
m =50 72 26 17 12 73 27 17 13
m =500 12 10 9 9 13 11 10 10
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For most applications in which estimates of
variance components for categorical vari-
ables are needed, the sample designer is not
likely to have much information about the
distribution of p;. On the other hand, he or
she is likely, at least, to have information
about the range of values for the first two
moments of p; for a given item. A range for p
will be known from the reported incidence of
similar characteristics in previous studies,
and a less precise range for g, and thus for ¢,
= w(1-n) o, can be given from knowledge
gained from previous interpenetration stud-
ies, such as those reported by Kish (1962) or
Groves and Magilavy (1987). For example,
we know that for most demographic items, o
is less than 0.01, for factual subject-matter
items, g is less than about 0.04 and for highly
controversial or attitudinal variables, ¢ may
be as large as 0.1.

In Section 3, a method for obtaining
bounds, rather than exact values, for V(¢,)
and thus for V((i)l), is suggested. The goal of
this method is to obtain these bounds while
requiring knowledge only of the bounded-
ness of p;, its first two moments, and as little
speculative information as possible about its
distribution. From these bounds, the method
can determine bounds for k or r.

3. Variance Bounds in the Categorical
Model

Bounds for V(&)l) or V(¢,) can be found by
using corollaries of the Markov-Krein The-
orem (DeVylder (1982, 1983)). These corol-
laries, which are stated in Appendix 2, pro-
vide tight upper and lower bounds on the
expected value of certain functions of a bound-
ed random variable whose first several
moments are known. The corollaries actually
produce distributions which achieve each of
those bounds, implying that the width of the
interval cannot be reduced without excluding
values for a possible distribution. The ran-
dom variables having the most extreme

moments are discrete ones with two or three
point masses.

An upper and lower bound for the third
central moment of p;, U3, is found first by ap-
plying Corollary 1 of the Appendix to A(p;) =
(p; — w)®. The corollary’s assumptions are
satisfied if the survey planner has some infor-
mation about the first two moments of p;.
This interval, which can be obtained from
(A.2),is

$u(Pr — 1) /1 < ps < y[(1-1) =]/ (1-p).
(3.1)

To use the same approach for obtaining an
upper and lower bound for V($,) given that
the first 3 moments of p; are known, one must
be able to express V(¢,) from (2.8) as Eh(p,),
where h®(p;) = 0. Such a function exists and
is given in (A.3) of Appendix 2. Then Corol-
lary 2 yields bounds for V(cﬁ]) which require
knowledge of u;, which may in turn be ob-
tained from (3.1). With the bounds thus ob-
tained for V((f)l), the problem of determining
the survey design parameters required to
achieve a specified CV for (i)l or ¢, can be
addressed.

Using this approach, however, yields
bounds for k or r which are, in most cases, too
wide to be useful. This is disturbing, espe-
cially since the Markov-Krein corollaries
provide bounds which are tight; i.e., there
actually exist distributions for p; which lead
to the endpoints of the intervals and thus to
the most extreme sample sizes. But those
extreme distributions are unlikely candidates
for the behavior of the population of inter-
viewers. For example, the upper bound for
V(qB,) provided by the corollaries is achieved
by distributions which place positive prob-
ability at each endpoint of p;s support;i.e., at
0 and 1, and at only one point in the interior
of the interval. But the population of inter-
viewers from which the sample can come is
likely, for most survey field operations, to be
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somewhat homogeneous, since they must
undergo screening and training before they
can enter the available pool. Thus it is un-
likely that interviewer p;s could achieve the
extremes of both 0 and 1 on the same ques-
tionnaire item.

By reducing the class of distributions from
which p; may be chosen, the range of possible
values of V((i)l) or V(¢,) and thus of k or r is
reduced. The class is reduced by imposing
realistic constraints on the distributions. Two
types of constraints are considered in this
paper.

The first places restrictions on the skew-
ness of the distribution of p;, and thus on p;.
The researcher may impose this type of
restriction if, for example, he or she feels that
the tendency and amount of overreporting by
interviewers of membership in a category is
about the same as that of underreporting.
Then p; would be restricted to be near 0 and
Corollary 2 could be applied to obtain the
needed bounds. Conversely, if the larger
interviewer errors tend to be in the direction
of overreporting membership in a category,
then w; might be restricted to positive val-
ues.

A second type of constraint considered
here is that of restricting the range [a,b] in
Corollaries 1 and 2 to be narrower than [0,1].
For example, the investigator may believe,
either from past experience or professional
judgment, that a reported incidence of some
characteristic less than 1/4 or higher than 3/4
does not occur. Then [a,b] could be set to
[.25,.75] and the two corollaries applied.
Both of these restrictions result in narrowed
bounds for V(cf)I) and thus for k or m.
Examples of the use of each type of con-
straint are given in Section 4.

4. Examples

In this section, the method described in Sec-
tion 3 is illustrated by numerical examples.
Suppose an investigator is interested in design-
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ing an interpenetration experiment to
estimate the interviewer variance ¢, for a
number of categorical questionnaire items.
We assume that no direct information about
interviewer behavior for the survey items is
available, so that he or she is forced simply to
make reasonable assumptions about the
distribution of the p;s.

The two possible sample designs discussed
earlier will be considered here. One assumes
that only interpenetration of pairs of inter-
viewer assignments is feasible, so that the
investigator must determine the minimum
number of pairs () required to achieve a spec-
ified CV. The second design places no limit
on the number of interviewer assignments
which may be interpenetrated simultaneous-
ly. This means that a minimum k, total num-
ber of interviewers, for a specified CV, is
desired. The first type of design, as men-
tioned in Section 3, is likely to be required for
personal visit interviews, while the second is
more adaptable to telephone surveys. An
interviewer sample size of m = 50, which may
be appropriate for the interviewer workload
in a telephone survey conducted from a cen-
tralized facility, will be assumed.

Suppose that the questionnaire items of
interest to the investigator are ones for which
the proportion of respondents recorded as
belonging to the categories are near 0.5, say
between 0.3 and 0.7. The number of inter-
penetrated interviewers (k) or interviewer
pairs (r) required to achieve a CV of 0.5 is
investigated for restrictions of the two types
discussed in Section 3, as well as a combina-
tion of the two. These restrictions are discus-
sed in the following paragraphs.

We first assume that the distribution of p; is
approximately symmetric. This belief can be
translated into a restriction that y; be close to
0. Two definitions of close were considered.
For the first, whose results are reported in
Table 3.(a), we required that p; be restricted
to the 1/3 of its potential range (as given by
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Table 3. Bounds for required r and k to achieve CV = 0.5, m =50
Number of interviewers
r (Interpenetration of pairs) k (Complete interpenetration)
/o 01 025 05 10 01 025 05 10
a. pgrestricted to middle third of its range, [a,b] = [0,1]
5 (67,250) (22,94)  (12,47)  (8,24) (64,428) (19,162) (9,78)  (6,37)
4 (67,277)  (22,104) (12,52)  (8,27) (64,483) (19,183) (9,88)  (6,42)
3 (67,312) (22,118) (12,58)  (8,29) (64,553)  (19,210) (9,101)  (6,47)
b. w=0,[ab]=][0,1]
5 (67,250) (22,94)  (12,47)  (8,24) (64,428) (19,162)  (9,78)  (6,37)
4 (67,250) (22,94)  (12,47)  (8,24) (64,428) (19,161)  (9,77)  (6,36)
3 (67,249) (22,92)  (12,45)  (8,23) (64,426)  (22,159) (10,75)  (6,34)
c. [a,b] =].1,.9], u; unrestricted
5 (67,183) (22,67) (12,33)  (8,18) (64,296) (19,109)  (9,51)  (6,24)
4 (67,262) (22,97)  (12,48)  (8,24) (64,453)  (19,169)  (9,80)  (6,36)
3 (67,397) (22,151) (12,75)  (8,37) (64,723)  (19.277) (10,134)  (6,63)
d. [a,b] =[.25,.75], s unrestricted
5 (67,111) (22,38) (12,19)  (8,10) (64,152) (19,51)  (9,23)  (6,10)
4 (67,162) (22,57)  (12,28)  (8,14) (64,253) (19,89)  (9,40)  (6,17)
3 (67,255) (23.94) (17.46)  (21,23) (64,438) (22,163) (19,77)  (30,35)

(3.1)) that is closest to 0. For the second,
whose results are reported in Table 3.(b), the
stringent assumption that p; be exactly 0 was
required. While this requirement is weaker
than the analogous one used for the conti-
nuous random ANOVA model (i.e., normal-
ity of the random component), it is stronger
than can generally be justified.

Second, we assume that the range of p; is
restricted. Restriction of the support of p;

from [0,1] to some subinterval [a,b] also
results in improved bounds for the survey
design parameters r and k. In Tables 3.(c)
and (d), respectively, results are shown for
restricted ranges [a,b] = [0.1,0.9] and
[0.25,0.75], when no assumptions are made
about ps.

Third, we assume both near symmetry and
restricted range for p;. The results of the
simultaneous assumption of both restrictions
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Table 4. Bounds for required r and k to achieve CV = 0.5, m =50, [a,b] = [.25,.75]

Number of interviewers
r (Interpenetration of pairs)

k (Complete interpenetration)

u/o .01 .025 .05 .10 .01 .025 .05 .10
a. ujsrestricted to middle third of its range
.5 (67,111) (22,38)  (12,19) (8,10) (64,152)  (19,51) (9,23) (6,10)
4 (67,118) (22,40)  (12,19) (8,11) (64,166)  (19,55) (9,23) (6,11)
3 (67,134) (23,51)  (12,29)  (21,22) (64,196)  (22,76)  (19,43) (30,32)
b. u3=0

.5 (67,111)  (22,38)  (12,19) (8,10) (64,152) (19,51)  (9,23) (6,10)
4 (67,104) (22,34)  (12,16) * (64,138) (19,44)  (9,17) *
3 (67,71) * * * (64,71) * * *

* There is not a bounded random variable satisfying the specified conditions.

is shown in Table 4.

Several important observations can be
made from Tables 3 and 4.

1. Detection of small values of ¢, is poten-
tially very difficult for categorical question-
naire items, much more difficult than for
items having continuous normally distrib-
uted responses.

2. The sample design parameter, r or k,
which would be determined using the normal
assumptions (shown in Table 2) is always
nearer the lower, or more optimistic, end of
its possible range than to its upper bound,
under the categorical model assumption.
This indicates that a serious underestimation
of the number of interviewers needed in the
interpenetration experiment can occur if
(2.6) is used inappropriately for categorical
variables.

3. u affects the upper bound of the vari-
ance of &), and thus of the required r or k.
Estimation of the interviewer variance be-
comes potentially more difficult (i.e., requires

larger numbers of interviewers for the
extreme p; distributions) as p moves away
from 0.5. This contrasts with the normal
model case, where V(q31) is not a function of
the item mean.

4. The lower bound of the interval for the
required r or k is unaffected by the restriction
of the support of p;, and is affected only slight-
ly by the requirement of near symmetry. The
only exception occurs when the support of p;
is restricted to such a point that the value of
s producing the interval’s lower bound is
incompatible with the specified u and p.

5. The upper bound of the interval for r or
k is reduced most for distributions having p
near 0.5 by restriction of the support of p;.
For distributions having u further from 0.5,
the most reduction is gained by restricting us.

6. Changing the sample design from
complete to pairwise interpenetration loses
much efficiency when the distribution of p;
leads to values of r or k near their lower
bound.
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5. Conclusions

This paper has shown that the application of
methods which may be appropriate for design-
ing an experiment to estimate interviewer
variance, or in general, any variance compo-
nent, for continuous normal variables may be
dangerously inappropriate for categorical
variables. The examples of Section 4 have
illustrated that usually there exist distribu-
tions of p; that require far greater numbers of
interviewers to achieve the same CV that is
attained more easily for the continuous nor-
mal models. In fact, the number of interview-
ers required for normal variables is some-
times close to the lowest possible number
which could be required for any distribution
of p; in the categorical case.

Some of these extreme distributions of p;
are highly unlikely, however, at least for the
application to interviewer variance estima-
tion. If they can be ruled out by placing
restrictions on the skewness and/or support
of the p; distribution, the upper bound for r or
k can be reduced considerably, making the
method more useful as a survey planning
tool. The method described in Section 3 and
the formulae available in the Appendix make
the task of deriving bounds for k or r for new
sets of restrictions a straightforward one for
the survey designer.

The investigator may be able to select the
largest possible value required for r or k yield-
ed by the method of Section 3, once reason-
able restrictions are assumed for p;. If this is
possible, he or she will be assured that the
sample design has adequate precision for the
interviewer variance estimates for important
categorical items. On the other hand, if even
the lower bound calls for an impossibly large
number of interviewers, he or she is warned
that for that item, at least, interviewer vari-
ance cannot be estimated sufficiently accu-
rately with the resources available.

The investigator is left with a different prob-
lem if the maximum number of interviewers

399

available for the interpenetration experi-
ment falls between the lower and upper
bound called for by this method. He or she
then must realize that if the experiment pro-
ceeds, there is a risk of not being able to esti-
mate the desired parameters adequately.

If data from a previous interpenetration
experiment involving similar questionnaire
items is available, it might be used to aid the
investigator in his or her choice of restrictions
for the distribution of p;. An understanding
of interviewer behavior, and thus knowledge
of the distribution of p;, may be improved by
observation of the individual p;s. An investi-
gation of a formal method for utilizing this
information is currently underway.

Appendix 1

To derive (2.7) and (2.8), we first note from
(2.2) that

V() = [V(s2) + V(s3)

—2Cov(s2, s3)J/m?. (A.1)
This expression can be evaluated by writing
the first term, for example, as E[V(s2|p;, i =
1,...,k)] + V[E(s2|p;,i = 1,...,k)] and the third
term as E[Cov(s2, s2|p;, i = 1,...,k)] + Cov
[E(s2|p;, i =1,....k), E(sj|pi,i=1,...,k)]. In
the continuous case, the conditional expec-
ted values, variances, and covariances above
are derived under the assumption that y;i, j
=1,...,m, are independent N(p;, ¢,) random
variables. In the dichotomous case, yijli, j=
1,...,m are independent Bernoulli(p;) random
variables. In both cases, then, the conditio-
nal distributions of the observations are inde-
pendent, but not identically distributed.
After taking due note of this fact, each of the
terms in (A.1) can be derived by repeated use
of properties of these random variables,
yielding (2.7) in the continuous case and
(2.8) in the dichotomous case.
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Appendix 2

This section is designed to state results and
provide formulas which will enable the read-
er to easily derive upper and lower bounds
for V((f)l) and for survey design parameters
for their own survey using knowledge of spe-
cific questionnaire items.

1. Corollary 1 (Brockett and Cox (1984)):
Let X be a random variable having range
[a,b] with EX = p and V(X) = o®. Then for
any function k for which A®(x)=0,

h(a)mt + h(c)(1-n) < Eh(X) < h(d) "
+ h(b)(1-),

where

S e O
o + (a-p)* >+ (b-p)?

¢ = u—o%(a-w),and d = u—o%(b-w).
2. By letting A(x) = (x —n)*, Corollary 1 can
be used to show that the upper and lower
bounds for the 3rd central moment of X, s,
are

o*[(a-w)?* -0/ (a-p) < p3 < 0 [(b-n)?
— 0]/ (b-w). (A.2)

3. Corollary 2 (Brockett and Cox (1984)):
Let X be a random variable having range
[a,b] with EX = pu, V(X) = o® and w3 =
E(X—-u)? known. Then for any function A for
which 79(x)=0,

h(c)m + h(c))(1-n) < ER(X) < h(a)n,
+ h(d), + h(b)(1-n1y),

where
w3 — (a+b-2p)
d=———+
0" — (1)
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0%+ (d-w)(b-w)

" b-a)d-a)
. _(-w(a-p) + o
2= T, . <
(d-b)(d1)
w— Vi + 407
G=pt———,
20°
s + V3 + 4o’
o=p+—m—m—,
20°
=12
V U3 + 40°

4. Corollary 2 can be used to find the upper
and lower bounds for V((f)l) when the first 3
moments of X, u, 0%, and us, are known, by
letting

h) = (g + ) ¥
+ - { —uldu, + 6uo® + w)) - [P0t
+ 2 [2(1+2p)

~ (5+2w) /m][p, + 3p0” + ' )

+ ﬁﬂzk_—lj[2v02+v2/m]
2 ' 2
+ 2@ +wu, +u]
+ 5 1C+ 3w, -, (A3)

where v = p(1-p) - o® and ', = > + o”.
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