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Data from surveys are often characterised by clustering of individual level responses within
higher level units such as households, enumeration districts or counties. Multilevel modelling
is an appropriate method for analysing data from such studies, but an assumption of normality
is required if the estimated standard errors are used to make inferences about the parameters.
We evaluated the distribution of random effects at the postcode sector and district health
authority levels of clustering for 13 health outcomes and lifestyle risk factors using data from
the Health Survey for England 1994. Normal plots supported the assumption of normality for
eight outcomes. A positive relationship was found between skewness at the individual and
cluster levels. The findings of this study suggest that for outcomes with non-normal
distributions at the cluster level, the application of a normalising transformation to the
individual level residuals may also have a normalising effect at the cluster level.
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1. Introduction

Data from sample surveys and intervention studies are often characterised by an

hierarchical structure (Rice and Leyland 1996; Duncan, Jones, and Moon 1998).

Hierarchical or clustered data structures are generated by studies that utilise multi-stage

cluster sampling, which is typically employed in large complex surveys. Clustered data

may also be encountered in intervention studies when cluster randomisation, rather than

individual randomisation, is used. Cluster sampling may be implemented for reasons of

cost-effectiveness and to avoid the need to obtain a sampling frame of individuals

(Moser and Kalton 1971). Cluster randomisation may be used for a variety of reasons such

as to avoid contamination between intervention groups and to evaluate interventions that

are naturally applied at the level of area or organisation (Donner and Klar 2000). Even

when an hierarchical structure is not imposed by the design, subjects are typically

clustered or nested within organisation units such as hospitals, workplaces and schools and

administrative areas such as health authorities, counties and electoral wards, as in the

United Kingdom.

When analysing individual level outcomes from datasets with an hierarchical structure,

allowance needs to be made for the correlation between the responses of subjects who

share the same cluster. Subjects living in the same community or treated in the same
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hospital, for example, will be subject to environmental and contextual influences that may

effect on their health. Clusters may also tend to attract subjects with particular

characteristics. If those characteristics are related to the outcomes of interest then one

might expect the outcomes of patients sharing the same cluster to be correlated. This

correlation within clusters gives rise to an additional source of outcome variation, that is,

between clusters. The assumption of independence underlying the use of standard

statistical methods is not met under these conditions and alternative approaches must be

used. The multilevel model, which allows for the within cluster correlation between

subjects’ responses, is appropriate for the analysis of such data (Goldstein 1995). The

multilevel model allows parameter estimates in regression models to vary randomly

between cluster units, and in so doing explicitly models the correlation in observations

taken from the same cluster. Under the simplest multilevel model the responses of subjects

in the same cluster are treated as being partly determined by a random effect unique to

that cluster. The random effects, or residuals, for a given level of clustering are assumed

to come from a common distribution with mean zero, with each representing the extent to

which the mean response for the cluster differs from the overall mean response. The

variance of these effects represents the natural variation between clusters on the outcome

of interest.

Although normality is not required to obtain consistent estimates under the classical

multilevel model, the use of standard errors to make inferences does rely on the

assumption that the random effects are drawn from a Normal distribution (Goldstein

1995). The validity of this assumption may be hard to test at the cluster level because the

number of clusters in surveys and trials is often too small to quantify accurately the degree

of departure from normality (Feng et al. 2001). Yet it is for studies with small numbers of

clusters that departures from the assumption of normality are of greatest importance.

Turner, Omar, and Thompson (2001), using a Bayesian framework, showed how

incorrectly assuming normality in the distribution of cluster level effects may lead to

influential cluster units being inappropriately weighted and regression coefficients being

incorrectly estimated.

Empirical information on the distribution of cluster level random effects may provide

evidence on the extent to which outcomes can be expected to be normally distributed. This

study, using data from the Health Survey for England 1994, describes the distribution of

cluster level random effects for several continuous health outcomes and lifestyle risk

factors. It also explores the relationship between the distributions of residuals at the

individual and cluster levels and investigates the extent to which non-normality at the

cluster level may be reduced by using transformations that normalise the individual level

residuals. In the next section the Health Survey for England 1994 is described. Section 3

describes the methods used to estimate the cluster level random effects and summarises the

distribution of these for several continuous outcomes from the survey. Section 4 discusses

the implications of the findings.

2. The Health Survey for England 1994

Data from the Health Survey for England 1994 (Crown Copyright 1994) were obtained

from the Data Archive, University of Essex, Essex, England. The Health Survey for
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England is an annual cross-sectional survey of health and lifestyle with a multi-stage

random sampling design, covering adults living in private households in England. It is

carried out by the Joint Health Surveys Unit on behalf of the United Kingdom Office for

National Statistics. A full description of the design of the survey is available (Colhoun and

Prescott-Clarke 1996). The survey used postcode sectors as the primary sampling units

and households as the secondary sampling units. The sampling of postcode sectors was

stratified by health region, the proportion of people aged 65 and over, the proportion of

households without a car, the proportion of economically active males who were

unemployed and the proportion of non-white adults. A random sample of postcode sectors

was drawn using the Postcode Address File as the sampling frame with the probability of

selection proportional to the number of addresses. Eighteen addresses were randomly

sampled from each postcode sector. Some addresses contained more than one household.

When this occurred a maximum of three households was sampled at a given address. All

subjects 16 years and over within the selected households were eligible for the study. Data

were collected from the survey respondents through structured face-to-face interviews.

Physical measurements and blood samples were taken by a nurse on a separate visit. The

survey was conducted such that interviews and nurse visits in each quarter of the year were

conducted with fully representative subsets of the total sample. Smaller numbers of people

were willing to see the nurse than to receive the structured interview, so that 71% of all

individuals estimated to be eligible were interviewed but only 62% responded to the nurse

visit and blood samples were obtained for only 51%.

Postcode sectors are groupings of postcodes used to classify individuals according to

geographic location of residence and thus to aid the delivery of mail in the United

Kingdom. Postcodes are also the primary geographic unit used for recording vital

statistics and health service activity in Britain (Donaldson and Donaldson 1993). One of

the factors used to stratify the sampling of postcode sectors, health region, was also a

clustering variable in the dataset. Each health region was managed by a regional health

authority (RHA) responsible for strategy, allocation of resources and monitoring

performance (Donaldson and Donaldson 1993). Information was also recorded on the

district health authority (DHA), another type of cluster, within which the postcode

sectors were situated. District health authorities were the principal purchasers of health

care in the United Kingdom National Health Service at the time of the survey and

played a more direct role in the delivery of health care than the regional health

authorities. Their roles included the assessment of health needs of the local population,

prioritising those needs and organising contracts to secure services for meeting them

(Donaldson and Donaldson 1993). Although DHAs were not explicitly recognised in

the sampling design, district health authority level analyses were an important output of

the survey and these were incorporated into national health indicator datasets. The

Health Survey for England 1994 dataset thus had a five-level hierarchical structure with

individual subjects nested within households nested within postcode sectors nested

within district health authorities nested within regional health authorities. In 1994 the

survey covered all 14 regional health authorities and 177 district health authorities, 720

of the 7,223 postcode sectors, 9,068 households (77% of those eligible) and 15,809

individuals (71% of those estimated to be eligible). Typical regional health authorities,

district health authorities and postcode sectors had total populations of 3 million,

Ukoumunne et al.: Distribution of Random Effects in a Multi-stage Cluster Sample Survey 483



250,000 and 6,500 respectively, at the time of the 1994 survey. Approximately 80% of

the total population in England is aged 16 and over.

3. Distribution of Cluster Level Random Effects

3.1. Methods

MLwiN Version 2.1 (Rasbash et al. 2000) was used to fit multilevel models to and

calculate cluster level random effects from the Health Survey for England data. An

identical model was fitted to the dataset as in a study of between cluster variation in health

outcomes (Gulliford, Ukoumunne, and Chinn 1999). A five-level variance components

model was used to analyse the outcomes, allowing for variation between clusters at the

regional health authority, district health authority, postcode sector and household levels.

The fitted model was:

yijklr ¼ mþ ai þ bjðiÞ þ gkðijÞ þ dlðijkÞ þ 1rðijklÞ

where yijklr is the response for the r th subject in the lth household, the k th postcode sector,

the jth district health authority and the ith regional health authority; m is the overall mean;

ai, bjðiÞ, gkðijÞ, dlðijkÞ are the random effects associated with the ith regional health authority,

jth district health authority, kth postcode sector and lth household respectively; and 1rðijklÞ

is the rth residual effect within households. Brackets are used in the subscripts of random

effects terms to indicate the nested structure of the data. For example bjðiÞ is the random

effect of the jth district health authority nested within the ith regional health authority. The

ai represent the extent to which the mean of the ith regional health authority differs from

the overall mean; the bjðiÞ represent the extent to which the mean of the jth district health

authority differs from the mean of the ith regional health authority within which it is

nested, and so on. Effects at each level are independent, conditional upon the random

effects at higher levels. They have zero mean and associated components of variance

s 2
RHA, s 2

DHA, s 2
PCS, s 2

HH and s 2
e , respectively.

The Restricted Iterative Generalised Least Squares (RIGLS) estimation procedure was

used to fit the models. Standardised residuals at the levels of individual subject, postcode

sector and district health authority were saved. MLwiN applies a shrinkage factor to the

raw residuals at the clustering levels such that they are decreased in absolute value.

Shrinkage is used to reflect the relative lack of information provided by cluster units that

contain smaller numbers of subjects. The shrunken residuals theoretically provide a more

accurate representation of the underlying distribution of random effects than the raw

residuals.

Thirteen continuous outcomes were analysed: serum cholesterol (mmol/litre); glycated

haemoglobin (%); plasma fibrinogen (g/litre); serum ferritin (mg/litre); haemoglobin

(g/dl); systolic blood pressure (mmHg); diastolic blood pressure (mmHg); body mass

index (kg/m2); waist circumference (cm); hip circumference (cm); General Health

Questionnaire score (Goldberg 1972); number of units of alcohol drunk per week; and the

mean number of cigarettes smoked per day. Some of the outcomes were analysed both as

untransformed variables and after applying normalising transformations. The “ladder”

command in the Stata 7 software (StataCorp 2000) was used to identify suitable
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transformations. The “ladder” command tests a selection of power transformations

(Y 3, Y 2, Y , Y 1=2, logðYÞ, Y 21=2, Y 21, Y 22 and Y 23) to assess whether they convert a

variable, Y, into a normally distributed one. The command applies a Chi-squared test

based on Royston’s (1991) adjusted version of D’Agostino, Belanger, and D’Agostino’s

(1990) test for non-normality. For many transformations the Chi-squared statistic was

so large that it was not presented in the Stata output. The approach used in this study was to

choose from among the transformations for which the p-value of the Chi-squared statistic

was given, as these were the only plausible transformations. Histograms and normal

plots were then used to select the best transformation from amongst those considered

plausible.

It is acknowledged that transformations that normalise the raw outcomes themselves do

not necessarily also normalise the individual level residuals since the outcome is partly

composed of cluster level effects. In this study, however, the outcome and the distribution

of individual level random effects did have nearly identical distributions, so it was possible

to assess the extent to which transformations that normalised the individual level residuals

also normalised the distribution of cluster level random effects.

3.2. Findings

Normalising transformations were identified for nine outcomes: a reciprocal

transformation was chosen for glycated haemoglobin, systolic blood pressure, body

mass index and hip circumference; a log transformation was chosen for serum ferritin and

diastolic blood pressure; a squared root transformation was chosen for plasma fibrinogen;

a squared transformation was chosen for haemoglobin; and a reciprocal of squared root

transformation was chosen for waist circumference. The reciprocal and reciprocal squared

root transformations were equally normalising for body mass index and the former

transformation was chosen on the basis that regression coefficients may be back-

transformed to a more commonly used quantity. In practice, when analysing data from a

study, the same transformation would be used to analyse systolic and diastolic blood

pressure (Solomon 1985), but different transformations are used here since each was

simple and effective with respect to normalising the respective outcomes. None of the

power transformations for serum cholesterol, General Health Questionnaire score, number

of units of alcohol drunk per week and mean number of cigarettes smoked per day were

close to normality. The normal plots indicated that there were no powers larger than 3 or

smaller than 23 that would provide normalising transformations for these variables. The

large proportion of subjects scoring zero on the GHQ score, units of alcohol drunk per

week and cigarettes smoked per day meant that no continuous transformation could make

them normal. The normal plots for the transformations of serum cholesterol showed that

the identity transformation was positively skewed and that although the squared root

transformation reduced the skewness, it increased the excess kurtosis. Fractional powers

between 0.5 and 1 were tested, but none produced distributions that were noticeably more

normal than the untransformed outcome.

In total 13 variables and 9 transformed variables were analysed. Table 1 summarises the

components of variance for each variable. For fibrinogen and its squared root

transformation the variance component at district health authority level was zero and
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Table 1. Components of variance at the individual, household, postcode sector (PCS), district health authority (DHA) and regional health authority (RHA) levels

Outcome Individual
level

Household
level

PCS
level

DHA
level

RHA
level

Serum cholesterol, mmol/litre (untransformed) 1.33073 0.26368 0.03944 0.00562 0.00289
Glycated haemoglobin, % (untransformed) 0.94336 0.16659 0.03919 0.00031 0.00023
Glycated haemoglobin, % (reciprocal) 0.00033 0.00008 0.00002 8 £ 1029 1 £ 10220

Plasma fibrinogen, g/litre (untransformed) 0.47097 0.17961 0.03647 0 0.00035
Plasma fibrinogen, g/litre (square root) 0.03603 0.01330 0.00278 0 0.00004
Serum ferritin, mg/litre (untransformed) 6,638.44 0 35.2271 2.98164 1 £ 10220

Serum ferritin, mg/litre (log) 0.74044 0 0.00494 0.00014 0.00071
Haemoglobin, g/dl (untransformed) 1.80010 0 0.03367 0.00708 0.00099
Haemoglobin, g/dl (square) 1,374.34 0 25.2060 4.84925 0.96282
Systolic blood pressure, mmHg (untransformed) 272.107 123.837 10.8804 3.67632 1.50369
Systolic blood pressure, mmHg (reciprocal) 744 £ 1029 272 £ 1029 31 £ 1029 10 £ 1029 4 £ 1029

Diastolic blood pressure, mmHg (untransformed) 129.299 27.3406 3.50096 1.35484 0.13123
Diastolic blood pressure, mmHg (log) 0.02346 0.00465 0.00063 0.00025 0.00002
Body mass index, kg/m2 (untransformed) 16.5753 3.72427 0.08555 0.04632 0.04110
Body mass index, kg/m2 (reciprocal) 0.00003 0.00001 2 £ 1027 9 £ 1028 8 £ 1028

Waist circumference, cm (untransformed) 153.510 7.37484 2.84500 0.23556 0.39360
Waist circumference, cm (reciprocal of square root) 572 £ 1027 20 £ 1027 11 £ 1027 1 £ 1027 2 £ 1027

Hip circumference, cm (untransformed) 67.9275 15.0183 1.83384 0.07978 0.26203
Hip circumference, cm (reciprocal) 5,217 £ 10210 1,179 £ 10210 157 £ 10210 6 £ 10210 24 £ 10210

GHQ (untransformed) 5.67758 0.98590 0.01868 0.00478 0.00758
Units of alcohol/week (untransformed) 265.599 56.9350 3.01593 1.81940 1.06043
Mean number of cigarettes/day (untransformed) 60.0652 20.6478 1.97665 0.77751 1 £ 10220
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hence there were no random effects to be estimated at this level. Also for both serum

ferritin and haemoglobin the between household variance component was zero. Table 2

summarises the coefficients of skewness and kurtosis for the individual, postcode sector

and district health authority level random effects. The ordinary coefficient of kurtosis is

used, for which the value is 3 for the normal distribution, rather than the coefficient of

excess kurtosis. Significance levels indicating departures from normality are shown,

based on tests described by D’Agostino, Belanger, and D’Agostino (1990), but histograms

and normal plots were mainly used to assess non-normality. The individual level

residuals for most of the untransformed variables showed marked non-normality and in

all cases were more non-normal than those for the corresponding transformed variables.

Of the untransformed variables the distributions of individual level residuals for serum

ferritin, number of units of alcohol drunk per week, glycated haemoglobin and General

Health Questionnaire score showed the greatest degree of non-normality.

The random effects at the postcode sector and district health authority levels generally

did not differ markedly from normality. There were, however, clear departures from

normality for untransformed serum ferritin (the normal plot for the postcode sector level

residuals is shown in the upper panel of Figure 1) and units of alcohol drunk per week at

both the postcode sector and district health authority levels. In addition the postcode sector

level residuals were markedly non-normal for untransformed glycated haemoglobin,

General Health Questionnaire score and mean number of cigarettes smoked per day. For all

untransformed variables except diastolic blood pressure and waist circumference, the

postcode sector level residuals showed greater departure from normality than the district

health authority level residuals.

The transformations were fairly successful in terms of normalising the individual level

residuals. None of the distributions of cluster level residuals for the transformed variables

differed markedly from normality. When comparing the postcode sector level and district

health authority level residuals for the transformed variables there was no clear tendency

for the former to deviate further from normality than the latter. This contrasts with the

results for the untransformed variables.

Evidence of the extent to which applying normalising transformations at the individual

level may normalise cluster level random effects is provided by analyses of serum ferritin.

Log transformation was successful in terms of normalising the highly skewed distribution

of individual level residuals for this variable. The cluster level random effects differed

more markedly from normality for serum ferritin in its untransformed state than for the

other outcomes. In contrast, for the log transformation of this variable, the postcode sector

and district health authority level random effects had skewness and kurtosis coefficients

that suggest normality. The normal plot of the postcode sector level residuals for log

serum ferritin is shown in the lower panel of Figure 1. This plot contrasts with the

corresponding plot for untransformed serum ferritin.

The relationship between normality at the cluster and individual levels is illustrated in

plots of the coefficients of skewness for the clustering levels against those at the individual

level (Figure 2). These are drawn separately for the postcode sector and district health

authority levels in the upper and lower panels, respectively. The graphs demonstrate the

larger variance of the skewness coefficients for residuals at the individual level than at the

cluster levels. There was an increasing relationship between skewness at the individual
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Table 2. Coefficients of skewness and kurtosis of random effects distributions at the individual, postcode sector and district health authority (DHA) levels

Outcome Individual level residuals Postcode level residuals DHA level residuals

obs skewness kurtosis obs skewness kurtosis obs skewness kurtosis

Serum cholesterol, mmol/litre (untransformed) 11,106 0.407‡ 3.311‡ 711 0.169 2.812 177 20.016 2.672
Glycated haemoglobin, % (untransformed) 10,890 3.691‡ 28.527‡ 711 0.463‡ 3.388 177 0.423* 3.061
Glycated haemoglobin, % (reciprocal) 10,890 20.542‡ 5.973‡ 711 0.071 2.977 177 20.053 2.905
Plasma fibrinogen, g/litre (untransformed)1 9,747 0.990‡ 5.440‡ 711 0.404‡ 3.358
Plasma fibrinogen, g/litre (square root)1 9,747 0.467‡ 4.039‡ 711 0.215* 3.174
Serum ferritin, mg/litre (untransformed) 10,943 7.267‡ 129.704‡ 711 2.819‡ 25.102‡ 177 0.780‡ 3.813*
Serum ferritin, mg/litre (log) 10,943 20.241‡ 3.412‡ 711 20.090 2.928 177 20.037 2.715
Haemoglobin, g/dl (untransformed) 10,751 20.286‡ 3.840‡ 711 20.204* 3.025 177 20.088 2.682
Haemoglobin, g/dl (square) 10,751 0.098‡ 3.306‡ 711 20.064 2.933 177 20.053 2.659
Systolic blood pressure, mmHg (untransformed) 12,556 0.932‡ 4.418‡ 711 0.173 2.971 177 20.007 3.545
Systolic blood pressure, mmHg (reciprocal) 12,556 20.102‡ 3.017 711 0.071 2.965 177 0.178 3.410
Diastolic blood pressure, mmHg (untransformed) 12,556 0.488‡ 3.830‡ 711 0.032 3.291 177 0.341 3.394
Diastolic blood pressure, mmHg (log) 12,556 20.094‡ 3.306‡ 711 20.192* 3.698† 177 0.205 3.376
Body mass index,2 (untransformed) 14,681 1.011‡ 5.272‡ 712 0.150 2.862 177 -0.052 2.742
Body mass index,2 (reciprocal) 14,681 0.160‡ 3.205‡ 712 0.180* 2.721 177 0.049 2.934
Waist circumference, cm (untransformed) 13,297 0.433‡ 3.068 711 0.066 3.379 177 0.198 3.199
Waist circumference, cm (reciprocal of
square root)

13,297 0.103‡ 2.566‡ 711 0.116 3.369 177 20.212 3.263

Hip circumference, cm (untransformed) 13,325 1.157‡ 7.107‡ 711 0.201* 3.169 177 0.165 3.244
Hip circumference, cm (reciprocal) 13,325 20.258‡ 4.094‡ 711 0.067 2.904 177 20.065 2.925
GHQ (untransformed) 15,335 2.056‡ 6.920‡ 712 0.478‡ 2.984 177 0.361* 2.915
Units of alcohol/week (untransformed) 15,792 4.190‡ 41.233‡ 712 1.192‡ 5.541‡ 177 1.019‡ 4.778†
Mean number of cigarettes/day (untransformed) 4,327 1.155‡ 7.028‡ 707 0.573‡ 3.714† 177 0.354 3.718

*p , 0.05; † p , 0.01; ‡ p , 0.001
1 The between district health authority variance component for fibrinogen was 0
2 Weight (kg)/height (m)2
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level and skewness at both clustering levels. There was no clear relationship for kurtosis

between the individual and clustering levels although, again, there was greater variance

amongst the kurtosis coefficients for residuals at the individual level.

4. Discussion

The assumption of normality of cluster level random effects is generally difficult to assess

in multilevel models as, often, insufficient numbers of clusters are available in studies to

describe the distribution. The availability of data from large-scale complex surveys

provides an opportunity to test the validity of the assumption for some common outcomes.

This study used data from the Health Survey for England 1994 to obtain empirical

distributions of cluster level random effects. These random effects represent the

distribution at each level after the variation between clusters at higher levels has been

Fig. 1. Normal probability plot of the postcode sector (PCS) residuals for serum ferritin and log serum ferritin
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accounted for and, therefore, represent the distribution that might be expected if sampling

took place at a given level, stratified by clusters at higher levels. The Health Survey for

England 1994 dataset contained large numbers of clusters at the postcode sector and

district health authority levels. The structure of the UK National Health Service has

undergone changes since the survey was carried out. There are now 28 strategic health

authorities responsible for monitoring performance and around 400 primary care trusts

responsible for the purchase and provision of health care and assessment of health care

needs. The findings of this study are still of relevance to the analysis of health data in

England as these changes are merely administrative and do not reflect changes in the

composition of the clusters. The findings are also relevant to complex health surveys in

other countries that are based on the sampling of organisational or administrative units.

Fig. 2. Coefficients of skewness for the postcode sector and district health authority level residuals versus

individual level residuals
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Postcode sectors are similar in population size to electoral wards and the district health

authorities of the 1994 Health Survey for England were based on towns and small

counties.

The findings of this study suggest that normality of cluster level effects is not an

unreasonable assumption to make for many continuous health outcomes. The random

effects of a few variables, however, did show marked positive skewness at the clustering

levels. It is possible that non-normality in these variables may be explained by cluster

specific factors. Unfortunately such data were not available in the Health Survey for

England 1994 to test this hypothesis. There was evidence of a relationship between the

degree of non-normality at the individual level and the cluster levels. Only those variables

with significant skewness or kurtosis at the individual level showed marked non-

normality at the cluster level. There was also an increasing relationship between skewness

at the individual level and at both clustering levels. It is not straightforward to make a

reliable prediction of non-normality at the clustering levels on the basis of the individual

level distribution, but marked non-normality at the individual level may be a useful

marker. For most outcomes, transformations that normalised the individual level

distributions also achieved a better approximation to normality at the postcode sector and

district health authority levels. This was most noticeable for serum ferritin, which

untransformed was the most skewed. An implication of the results of this study is that for

data where distributional assumptions are questionable, transformations appropriate for

normalising the individual level residuals may also normalise the cluster level random

effects. Although only nine power transformations were tested in this study for the main

analyses, they were sufficient to normalise almost all distributions, thus answering the

question of whether normalising the individual level residuals also normalised the cluster

level random effects.

The cluster level distributions of the outcomes were investigated using shrunken

random effects. This was done so that the random effects estimated using information

from smaller clusters were down-weighted to reflect their imprecision. Lange and Ryan

(1989) presented an alternative approach for overcoming the problem of random effects

having different variances that entails using weighted normal plots to assess the extent of

deviation from normality. The weighting method used is identical to that used for

shrinkage in multilevel models. The problem with both approaches is that outlying clusters

with smaller numbers of subjects are less likely to be seen as outliers after shrinkage

(Langford and Lewis 1998). For example if all the outlying clusters happen to contain

relatively few subjects, then shrinkage may give a misleading impression of similarity

(Duncan, Jones, and Moon 1998). This may have the consequence that the degree of non-

normality at the cluster level is underestimated since the outliers will be pulled towards

the overall mean. The problem of how best to accommodate the need to allow for the

varying precision with which the cluster level random effects are estimated whilst

obtaining an accurate estimate of their distribution has yet to be solved (Marshall and

Spiegelhalter 2001).

The sizes of the variance components for the untransformed variables in this study

generally differ slightly from those calculated by Gulliford, Ukoumunne, and Chinn

(1999) for the same outcomes using the PROC VARCOMP procedure within SAS

software (SAS Institute 1990). The RIGLS estimation procedure used by the MLwiN
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software in this study is identical to the restricted maximum likelihood estimation

procedure where the assumption of normality is used whereas the PROC VARCOMP

procedure obtains moment based estimates. The differences observed between the

estimation procedures are due to the unbalanced design of the Health Survey for England

1994 (Harville 1977). As the differences between the estimated variance components are

generally not large, we do not believe the use of a different estimation method materially

influenced the main findings of this study.

This study has focussed on the analysis of continuous health outcomes. Dichotomous

outcomes are common in public health and health services research studies. The multilevel

model extension to logistic regression requires the assumption that the distribution of

cluster specific log odds is normal. Further research is needed to investigate whether this

assumption holds for dichotomous health outcomes and to establish the degree of non-

normality beyond which inferences made from multilevel models are invalid for all

outcomes generally.
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