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On Variance Estimation for Measures of
Change When Samples are Coordinated by
the Use of Permanent Random Numbers

Lennart Nordberg'

A common objective in business surveys is to compare two estimates 90 and 91 of the same
characteristic taken on two occasions, e.g., the level of production the same month in two con-
secutive years, and to judge whether the observed change is statistically significant or merely
subject to random variation.

Business surveys often use samples at separate occasions that are positively coordinated,
i.e., overlapping, in order to increase the precision in estimates of change over time. Such
sample coordination will make 6, and §; become correlated. Some systems used for sample
coordination rely on Permanent Random Numbers (PRNs). However, the use of PRNs brings
an additional component of randomness to the rotation pattern as compared to ordinary panel
rotation. This makes the estimation of the correlation more difficult.

The SAMU system which is used by Statistics Sweden for sample coordination of business
surveys is such a system. The purpose of the present paper is to show how to estimate the var-
iance for measures of change such as v=10 = 00 ory =0 /00 when 00 and 0 | are estimated
from two separate SAMU samples.

Key words: Survey sampling; variance estimation; estimates of change; panel designs; perma-
nent random numbers.

1. Introduction

Often in business surveys one wants to compare two estimates 6, and 6, of the same char-
acteristic taken on two occasions 0 and 1, e.g., the level of production the same month in
two consecutive years, and to judge whether the observed change is statistically significant
or merely subject to random variation.

Business surveys often use samples at separate occasions that are positively coordi-
nated, i.e., overlapping, in order to increase precision in estimates of change over time.
Such sample coordination will make 90 and 0 | become correlated.

Under common rotating panel designs this correlation can often be estimated in a
straightforward way. However, some systems used for sample coordination are designed
not only to generate samples that are positively coordinated between consecutive occasions
but also to obtain negative coordination between different surveys in order to spread
the response burden. One way to create positive and negative coordination simultaneously

is to use Permanent Random Number (PRN) techniques. However, the use of PRNs brings
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an additional component of randomness to the rotation pattern as compared to ordinary
panel rotation. This makes the estimation of the correlation more difficult.

The SAMU system for sample coordination of business surveys at Statistics Sweden utilises
PRNs. The word SAMU (SAMordnade Urval) is an acronyme in Swedish for co-ordinated
samples. The purpose of the article is to show how to estimate the variances for measures
of change such as v=20 | — 00 ory =0 /00 when 6 and 6, are estimated from two separ-
ate SAMU samples. This problem was addressed by several people at Statistics Sweden in
the 1970s and 80s, unfortunately without reaching a complete and workable solution. This
work was summarised in Garas (1989).

Although the focus of the article is on the SAMU system, it is hoped that the proposed
approach can be of interest also in the context of other PRN systems. Related approaches
are found in Tam (1984), Laniel (1988) and Hidiroglou, Siarndal, and Binder (1995).

SAMU applies to a variety of designs but I will confine the discussion here to the
STSI design which is the simple and common case of stratified sampling of ele-
ments (businesses) with simple random sampling without replacement within strata.
Next I give a brief presentation of SAMU. For more complete descriptions, see Ohlsson
(1992, 1995).

Every sample in the SAMU system is drawn from an up-to-date version of the Business
Register. The co-ordination of samples is obtained in the following way. A uniformly dis-
tributed random number is assigned to every element (enterprise or local unit) as soon as it
enters the Business Register, and this association is kept as long as the element remains in
the register. All generated random numbers are to be independent. Suppose that one wants
to sample ten elements in a particular stratum. All the frame elements in the current stratum are
ordered by the size of their random numbers. An arbitrary starting point is chosen and the
first ten elements to the right (say) of this starting point are included in the sample. It can
be shown (see Ohlsson 1992), that this sampling mechanism is equivalent to simple ran-
dom sampling.

I will in the following consider SAMU sampling on two occasions, time 0 and time 1,
and hence apply the PRN technique to two different versions of the Business Register. By
this I will obviously introduce some additional randomness compared to the case of com-
mon rotating panels. Whether a certain element (business) which was included in the sam-
ple at time O will remain in the sample on the next sampling occasion at time 1 depends not
only on the element itself but also on the behaviour of other elements, notably the random
numbers associated with the births and deaths in the frame.

If 12 = 91 — 90 we can write the variance of Q/ as follows:

V() = V(o) + V(@) — 2-C(8,,6)) (1.1)

If 1} = 91/90 we have by Taylor linearisation,

vah) _ vy | Vo) ., Co.0)
Vo6 6 600,

(1.2)

Although 6, and 6; may be more complex parameters than population totals (see rela-
tion (1.5) ahead), the main problem concerns the covariance term, not the variance com-
ponents V(0,) and V(0,).
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Estimation at time 0: Consider a set of variables y;,...,y;,...,y, and let y; be the
value of the variable y; for element & in the finite population U at time 0. We associate
a population total #; = ) ;e vy With every variable y;. The population U is stratified
into H strata, Uy,...,U,,..., Uy, and a simple random sample is drawn from each stra-
tum. Let s denote the chosen sample and let N, and n;, be the number of population-
and sample- elements respectively in stratum U,,h = 1,2,...,H.

As estimator for the total #; we consider the Horvitz-Thompson (H-T) or the Generalised
Regression (GREG) estimator. We begin by assuming that the H-T estimator is used, and
then later show how the achieved results can be modified to cover the GREG case.

Hence

i = ; %’: > Vb (1.3)

kEU,
where
o= f} e
We assume that the estimator 90 can be expressed in the following form:
o =fCG1. 0, ....0). (1.5)

where fis an arbitrary rational function. A common estimator for a population mean or a
difference between two domain totals, a ratio estimator or a poststratified ratio estimator
for a population total are examples of such functions.

Estimation at time 1: The population U at time 1 consisting of N’ elements is stratified
into L strata, U1, ..., U], ..., U;. The stratification at time 1 does not have to be the same
as the one at time 0. Let 5" be the sample and let N} and #; be the population- and sample-
size in stratum U,/ = 1,2,...,L.

The population totals at time 1 are estimated in analogy with (1.3).

A~/ N; /o
i = len—;Zy,-,ﬁr (1.6)

revu;

where
5 = { 1 ifelementr€s (7
0 otherwise
We assume that the estimator 91 can be written in the form
A (GRS (1.8)

Notice that the same function f is assumed in (1.5) and (1.8). This should be the most
common case in practice. Generalisation to the case of different functions f; and f; is
straightforward.
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2. The Covariance

By standard Taylor linearisation the covariance in (1.1) or (1.2) may be written as
follows.

C(éO’al) =~ sz;(tl’tZ» e ’t])f;(t/ht/z’ e 9t‘/])C(,il’,iJ,) (21)
j

i

/i being the partial derivative df/dt; and C(3;,7}) the covariance for the pair (7;,77). The
covariance C(%;, ?j/-) is very complex under the SAMU framework, and it will be
approached in several steps in the following way:

The union of the sampling frames for time 0 and time 1 respectively can be divided into
three nonoverlapping parts. The first part consists of the elements that were included in the
frame at time O but not at time 1, i.e., those elements that have disappeared between time 0
and time 1. We call this group D (‘‘Deaths’’). The second part consists of the elements that
were included in both frames (time 0 and time 1). We call this group P (*‘Persistors’’). The
third part consists of the elements that are included in the frame at time 1 but not at time 0.
We call this group B (‘‘Births’’).

The division into the three groups D, P and B is symbolised by the following
figure:

Fig. 1. Division of sampling frames into ‘‘Deaths’’, ‘‘Persistors’’ and ‘‘Births’’.

The set D can be split into the nonoverlapping subsets {D;,h = 1,2,... H} where D, is
the set of frame elements that belonged to stratum U, at time O and had left the frame
before time 1.

Correspondingly, the set B can be split into the nonoverlapping subsets

(B, ] =1,2,...,L) where B, is the set of frame elements in stratum U time 1, [ = 1,
2,...,L which were not found in the frame at time 0.

The set P can be further divided into the nonoverlapping sets {P,,h=1, 2,...,
H,l=1,2,...,L} where P, is the group of frame elements that belonged to stratum

U, at time 0 and stratum U} at time 1.

We now need some further notation. Let Gy;, G, and G, be the number of frame ele-
ments in Py, D, and B, respectively. Furthermore, suppose that among the n,, elements
sampled from stratum U, at time 0, a;,, belong to D,, and a;; belong to the stratum com-
bination P;. Hence nj, = a;, + > ap.

Among the n; elements sampled from stratum U at time 1 we assume that d,; belong to
B, and aj,; belong to the stratum combination P;,;. Hence ny = a'; + >, ay.

Finally, let g,; be the number of elements that belong to P, and are included in both
samples (time O and time 1). We illustrate this by the following figure.
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The set Py

! gu
u " 8u Ay — 8u

Fig. 2. The number of frame elments in Py, and the number elements from Py; appearing in the sample at time 0
only, in both samples and in the sample at time 1 only.

The quantity Q@ = {ay, djy, gu» Ay >y h = 1,2,...,H, 1 =1,2,... L}, which is ran-
dom in the present context will be used to split the covariance C(00,91) of (2.1) into
two components as follows:

C(By,8,) = Eq(C(By, 0,19)) + Co(E@,Q), E(,12)) 2.2)

The first term of (2.2) — the conditional covariance — is usually the dominating term
while the second term can be characterised as a remainder term. Next we show how the
conditional covariance can be estimated. Section 4 treats the second term.

3. The Conditional Covariance Term

In analogy with (2.1), we have

CO.0,1D =YD Filt tan. ) f (. 1he . )CGL D) 3.1)
i

By combination of (1.3) and (1.6) we have

CG 7Y = ZZ > Z . Ny €6 1) (3.2)

k€U, rev;

The covariances C(8;, 5,|Q) vanish for all pairs (k,7) where k and r belong to different
strata on both occasions 0 and 1. Hence we only need to consider the cases where k
and r are in the same stratum on one or both occasions, i.e., (k € Py, r € Py;) or
(k€ Py,rePy)or (k€ Py, re Py or (k€ Dy, re Py or (k€ Py, reB))

It follows from relation (v) in appendix A that C(8y, §,|Q) actually vanishes in all cases



368 Journal of Official Statistics

except when the elements (k,r) both belong to the same stratum combination:
(kEPhl,FEPM).
Hence the relation (3.2) can be expressed as follows:

ch.im=3"33 37 Al N,’ ¥y C(61, 8,19) (3.3)

kEPy, )EP;,I

or, equivalently

C, 119 = ZZ > Z p N eyl (B6,819) — E(6,19)E(312) (3.4)

kEP,; rEP,,I

The expectations appearing in (3.4) can be computed from Relations (i), (iii), (vi) and
(vii) in Appendix A. We have to distinguish between three types of stratum combinations:
Phl’h = 1,2,...,H,l= 1,2,...,L

Type 1: This type involves all stratum combinations P, where a;; >=1,aj; >= 1 and
g >=1.

Type 2: This type involves all stratum combinations P,; where a;; = 0 or aj; = 0, and, as a
consequence, g;,; = 0 (see Figure 2 above). Stratum combinations of this type do not con-
tribute to the conditional covariance as seen when relations (i), (iii), (vi) and (vii) in
Appendix A are inserted into (3.4).

Type 3: This type involves all stratum combinations P;, where a;,; >= 1, aj; >= 1 and
gn = 0. Considering the sampling mechanism used in SAMU as described in Section 1
above, this type should not exist if all elements keep their random numbers over time.
However, in practice, the random numbers are in fact changed by a constant for a small
proportion of the elements every year. The reason for this is to increase the sample rotation
among small businesses. Hence stratum combinations of Type 3 can appear in practice
although they are very unusual. Since there are no overlapping elements in this case we
cannot estimate the contributions to the covariance from these stratum combinations.
However, since these contributions are likely to be very small we will neglect this case
in the following and estimate by a zero the contributions from stratum combinations of

Type 3.
The following quantity is unbiased for C(;,7;|):
A NeNp E(5;|9)-E(5,12) /
S ORALY iy (1 = TR0 5 s 3.5
Gt =330 5 5 S (1 - ) 6:5)

where it is assumed that the stratum combinations P, are all of Type 1.
From relations (i), (iii), (vi) and (vii) in appendix A and some algebra we have,

E(8;|DE(S, | 9)) ay
l—-———— " ") =1—-—k= 3.6
( E(8;-6,|Q) Gy’ G0
E(5k|Q)E(6/r|Q)) ay — Gy
1— = Jk # 3.7
( B8l )~ Gu@n—D" " G-
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/
ay = S (3.8)

By inserting (3.6)—(3.8) into (3.5) we arrive at the following expression.

C, 110) = Z ZAM { D VuVded — — (Z m) <Z y;,s’,) } (3.9)

kEPy kEPy,; rePy

where

_ NN iy <Ghl(Ghl - 51}.1))
b Gﬁlnhn; (Zlh, — ])

Orusild (2000) has shown relation (3.9) in a similar context. The complete conditional
covariance,

COy, 0119 =D Y filhho, - IDFHEL T, IDCGLTIR) (3.10)
i

is obtained by inserting the Expressions (1.3), (1.6) and (3.9) into (3.1).

Computation by Formula (3.10) poses no problem in principle. However, in practical
situations typically occurring at statistical agencies (3.10) must often be applied many
times simultaneously, for many domains and possibly for several different functions f.
How to organise the computations then becomes a nontrivial issue. In such cases it is prac-
tical to be able to rely on some standard software for variance/covariance estimation. In
Appendix B, I present a procedure for computation of (3.10). The main ingredient of
this procedure is a data transformation which makes it possible to rewrite (3.10) in the
“‘standard form’’ for variances/ covariances under the STSI design. The estimate (3.10)
can then be computed by application of standard software to the transformed data. It is
also shown in Appendix B how the suggested method for estimation of the conditional
covariance can be extended to the case when H-T estimation is replaced by GREG.

4. The Remainder Covariance Term

By Taylor linearisation we have
A P> / Lo oLt / ~ !
Cal(EBo|D, EG1 1) =D > filtista, .t (1, 15, 1) Col(EG|Q), EGIDQ)
i

“.1)

It follows from (1.3) and relations (i) and relations (ii ) in Appendix A that

A Ny | [ ant > ( ap ) }
E@;|Q) = — = Vi

(o () )
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where

- 1 - 1
Ying =+ > Yix and Yy =_—— Vik
L,h+ Gth &, I, L, Ghl k;;hl L,

and correspondingly from (1.6) and relations (iii ) and (iv) in Appendix A:

/ _ M ﬂ hl
o= (65 (R )

/ N/ v/ / N/ v/
- Z{ <a+, (ﬁ.yﬁ,) 3 dy (n_;.y_,.,h,)> } (43)
l ! h 1

1

where

yi and Y, =— Z Vi
G+l kEB, G kEPy,

Y=

Considering the Expressions (4.2) and (4.3) it seems difficult to find a suitable analytical
expression for Co((E(7;|Q), E(7;|Q)) and consequently for Co((E(6o|Q), E8,|2)). However,
keeping in mind that ay,,ay,, d’;, a); are the random variables, the following computer
intensive procedure, which includes simulation of the sampling mechanism of SAMU,
can be used for estimation of Cﬂ((E(§0|Q), E(@l D).

Procedure 4.1:
Repeat the following steps 1-4 M times (M = 1000, say).

1) For repetition m, m = 1,2,...,M: Generate and assign a uniformly distributed ran-
dom number R;cm) to every element k included in the union of the sample frames U
and U'. All such random numbers are presumed to be independent.

2) For every (time 0—) stratum U, assign at repetition m a value vi(m) = I to each of
those ny, frame elements which have the smallest random numbers and assign a value
vi(m) = 0 to every other element in the stratum.

3) For every (time 1—) stratum Uj, assign at repetition m a value vi(m) = 1 to each of
those n; frame elements which have the smallest random numbers and assign a value
vi(m) = 0 to every other element in the stratum.

4) Compute the following quantities

anp(m) =" wm),  ay(m) =Y vi(m)

kED, kEPy
/ / ’ /
dy(m) =" vilm), dy(m)=">"vi(m)
kEPy, kEB;

N, N,
f1,(m) = Z{ (ah+<m>- (—” -m) + ) ay(m)- (—h -yi,hz)> } 4.4)
h Ty 7 n
N N/ /
() = Z{ <a+l(m> ( T +l> + Zahmm) ( L, hz)> } 4.5)
!
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where the quantities ¥, .., ¥;p y] 4 and yj n are sample means (from the original
SAMU samples) corresponding 10 Y; 1, Y; 1, Yj andY, h, appearing in (4.2) and (4.3).

5) Use form=1,2,...,M, (4.4) and (4.5) as M mdependent estimates of E(t;|Q) and
E(1;1Q)) respectively. Then estimate the covariance Co((E(;|Q), E(1}|Q)) by:

gl

M

Ql

Z(u (m)-itj(m)) —

m=1

6) Finally, estimate the desired covariance CQ((E(90|Q),E(91 D) of (4.1) by
Cal(EBo|Q), E@119) =D > filG, b WA 1, E)-Cp 4.7)
i
End of Procedure 4.1

Remark 4.1: A SAS program for implementation of Procedure 4.1 can be obtained from
the author. When this program was applied to a case where the union U U U’ of the sam-
pling frames included about 50,000 businesses — the size of the whole manufacturing sec-
tor in Sweden — it used about four hours of running time on a PC for M = 1,000
replications. Renewal of the SAMU samples is at present done only once or twice a
year, though possibly it will be four times a year in the future. Hence Steps 1 to 4, which
are the time-consuming parts of the procedure, need to be performed only a few times a
year, which means that the procedure is workable.

Remark 4.2: Some stratum combinations Pj; with few frame elements may be unrepre-
sented in the sample. It would then be impossible to compute the sample means ¥,
and y},h, which are to appear in (4.4) and (4.5) respectively. However, this problem is likely
to appear only for stratum combinations where G, and hence ay(m) and aj,,(m),
m=1,2,...,M, are small. We then use the means ;;, and y;, in the original strata U,
and U, as approximations to y;; and )_{;,hz, and this approximation should not affect
it;(m) and ;(m) very much.

Next we show how Procedure 4.1 for estimation of the remainder term can be modified
to cover more general estimation weights, such as the weights connected with the GREG esti-
mator (see Sarndal et al. 1992). Notice that the STSI design is still assumed in the following.
Suppose that 7; can be written 7; = >, Wiy Relation (4.2) now takes the following form.

w5l o) (E2 5 )

h+ ke, G kEPy,
= Z{(ah+')_/:h+) +) dhz')_’:hz} (4.8)
T ]
where
o o
Yine =5— 2 Wi and Yy == Z Wi ik
h+ kep, hl kep,
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The modification of Procedure 4.1 amounts to the following modification of (4.4) (and a
completely analogous modification of (4.5)):

h

MM=Z%%WWM+Z%WWW} (4.9)
1
where

1 1

—% —%

Yiht+ = ar. E Wi YO and  yjy = an E Wi VikOk
h+ kep, hl kepy,

Oy being the sample inclusion indicator as defined in (1.4).

APPENDIX A: Some Conditional First and Second Order Inclusion Probabilities

Let assumptions and notation be as in Sections 2 and 3 above.

Lemma:

. a
(i) E@9) =k E Py
hl

(i) E(G 9 =% ke D,
Gy

/
(i) EGIQ) ==L re Py
Gy

(v) E@LQ) =2 e B,
G+l
(V) E(5;6.19Q) = E(8;|Q)-E(5,|Q), for k # r, if (k € Py, r € Pyy) or (k € Py, r € Pyy)) or
(kEDh,rEPh[) or (kEPhZ,rEBl)

S

i) E(68]Q) ===,
%Ok G

.. / A = 8ni
E(6:6, |0 = =———= ), k#*r,k,rEP
(vii) E(6;6,|€) (Ghl(chl_l)) r.k,r € Py
Proof: (i) By symmetry E(6;|€2) must be a constant for all k € Py,;. Set this constant to
7w Then Y yep, E(6;1Q) = 7-Gyy

But > iep, E(G:1Q) = E( Y rep, 0:1Q) = ay since > rep, & = ay

an
Hence Th = G_

(ii )—(iv) are provt:ld analogously.
(v): Suppose that k € Py; and r € Py,:

By symmetry, E(8;-6,|Q2) must be the same (= T nr» Say) Tor all such pairs of elements.
Hence E( Y ep,, 8c:6:12Q) = Tgunry G

But E(Y,ep,, 8-6,1Q) = E(8;|Q)-(X_,ep,, 6,). the latter term being a constant equal to
apy-

Then T(hihl'y = E(6k|Q)th[l,/ and, due to (lll), T(hihl'y = E(5k|Q)E(6/,|Q)
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An analogous argument can be used for the cases when (k€ Py,r € Py;) or
(k€ Dy, r € Py) or (k € Py, r € B)). This completes the proof of (v).
(vi): Let E(8;6;|Q) = 7). Hence > cp, E(6;61Q) = 7,-Gy

But > ep, 66k = g ie., Ty = é—]:l
(vii): Let E(6;6,|Q) = 7, k # r, since this expectation due to symmetry must be the same
for all pairs &, r; k # r in Py,

Now, E(8; > ,ep, 6,1Q) = E@6;-8¢1Q) + 714(Gyy — l)a d

But the left-hand side is E(8;-a);|Q) = ajE(5,|Q) = %
Al & "

== Gy, — 1) which
G G + 7,(Gyy ) which proves (vii).

Hence with assistance of (vi) above:
End of proof

APPENDIX B: A Procedure for Computation of the Conditional
Covariance Estimate

We derive a data transformation which will make it possible to write the covariance esti-
mator (3.10) in the main text in a ‘‘standard form’’ which can be handled by a ‘‘normal’’ var-
iance/covariance formula under STSI sampling.

We first show how the covariance formula (3.9) can be transformed so that it can be

written in the usual form under the STSI design.
Ny-a Nj-a
Set zj = yjk'#GZ and = y}k-n;_—GZ
h=12,...,H,1=1,2,...,L

Then (3.9) can be written as follows, i.e., by the usual formula for the estimator of the
covariance between two w-weighted totals under STSI where strata comprise every com-
bination of (h,/) in Py, the population size ‘‘Capital N°’ equals Gy, and the sample size

““small n”’ equals ay,.

GGy — Y
i = GG T i () (500

kEPy; kEPy; kEPy,

,j:l,Z,...,J,forkEPhl

(b.1)

However, to catch the whole covariance term (3.10) one must also compute the point esti-
mates 7; and ?J’- in accordance with (1.3) and (1.6) respectively. This means that those obser-
vations that are not included in Py, but contribute to the partial derivatives in (3.10) must also
be taken into account. We will now introduce the data transformation mentioned above.

Procedure B.1
1) Put every sample element (which appeared in either one of the time 0 and time 1 samples)
into the correct group among:

q—(ql,qz QQ) (Dh,PhZ,BZ,hZ1,2,...,H,l=1,2,...,L)

,,,,,

where

e D, includes the elements in stratum U, at time 0 which disappeared from the frame
before time 1, i.e. the deaths in stratum U,
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e P, (type 1, 2 or 3) includes the elements which belonged to stratum U, at time 0 and
stratum U] at time 1. Notice that elements that appear in only one of the two samples
must also be included, not only the ones appearing in both samples.

® B, includes the elements that are not found in the frame at time 0 but that belong to
stratum U, at time 1, i.e. the births in stratum Uj.

2) Consider group q where q = Py, (Typel), h=1,2,...H,l=1,2,...,L

o Set Nq = Ghl and ﬁq :ah[
e Transform yy and yy to zy and Zy for j=1,2,...,J as follows. If k € Py,
h=12,...HIl=12,...,L:

Ny-ay

y if kEs
Zj = Yk ny- Gy
0 if k&s
N/'~
/ el ke
Ze=19"" nGp
0 if ks

3) Consider group q where q = Py (Type2)
- N, if ayy>=1and a); =0
o Set qu{ no B == 1 AG
N] if ap = 0 and ap >= 1
if a; >=1 and aj; =0
T
n; if ap = 0 and ap >= 1
e Transform yy and yy to zj and Zy for j=1,2,...,J as follows. If k € Py,
h=12,....H,1=1,2,...,L.:

ljk =

0 ifké&s
g Z{y]’.k ifkes
7 lo ifkes

4) Consider group q where q = Py, (Type3)
o Set Nq = Gy and ii, = Gy,
e Transform yy and yy to zj and Zy for j=1,2,...,J as follows. If k € Py,
h=12,....H1=12,...,L.:

N, .

w— 1ifkEs
Lk = Yk ny

0 if k&s

/ N/ . /
, yjk~—/l if kEs
ijz n;

0 if ke¢s

5) Consider group q where q = D, h =1,2,...,H

o Set Nq =Ny and i, = m
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e Transform yj and yj/-k to zj and z]/»k forj=1,2,...,J as follows:
IfkeDyh=1,2,....H.: zj = yy and z}k =0
6) Consider group q where q =B, [ =1,2,...,L
e StN,=Nj and ii, = n)
e Transform yy and yj to zj and 2y for j =1,2,...,J as follows.
IkaBl, l= 1,2,..., L.:zijOandzj/-k :yj/k

End of Procedure B.1
It only takes some elementary algebra to see that (b2) och (b3) below are equivalent to

(1.3) and (1.6) respectively. Furthermore, the expression (b4) is equivalent to (3.9). Notice
that the contributions to (b4) from D,, B, and P,, of types 2 and 3 are zero as intended.

Z = "z (b2)

q kEq
Z 2N "z (b3)
g kEq
eGRAIE Z S Yz Zie b — — Zz,kék > (b4)
q(n - 1) keq keq keq

Hence by generating the pseudo data z and 7' as in Procedure B.1 and then applying
standard formulas for point-, variance- and covariance-estimators under the STSI design with
q serving as strata, Nq serving as population size parameter (Capital N) and 7, as sample size
parameter (small n) we can compute the covariance (3.9) in the main text by (b4).

Furthermore, suppose that a software is available which — under this STSI design — can
compute proper variance estimates for 00, 6, and 00 + 8, where 00 =110, 1),

=f(#,5,...,1) and t and t are defined by (b2) and (b3). Then the covariance esti-
mate of (3.10) can be extracted from the following general relation:

V(o +0,) = V(Bo) + V(B)) +2-C(By, 0) (b3)
Notice that this software must also meet the following requirements:

— Since i, may not necessarily be an integer, the software must be able to accept arbitrary
values i, >= 1 for the sample size parameter (small n). Softwares that compute n by
counting elements in the input data set will not be appropriate for this task. The software
must be able to accept the value /i, = 1 which can possibly appear in some extreme strata.
— Even though N, is normally larger than 7, there is no absolute guarantee for this. As a
consequence the software must be able to accept negative variance contributions from
some (extreme) strata. Notice that the quantities V that appear in step ¢ of Procedure
B2 below are based on the pseudo data and may include negative contributions from cer-
tain strata whenever a;, > Gy, (see (3.7)).

The software CLAN, developed at Statistics Sweden (see Andersson and Nordberg
1994, 1998), meets the above-mentioned requirements and can readily be used to implement
Procedure B2.
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Procedure B.2 (Estimation of the conditional covariance)

(i)  Perform procedure B.1

(ii) Compute the estimates \7(90), \7(51) and \7(50 + él)for V(éo), V(él) and V(éo + él)
based on the pseudo data generated in (i). The tilde sign symbolizes the fact that computa-
tions are based on the pseudo data.

(iii) Estimate the covariance (3.10) by the following relation:

C =05Vl +6,)— V(b — V(b)) (b6)

End of Procedure B.2

Remark 1: Procedure B.1 — which generates the input data for the covariance estimation —
must be implemented separately. A SAS-program for implementation of Procedure B.1
can be obtained from the author.

Remark 2: Notice that the above procedure is intended only for the conditional covariance
term (3.1) in the main text which contributes to the covariance appearing in (1.1) and (1.2).
Estimates of the variance components V(,) and V(8)) appearing in (1.1) and (1.2) are
computed in a conventional manner.

We now show how the procedure presented above can be modified to incorporate the
case when the H-T estimators of (1.3) and (1.6) respectively are replaced by GREG esti-
mators. See Sidrndal, Swensson, and Wretman (1992) for a comprehensive presentation of
the GREG estimator.

The variance- and covariance-estimators for the H-T estimator presented above can be
extended to the GREG case. The only modification needed is that the y;:s are replaced by
the product (g;,-ex,) Where

_ T XXt T B
g =91+ -t " Xy (b7)

kEs
I A
e =Y — X B (b8)
and
-1
B = Z ka;ﬂ'k Z X Vi Tk (b9)
kEs Tk kEs Tk

w being the inclusion probability for element k while 7, > 0 is a scale parameter which
can be set by the user. The quantity x; is the vector of covariates involved in the
GREG estimator, while t, is the vector of population totals (assumed known) for x and
t, is the corresponding H-T estimator for x from the sample.

Procedure B.1, and consequently Procedure B.2, can be applied to the GREG case if the
data transformation in procedure B.1 is applied to y and to every covariate x. However, one
problem then arises: It follows from (b7) and (b9) that B and grs Will be affected (which
they should not be). However, this can be adjusted for in the following way.
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Suppose that k € Py, (Typel). The data transformation of y follows from Procedure B.1,
and takes the form

Np-ap .

- ——— ifk€Es
5= Gy (b10)

0 iftke&s
The corresponding transformation for the covariate x; is

Ny-ap .
w—— ifke

Xje = Gy ) (b11)

0 ifke&s

Furthermore, 7, = ;\l’—h under the STSI design while the corresponding transformed
h

value should be 7, = % (see Procedure B.1)
hi

Hence 7, = m- Furthermore, modify the scale factor 7, as follows:

NGy
ny,-G . .
Ty = Ty —n M We then have the following relations
Ny-ap

~ ~T~ T ~ o~ o~
XXk Tk XXe T XpYkTk _ XkYkTk
= , XX =

Ty T " Tk

and ik%k = Xx Tk

Hence B and g,, are unaffected if the scale factor 7 is modified in such a way that 7; is

-Gy n;-Gy e

PR k € s and by 74 I/ M if k € 5. After these modifications the
X2 1"hi

procedure for the estimation of the conditional covariance applies also when the GREG

estimator is used as estimator for the population totals involved.

replaced by 7-
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