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It is common practice to take advantage of auxiliary information collected from a large
survey to improve the estimation for a smaller related survey. A comparable technique was
used to draw the French Master Sample conditionally on the rotation groups of the New
Census chiefly for practical reasons, that is, to benefit from a recent sampling frame. In this
article, we are interested in the case where a sampling design, including the sampling units
themselves and their selection probabilities, is defined conditionally on an external survey.
More specifically, we focus on variance estimation for estimators arising from the French
Master Sample.
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1. Introduction

The Master Sample selected by the Institut National de la Statistique et des Etudes

Economiques (INSEE) is a sample of dwellings used as a sampling frame for household

surveys. Until 2004, the Master Sample was obtained, partly by sampling in the census of

1999, partly by using the New Dwellings Sampling Frame (NDSF) so as to represent

the housing built since 1999. This approach involved following (at least) one part of

the new dwellings, which resulted in a nonnegligible increase of the sampling costs.

Since 2004, the comprehensive Census of Population, conducted approximately every

ten years, has been replaced by census surveys conducted annually. The detailed

methodology is described in Godinot (2005). In each French region, small municipalities

(less than 10,000 inhabitants in 1999) are randomly partitioned into five rotation groups

by means of balanced sampling with equal probabilities. Each year, all the municipalities

within one rotation group are surveyed, so that all the municipalities in the region are

surveyed within a cycle of five years. Each large municipality (10,000 inhabitants

or more in 1999) is the subject of an independent sampling design and is stratified

according to the type of address (large addresses, new addresses, or other addresses).

In each stratum the addresses are divided into five rotation groups. Each year, all the

addresses within one rotation group (for the strata of large addresses and new addresses)

or within a subsample (for the stratum of other addresses) are surveyed. After one cycle

of five years, approximately 40% of the addresses in each large municipality are surveyed.
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The use of census surveys requires a change in the drawing of the Master Sample, since

there no longer exists a sampling frame which gives, to date, the exact state of the housing.

The selection of the Master Sample is itself subject to some constraints. First, household

surveys carried out at year t þ 1 must be selected in the census samples surveyed at year t.

This provides a recent sampling frame, and avoids the extra cost of a specific system to

cover the new dwellings. On the other hand, the principle of multistage sampling used for

the previous Master Sample (Bourdalle et al. 2000) to reduce the survey costs is preserved,

and a sample of Primary Sampling Units (PSUs) is selected. In the particular case of the

Master Sample, these PSUs are denoted as Interviewer Action Areas (IAAs) see

Berlemont et al. (2009), Christine and Faivre (2009). In each French region, these IAAs

are built as follows. Each large municipality stands for one IAA, while small

municipalities are aggregated to create an IAA. A sample of IAAs is then selected with

probabilities proportional to size. To simplify, we will only focus on the case of IAAs

emerging as aggregations of small municipalities in the remainder of the article, since the

case of large municipalities does not involve any specific technical difficulties.

The joining of the two former constraints results in a further difficulty: a selected IAA

must contain enough dwellings belonging to the rotation group surveyed at year t for the

household surveys specifically conducted at year t þ 1. For example, if 200 dwellings are

needed in a particular IAA for all household surveys to be conducted in 2006, then the

corresponding IAA must contain at least 200 dwellings located in the small municipalities

from the rotation group surveyed in 2005. That is, the IAAs need to be defined

conditionally on the rotation groups of the census. More specifically, the following

constraint was imposed: each IAA must contain at least 300 dwellings in each of the five

rotation groups. In summary, not only the Master Sample is selected conditionally on the

new census, but the IAAs themselves as well as their probabilities of selection in the

Master Sample are defined conditionally on the new census.

In this article we consider the problem of estimation with the new Master Sample. In

Section 2, we briefly introduce balanced sampling by means of the cube method, and

variance estimation in case of Horvitz-Thompson estimation. The notation for the Master

Sample is given in Section 3, and the sampling design is described. A more detailed

presentation may be found in Berlemont et al. (2009) and Christine and Faivre (2009).

Two variance estimators for an expansion type estimator are proposed in Section 4, and

compared in Section 5 through a set of simulations. Some concluding remarks are given in

Section 6.

2. Balanced Sampling and Variance Estimation

Let U denote a finite population of size N. Let y be a variable of interest which takes the

value yk for unit k in U. We are interested in estimating the total ty ¼
P

k[U yk of the

variable y. Let S denote a random sample selected in U by means of a sampling design

pð�Þ. Let pk ¼ Pr ðk [ SÞ denote the inclusion probability of unit k, and pkl ¼ Pr ðk; l [

SÞ denote the second-order inclusion probability. Write p ¼ ðp1; : : : ;pk; : : : ;pNÞ
0 for

the vector of inclusion probabilities and IðSÞ ¼ ðI1; : : : ; Ik; : : : ; INÞ
0 for the vector

of sample membership indicators, where Ik ¼ 1 if k [ S and 0 otherwise.
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The Horvitz-Thompson estimator

t̂yp ¼
k[U

X yk

pk

Ik ¼
k[S

X yk

pk

ð1Þ

estimates without bias the finite population total ty.

The sampling design is balanced on a q-vector xk of auxiliary variables if the Horvitz-

Thompson estimator t̂xp ¼
P

k[U xkIk=pk equals the real total tx ¼
P

k[U xk of the

(vector) x-variable. In what follows, we assume that the sample S is selected by means of

the cube method (Deville and Tillé 2004), which makes possible the selection of

balanced samples if the balancing constraints

t̂xp ¼ tx ð2Þ

are satisfied, and approximately balanced samples if these are only closely satisfied. A

rejective-type procedure may alternatively be used, see Fuller (2009). The choice of

optimal inclusion probabilities for balanced sampling is discussed in Tillé and Favre

(2005) and Chauvet et al. (2011).

The cube method proceeds in two phases: the flight phase, in which the balancing

constraints are maintained exactly, and the landing phase, in which the balancing

constraints are successively relaxed until the complete sample is obtained. Several

implementations of the cube method have been proposed in the literature; see Tillé (2006)

and Tillé (2010). In what follows, we consider the implementation described, for example,

in Breidt and Chauvet (2011). Algorithm 1 given in Appendix A covers both the flight

phase and the landing phase. It is currently used in practice, since it permits the selection of

a balanced sample in a reasonable amount of time, even if the number of balancing

variables is large. This implementation proceeds in steps t ¼ 0; 1; : : : ; TðSÞ from p0ðSÞ ¼

p to pTðSÞðSÞ ¼ IðSÞ, the final sample. At each step, one or more coordinates of ptðSÞ are

randomly rounded to 0 or 1, and remain there forever. During the flight phase, the

balancing equations remain exactly respected. When exact balance is no longer possible,

the constraints are relaxed successively in the landing phase.

The sampling design is assumed to be of fixed size, which is obtained by including the

vector p of inclusion probabilities in the balancing variables x. The variance of the

Horvitz-Thompson estimator is then given by the Yates-Grundy (1953) formula:

Vðt̂ypÞ ¼ 2
1

2 k;l[U:k–l

X
Dkl

yk

pk

2
yl

pl

� �2

ð3Þ

where Dkl ¼ pkl 2 pkpl, and may be unbiasedly estimated by

v t̂yp
� �

¼ 2
1

2 k;l[S:k–l

X Dkl

pkl

yk

pk

2
yl

pl

� �2

ð4Þ

if all pkl are strictly positive. Second-order inclusion probabilities are, however, usually

difficult to compute for a general balanced sampling design.
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A variance estimator may be obtained from (4) and from a simulation-based

approximation of the design variance-covariance matrix,

D ¼ ½Dkl�k;l[U :

Though a direct simulation-based approximation is possible (see Fattorini 2006;

Thompson and Wu 2008), an approximation that uses the martingale structure of the cube

algorithm may be used. More specifically, Breidt and Chauvet (2011) demonstrate that the

D matrix is unbiasedly estimated by

DMD ¼
1

C

XC
c¼1

XTðScÞ
t¼1

l*
1tðScÞl

*
2tðScÞut ðScÞu

0
t ðScÞ ð5Þ

where S1; : : : ; Sc; : : : ; SC are C independent replicates of the sample S, selected by

Algorithm 1. The corresponding variance estimator for a given sample S is then obtained

by plugging (5) into (4), which leads to

vMD t̂yp
� �

¼ 2
1

2 k;l[S:k–l

X DMD
kl

pMD
kl

yk

pk

2
yl

pl

� �2

ð6Þ

where pMD
kl ¼ DMD

kl þ pkpl. The numerical results in Breidt and Chauvet (2011) show a

good performance of this estimator as compared to a naive, simulation-based variance

estimator that does not use the martingale structure, and an essentially unbiased variance

estimation.

Alternatively, Deville and Tillé (2005) propose a variance approximation if the

balanced sampling is performed with maximum entropy. Under the assumptions that (i)

the sampling design is exactly balanced, and (ii) the Horvitz-Thompson estimator is

approximately normally distributed under Poisson sampling, they derive the variance

approximation

VDT ðt̂ypÞ ¼
N

N 2 q k[U

X
pkð1 2 pkÞ

yk

pk

2
y*
k

pk

� �2

ð7Þ

where y*
k ¼ x0kbxy is a weighted prediction of yk obtained with the q balancing variables xk,

and

bxy ¼
l[U

X
plð1 2 plÞ

xl

pl

x 0l
pl

0
@

1
A

21

l[U

X
plð1 2 plÞ

xl

pl

yl

pl

ð8Þ

Other, slightly different, variance approximations are proposed by Deville and Tillé. A

variance estimator is obtained from (7) using a plug-in principle, by substituting each totalP
k[Uð�Þ with its Horvitz-Thompson estimator

P
k[Sð�Þ=pk. The resulting estimator is

vDT ðt̂ypÞ ¼
n

n2 q k[S

X
ð1 2 pkÞ

yk

pk

2
y
p
k

pk

� �2

ð9Þ
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where y
p
k ¼ x 0kb̂xy and

b̂xy ¼
l[S

X
ð1 2 plÞ

xl

pl

x 0l

pl

0
@

1
A

21

l[S

X
ð1 2 plÞ

xl

pl

yl

pl

ð10Þ

The variance estimator given in (9) essentially ignores sampling variation due to the

landing phase, and may be severely negatively biased if the variance due to the landing

phase is appreciable and/or if the balancing variables have a large explanatory power for

the variable of interest; see Breidt and Chauvet (2011).

3. Notation and Estimation for the Master Sample

In the remainder of the article, let U denote the finite population of N small municipalities

in one French region and let y be a variable of interest. First, the small municipalities

are randomly split into R ¼ 5 rotation groups by selecting R nonoverlapping samples

with equal probabilities, balanced on a q-vector xk of auxiliary variables, following

the technique presented in Tillé and Favre (2004, Section 4). Let akr ¼ 1=R denote

the probability for municipality k to be selected in the rotation group Gr; r ¼ 1; : : : ;R:

Also, let akl;r denote the probability that municipalities k and l are selected jointly in the

rotation group Gr. Since both the simple random sampling design and the stratified simple

random sampling with proportional allocation may be seen as particular cases of balanced

sampling with equal probabilities, the case when the rotation groups are selected by either

of these two particular sampling designs is covered with our set-up.

The small municipalities are then grouped to obtain a population UI of M PSUs

ui; i ¼ 1; : : : ;M, which in the particular case of the French Master Sample and in the

remainder of the article will be denoted as Interviewer Action Areas (IAAs). These IAAs

are built by aggregating contiguous small municipalities, so that each IAA contains at least

300 dwellings in each rotation group. A sample SI of IAAs is then selected with

probabilities proportional to size, and we note pIi for the probability for IAA ui to be

selected in SI , conditional on Gr; r ¼ 1; : : : ;R: Also, note pIij for the (conditional)

probability that IAAs ui and uj are selected jointly in the sample SI . The sample SI is

selected by balanced sampling by means of the cube method, with balancing variables

z0
i ¼

k[ui

X
z0
k ð11Þ

and

~z*
i ¼ ð~z*

i1Þ
0; : : : ; ð~z*

irÞ
0; : : : ; ð~z*

iR
0Þ

� �
0 ð12Þ

with

~z*
ir ¼

k[ui

X
z*
k1ðk [ GrÞ for r ¼ 1; : : : ;R

where z0
k and z*

k denote two sets of auxiliary variables known at the design stage for any

municipality k, and 1ð�Þ is the indicator function. The balancing variables z0
i are used to

achieve a global balancing of the sample SI , and henceforth to obtain a variance reduction.
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The variables z0
k vary from one French region to another, since the more IAAs in a region,

the more balancing variables may be added in the sampling design. The balancing

variables ~z*
i are used to achieve a balancing of the sample SI on each rotation group, so as

to benefit from a balanced sampling frame for each household survey. The z*
k vector

included the number of main dwellings and the global tax income of the small

municipality k, and the z0
k vector included the number of dwellings in peri-urban areas,

rural areas and urban areas (see Berlemont et al. 2009). The global vector of balancing

variables is given by ~zi ¼ ððz0
i Þ

0; ð~z*
i Þ

0Þ0.

Finally, the small municipalities available for selection in the household surveys (at

year t þ 1) are those in a specific rotation group Gr (of the census at time t) within the

IAAs selected in SI . This sample will be denoted as Sr, so that we have

Sr ¼ {k [ U; k [ ui [ SI and k [ Gr}: ð13Þ

Since the exact inclusion probabilities for the small municipalities k to be included in

the final sample Sr are unknown, we propose using an expansion estimator instead of

the Horvitz-Thompson estimator (see Särndal et al. 1992, p. 347). Note that the total ty
may alternatively be written as

ty ¼
ui[UI

X
Yi

where Yi ¼
P

k[ui
yk denotes the total of the y-variable in the IAA ui. The proposed

expansion estimator is given by

t̂yr ¼
k[Sr

X yk

pkr
ð14Þ

where pkr ¼ pIi akr for any unit k in ui. This estimator may also be written as

t̂yr ¼
ui[SI

X ~Yir

pIi

ð15Þ

where

~Yir ¼
X
k[ui

yk1ðk [ GrÞ

akr

denotes a weighted total of the y-variable for the small municipalities in ui which also

belong to the rotation group Gr. It follows from (15) that

Eðt̂yrjG1; : : : ;GRÞ ¼
ui[UI

X
~Yir ¼

k[Gr

X yk

akr

; ~tyr ð16Þ

where Eð�jG1; : : : ;GRÞ stands for the expectation conditional on the rotation groups of

the census. Then, since

ui[UI

X
~Yir ¼

ui[UI

X
k[ui

X yk1ðk [ GrÞ

akr

¼
k[U

X yk1ðk [ GrÞ

akr

ð17Þ
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we obtain

Eðt̂yrÞ ¼ EEðt̂yrjG1; : : : ;GRÞ ¼ E
k[U

X yk1ðk [ GrÞ

akr

0
@

1
A ¼ ty

so that t̂yr is an unbiased estimator of the total ty.

4. Variance Estimation for the Expansion Estimator

The variance of the expansion estimator is given by

Vðt̂yrÞ ¼ VEðt̂yrjG1; : : : ;GRÞ þ EVðt̂yrjG1; : : : ;GRÞ ¼ VNC þ VMS

where Vð�jG1; : : : ;GRÞ denotes the variance conditional on the rotation groups of the

census. From Equation (16), we get

VNC ¼ V
k[Gr

X yk

akr

0
@

1
A ¼ 2

1

2 k;l[U:k–l

X
Dkl;r

yk

akr

2
yl

alr

� �2

where Dkl;r ¼ akl;r 2 akralr. That is, VNC corresponds to the variance due to the random

selection of the rotation group Gr of the new census. The term VMS corresponds to the

variance due to the random selection of the sample SI of IAAs. Using Equation (15), we

can write

VMS ¼ E V
ui[SI

X ~Yir

pIi

������G1; : : : ;GR

0
@

1
A

2
4

3
5 ¼ E 2

1

2 ui;uj[UI :ui–uj

X
DIij

~Yir

pIi

2
~Yjr

pIj

� �2
2
4

3
5

where DIij ¼ pIij 2 pIipIj. In the sequel, the two terms VNC and VMS are estimated

separately.

A direct estimator for VNC is

vNCðt̂yrÞ ¼ 2
1

2 k;l[Sr :k–l

X Dkl;r

akl;rakljG

yk

akr

2
yl

alr

� �2

ð18Þ

where

akljG ; Prðk; l [ SrjG1; : : : ;GRÞ ¼ pIij if k [ ui; l [ uj: ð19Þ

It is shown in Appendix B that the estimator in (18) is unbiased for VNC, provided that

all akl;r and akljG are strictly positive. We now turn to the second term VMS. From the

definition

VMS ¼ EVðt̂yrjG1; : : : ;GRÞ
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we see that it is sufficient to find an estimator for Vðt̂yrjG1; : : : ;GRÞ, which we can write as

V
X
ui[SI

~Yir

pIi

jG1; : : : ;GR

 !
:

Consequently, a direct estimator for VMS is

vMSðt̂yrÞ ¼ 2
1

2 ui;uj[SI :ui–uj

X DIij

pIij

~Yir

pIi

2
~Yjr

pIj

� �2

ð20Þ

and vMSðt̂yrÞ estimates VMS unbiasedly if all pIij are strictly positive. Unfortunately,

estimators (18) and (20) require the knowledge of second-order inclusion probabilities

which are usually difficult to compute. In Section 4.1, a simulation-based variance

estimator is proposed. In Section 4.2, we follow Deville and Tillé (2005) in proposing an

alternative variance estimator.

4.1. Simulation-based Variance Estimation

A variance estimator may be obtained from (18) and (20), using a simulation-based

approximation of the design variance-covariance matrices

Dr ; ½Dkl;r�k;l[U

and

DI ; ½DIij�ui;uj[UI
:

More specifically, let

DMD
r ¼

1

C

XC
c¼1

XTðGrcÞ

t¼1

l*
1tðGrcÞl

*
2tðGrcÞutðGrcÞu

0
tðGrcÞ ð21Þ

where Gr1; : : : ;Grc; : : : ;GrC are C independent replicates of the rotation group Gr,

selected by Algorithm 1. Similarly, let

DMD
I ¼

1

C

XC
c¼1

XTðSIcÞ
t¼1

l*
1tðSIcÞl

*
2tðSIcÞutðSIcÞu

0
tðSIcÞ ð22Þ

where SI1; : : : ; SIc; : : : ; SIC are C independent replicates of the sample SI , selected by

Algorithm 1 conditionally on the rotation groups Gr; r ¼ 1; : : : ;R:

The first proposed variance estimator is

vMDðt̂yrÞ ¼ vMD;NCðt̂yrÞ þ vMD;MSðt̂yrÞ: ð23Þ

The term

vMD;MSðt̂yrÞ ¼ 2
1

2 ui;uj[SI :ui–uj

X DMD
Iij

pMD
Iij

~Yir

pIi

2
~Yjr

pIj

� �2

is obtained from (20) by replacing DIij with the corresponding entry DMD
Iij from (22) and pIij
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with pMD
Iij ¼ DMD

Iij þ pIi pIj. The term

vMD;NCðt̂yrÞ ¼ 2
1

2 k;l[Sr :k–l

X DMD
kl;r

aMD
kl;ra

MD
kljG

yk

akr

2
yl

alr

� �2

is obtained from (18) by replacing Dkl;r with the corresponding entry DMD
kl;r from (21), akl;r

with aMD
kl;r ¼ DMD

kl;r þ akr alr, and akljG with aMD
kljG

¼ pMD
Iij for k [ ui, l [ uj.

4.2. Maximum Entropy Variance Estimation

We now propose an alternative, non computational-intensive variance estimator,

following the approach suggested by Deville and Tillé (2005). We focus on the first

term VNC first. Since the rotation group Gr is selected by means of balanced sampling with

inclusion probabilities akr, the variance estimator given by (9) leads us to think of

~vDT;NCðt̂yrÞ ¼
nðGrÞ

nðGrÞ2 qk[Gr

X
ð1 2 akrÞ

yk

akr

2
y
p
k

akr

� �2

ð24Þ

as an estimator of VNC. In this expression, nðGrÞ is the number of municipalities selected in

the rotation group Gr, y
p
k ¼ x 0 kb̂xy is a weighted prediction of yk obtained with the q

balancing variables xk, and

b̂xy ¼
l[Gr

X
ð1 2 alrÞ

xl

alr

x 0l

alr

0
@

1
A
21

l[Gr

X
ð1 2 alrÞ

xl

alr

yl

alr

Unfortunately, the variance estimator given in (24) can not be computed since the

variable of interest y is known on the sample Sr only. A tractable variance estimator is

obtained from (24) using a plug-in principle, by substituting each total
P

k[Gr
ð�Þ with its

expansion estimator
P

k[Sr
ð�Þ=pIi ¼

P
k[Sr

akrð�Þ=pkr. We obtain

vDT;NCðt̂yrÞ ¼
nðGrÞ

nðGrÞ2 qk[Sr

Xakrð1 2 akrÞ

pkr

yk

akr

2
ŷ
p
k

akr

� �2

ð25Þ

where ŷ
p
k ¼ x 0kb̂

^
xy and

b̂
^
xy ¼

l[Sr

Xalrð1 2 alrÞ

plr

xl

alr

x 0l

alr

0
@

1
A
21

l[Sr

Xalrð1 2 alrÞ

plr

xl

alr

yl

alr

After some algebra, the variance estimator given in (25) may be alternatively written as

vDT;NCðt̂yrÞ ¼ ~v̂DT ;NCðt̂yrÞ2
nðGrÞ

nðGrÞ2 q
b̂
^
xy 2 b̂xy

� � 0

Âr b̂
^
xy 2 b̂xy

� �
ð26Þ

where

~v̂DT ;NCðt̂yrÞ ¼
nðGrÞ

nðGrÞ2 qk[Sr

Xakrð1 2 akrÞ

pkr

yk

akr

2
y
p
k

akr

� �2
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and

Âr ¼
k[Sr

Xakrð1 2 akrÞ

pkr

xk

akr

x0k

akr

We have E ~v̂DT ;NCðt̂yrÞjG1; : : : ;GR

� �
¼ ~vDT ;NCðt̂yrÞ, and under mild regularity

conditions, the second term in the right-hand side of (26) is of smaller order of magnitude

than ~v̂DT ;NCðt̂yrÞ. Consequently, vDT ;NCðt̂yrÞ is an approximately (conditionally) unbiased

estimator for ~vDT ;NCðt̂yrÞ.

We now turn to the second term VMS. Once again, from the definition

VMS ¼ EVðt̂yrjG1; : : : ;GRÞ

we see that it is sufficient to find an estimator for Vðt̂yrjG1; : : : ;GRÞ, which we can write as

V
X
ui[SI

~Yir

pIi

�����G1; : : : ;GR

 !
;

using Equation (15). Since the sample SI is also obtained by balanced sampling by means

of the Cube method, the variance estimator of Deville and Tillé (2005) may still be used.

That is, the variance due to the selection of the Master Sample is estimated by

vDT;MSðt̂yrÞ ¼
mðSIÞ

mðSIÞ2 q1ui[SI

X
ð1 2 pIiÞ

~Yir

pIi

2
~Y
p

ir

pIi

� �2

ð27Þ

where mðSIÞ gives the number of IAAs selected in SI, and ~Y
p

ir ¼ ~z0iĝzY is a weighted

prediction of ~Yir obtained with the q1 balancing variables ~zi, where

ĝzY ¼
uj[SI

X
ð1 2 pIjÞ

~zj

pIj

~z 0j

pIj

0
@

1
A

21

uj[SI

X
ð1 2 pIjÞ

~zj

pIj

~Yjr

pIj

The second proposed variance estimator is thus given by

vDT ðt̂yrÞ ¼ vDT ;NCðt̂yrÞ þ vDT;MSðt̂yrÞ: ð28Þ

5. A Simulation Study

We performed a limited simulation study to assess the performance of the proposed

variance estimators. We used a population of N ¼ 1; 235 small municipalities in the

French region of Brittany. The variables of interest, available from the Census of 1999,

are given in Table 1. The objective was to estimate the variance of the expansion

estimator t̂yr of the totals of the y-variables of interest. The simulation was performed with

the SAS software. Balanced sampling can be implemented using existing software for

the cube method, such as the R function samplecube in the sampling library (Tillé

and Matei 2008; R Development Core Team 2008), or the SAS Macro fastcube (Chauvet

and Tillé 2005).
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The sampling design used in the simulation was meant to mimic closely the exact

sampling design used for the selection of the French Master Sample. The sampling process

described in section 3 was repeated B ¼ 1; 000 times to obtain R ¼ 5 rotation groups

G1;b; : : : ;GR;b, a population UI;b of IAAs in which a sample SI;b was selected with

inclusion probabilities proportional to the number of main dwellings, and the final sample

Sr;b, for b ¼ 1; : : : ;B. The balancing variables xk used in the selection of the rotation

groups included the inclusion probability, the number of households, the number of

households in collective addresses, the number of people by gender, and the number of

people in five age classes. In the selection of the sample SI;b, the vector z0
i was limited to

the inclusion probability, and the vector ~z*
i consisted of the number of main dwellings and

the global tax income by rotation group.

In each sample Sr;b, we computed the expansion estimator t̂yr;b, the simulation-based

variance estimators vMD;NCðt̂yr;bÞ and vMD;MSðt̂yr;bÞ, the maximum entropy variance

estimators vDT ;NCðt̂yr;bÞ and vDT ;MSðt̂yr;bÞ. The DMD
r matrix in (21) was obtained from a

single, separate simulation of C ¼ 10; 000 samples. For any b ¼ 1; : : : ;B, a DMD
I;b matrix

was obtained from (22) and from a simulation run of C ¼ 10; 000 independent replicates

SI;b1; : : : ; SI;bC of the sample SI;b, selected by Algorithm 1 conditionally on the rotation

groups Gr;b; r ¼ 1; : : : ;R. For simplicity, we present the simulation results in the case

r ¼ 1 only.

As a measure of bias of a point estimator û of a parameter u, we used the Monte Carlo

percent relative bias (RB) given by

RBMCðûÞ ¼ 100 £
B21

XB

b¼1
ûðbÞ 2 u

u

where ûðbÞ gives the value of the estimator for the bth sample. When u ¼ VNCðt̂yrÞ, we have

û equal to either vDT;NCðt̂yrÞ or vMD;NCðt̂yrÞ. When u ¼ VMSðt̂yrÞ, we have û equal to either

Table 1. Variables of interest in the simulation study

Variable Description

POP22 Number of people in the department of Côtes d’Armor
POP29 Number of people in the department of Finistère
POP35 Number of people in the department of Ille et Vilaine
POP56 Number of people in the department of Morbihan
FOREIGN Number of foreigners
FORM Number of men, foreigners
FORWACT Number of women in active, foreigners
FORMACT Number of men in active, foreigners
SALMACT Number of men in active, salaried
EMPMACT Number of men in active, employed
SALACT Number of people in active, salaried
EMPACT Number of people in active, employed
NONDIP Number of people, unqualified
NSALACT Number of people in active, nonsalaried
NSALMACT Number of men in active, nonsalaried
UNEMP Number of people, unemployed
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vDT;MSðt̂yrÞ or vMD;MSðt̂yrÞ. The exact variances VNCðt̂yrÞ and VMSðt̂yrÞ were replaced by a

Monte Carlo approximation, obtained through an independent run of 30; 000 £ 50

simulations. More precisely, we repeated D ¼ 30; 000 times the creation of R ¼ 5 rotation

groups G1;d; : : : ;GR;d, and of a population UI;d of IAAs, for d ¼ 1; : : : ;D. For any d,

E ¼ 50 samples SI;de were selected and the final sample Sr;de was obtained, for

e ¼ 1; : : : ;E. The Monte Carlo approximation of VNCðt̂yrÞ is

VMC
NC ðt̂yrÞ ¼

1

D2 1

XD
d¼1

~tyr;d 2 ~t�yr
� �2

where

~tyr;d ¼
X
k[Gr;d

yk

akr

and ~t�yr ¼
1

D

XD
d¼1

~tyr;d:

The Monte Carlo approximation of VMSðt̂yrÞ is

VMC
MS ðt̂yrÞ ¼

1

D

XD
d¼1

1

E2 1

XE
e¼1

t̂yr;de 2 t̂�yr;d
� �2

" #

where

t̂�yr;d ¼
1

E

XE
e¼1

t̂yr;de

for any d ¼ 1; : : : ;D. The results are presented in Table 2 for the variance due to the

selection of the Master Sample, along with the mean coefficient of determination (R 2)

obtained by predicting ~Yir=pIi with the balancing variables ~zi. The results are presented

in Table 3 for the variance due to the selection of the rotation groups of the new census,

along with the coefficient of determination (R 2) obtained by predicting yk=akr with the

balancing variables ~xk.

For the two terms of variance, the MD estimator systematically outperforms the DT

estimator in terms of relative bias. The MD estimator is essentially unbiased in any case,

with a relative bias lower than 5% for VMS, and lower than 6% for VNC. We note that the

DT estimator is systematically negatively biased, which is consistent with the results in

Breidt and Chauvet (2011) in indicating that the DT estimator fails to track the variance

due to the landing phase. In case of VMS, the relative bias of the DT estimator increases as

the R 2 of the model increases, as the balancing variables have more and more explanatory

power and as the relative importance of the variance due to the flight phase in the overall

variance decreases. In the case of VNC, the relative bias of the DT estimator is large,

irrespective of the explanatory power of the balancing variables. Our interpretation is as

follows. The landing phase is applied to a subgroup of units in the population only. This

subgroup is obtained randomly (these are the units which remain after the flight phase),

and even the number of units in this subgroup is random. Moreover, in case of the new

census, the units in this subgroup may vary considerably in size, since the small

municipalities have very different sizes. For example, the coefficient of variation for the

municipality sizes in Brittany is equal to 102%. In case of the new census, there is
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Table 2. Relative bias for two estimators of the variance due to the selection of the Master Sample

POP22 POP29 POP35 POP56 FOREIGN FORM FORWACT FORMACT

% Rel. Bias RBMC

DT 27.6 29.0 212.8 27.9 214.3 213.5 213.7 216.5
MD 0.6 20.5 0.8 2.0 22.4 20.7 23.0 22.9

Coeff. of determination R 2

0.19 0.17 0.23 0.16 0.48 0.49 0.48 0.48

SALMACT EMPMACT SALACT EMPACT NONDIP NSALACT NSALMACT UNEMP

% Rel. Bias RBMC

DT 220.2 222.7 221.9 224.4 227.5 231.9 232.7 242.7
MD 24.4 24.6 23.7 24.1 21.6 20.6 20.4 20.8

Coeff. of determination R 2

0.61 0.68 0.66 0.72 0.83 0.86 0.87 0.91
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Table 3. Relative bias for two estimators of the variance due to the selection of the new census

POP22 POP29 POP35 POP56 FOREIGN FORM FORWACT FORMACT

% Rel. Bias RBMC

DT 222.9 218.3 220.6 219.7 219.2 221.9 213.3 223.9
MD 0.2 20.9 0.3 21.7 2.6 4.6 21.8 3.3

Coeff. of determination R 2

0.18 0.27 0.37 0.22 0.48 0.49 0.48 0.54

SALMACT EMPMACT SALACT EMPACT NONDIP NSALACT NSALMACT UNEMP

% Rel. Bias RBMC

DT 231.3 231.1 230.0 230.2 217.8 215.9 216.0 236.0
MD 26.0 26.0 25.7 25.7 21.3 0.2 0.6 0.0

Coeff. of determination R 2

0.67 0.72 0.74 0.77 0.85 0.89 0.89 0.93
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consequently a nonnegligible variance due to the landing phase for any variable of interest.

In the case of the selection of the IAAs, the use of inclusion probabilities proportional to

size makes it possible to account for a variation in size of the IAAs, and so to limit the

variance due to the landing phase.

6. Conclusion

In this article, expansion estimation for the French Master Sample has been considered,

and two variance estimators have been compared. The proposed simulation-based

variance estimator is shown to perform well in terms of relative bias, while the maximum

entropy variance estimator may be severely biased. Also, we noted that the variance due to

the landing phase may be appreciable even if the balancing variables have a small

explanatory power for the variables of interest.

To simplify the presentation, we focused on the heart of the new sampling design only,

which involved a random selection of PSUs themselves defined conditionally on the

rotation groups of the new census. Some further specific points must be taken into account

to fully account for the actual sampling design of household surveys. First, the final sample

of dwellings for a specific household survey is obtained via an additional stage of sampling

inside the Master Sample. The global variance is thus estimated by summing one of the

variance estimators proposed in Section 4, which accounts for the variance due to

the selection of the Master Sample, and a variance estimator which accounts for the

subsampling of dwellings. Secondly, the variance of the expansion estimator is reduced by

calibrating on known totals. The effect of this calibration may simply be taken into

account by a residual technique, that is, by replacing in the variance estimator the variable

of interest y with the residual of the regression of the variable y on the vector of calibration

variables (see Deville and Särndal 1992).

Appendix

A. Algorithm 1 for Implementation of the Cube Method

Define the balancing matrix A ¼ ða1; : : : ; ak; : : : ; aNÞ, where ak ¼ xk=pk. First

initialize with p0ðSÞ ¼ p and Að0Þ ¼ A. Next, at time t ¼ 0; : : : ; TðSÞ, repeat the three

following steps.

Step 1:

Let EðtÞ ¼ FðtÞ> KerAðtÞ, where

FðtÞ ¼ {v [ RN : vk ¼ 0 if pktðSÞ is an integer};

with ptðSÞ ¼ ðp1tðSÞ; : : : ;pktðSÞ; : : : ;pNtðSÞÞ
0. Then:

. If EðtÞ – {0}, generate any vector utðSÞ – 0 in EðtÞ, random or not. Put

Aðt þ 1Þ ¼ AðtÞ.

. If EðtÞ ¼ {0}, let mt denote the largest integer such that FðtÞ> KerAmt
ðtÞ – {0},

where Amt
ðtÞ denotes the matrix given by the first mt rows of AðtÞ. Generate any vector

utðSÞ – 0 in FðtÞ> KerAmt
ðtÞ, random or not. Put Aðt þ 1Þ ¼ Amt

ðtÞ.

Chauvet: On Variance Estimation For The French Master Sample 665



Step 2:

Compute the scalars l*
1tðSÞ and l*

2tðSÞ, which are the largest values of l1t and l2t such

that

0 # ptðSÞ þ l1tutðSÞ # 1; 0 # ptðSÞ2 l2tutðSÞ # 1;

where the inequalities are interpreted element-wise. Note that l*
1tðSÞ . 0 and l*

2tðSÞ . 0.

Step 3:

Select ptþ1ðSÞ ¼ ptðSÞ þ dt ðSÞ, where

dtðSÞ ¼
l*

1tðSÞutðSÞ with probability qðtÞ

2l*
2tðSÞutðSÞ with probability 1 2 qðtÞ

8<
:

and qðtÞ ¼ l*
2tðSÞ=ðl

*
1tðSÞ þ l*

2tðSÞÞ.

The procedure ends at step T(S), when pTðSÞðSÞ has only integer (0–1) components.

B. An Unbiased Variance Estimator for VNC

From the identity

k;l[Sr :k–l

X Dkl;r

akl;rakljG

akl ¼
ui[SI

X 1

pIi k;l[ui:k–l

X Dkl;r

akl;r
akl1ðk; l [ GrÞ

þ
ui;uj[SI :ui–uj

X 1

pIij k[ui

X
l[uj

XDkl;r

akl;r
akl1ðk; l [ GrÞ;

ð29Þ

and assuming all akl;r and akljGr
to be strictly positive, we obtain

E
k;l[Sr :k–l

X Dkl;r

akl;rakljG

akl

������G1; : : : ;GR

0
@

1
A ¼

ui[UI

X
k;l[ui:k–l

X Dkl;r

akl;r
akl1ðk; l [ GrÞ

þ
ui;uj[UI :ui–uj

X
k[ui

XX
l[uj

Dkl;r

akl;r
akl1ðk; l [ GrÞ ¼

k;l[U:k–l

X Dkl;r

akl;r
akl1ðk; l [ GrÞ;

which leads to

E
X

k;l[Sr :k–l

Dkl;r

akl;rakljG

akl

 !
¼ EE

k;l[Sr :k–l

X Dkl;r

akl;rakljG

akl

������G1; : : : ;GR

0
@

1
A

¼ E
k;l[U:k–l

X Dkl;r

akl;r
akl1ðk; l [ GrÞ

0
@

1
A ¼

k;l[U:k–l

X
Dkl;rakl:

The result is thus obtained by plugging

akl ¼
yk

akr

2
yl

alr

� �2

into (29).
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