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On Variance Estimation for the French Master Sample

Guillaume Chauvet'

It is common practice to take advantage of auxiliary information collected from a large
survey to improve the estimation for a smaller related survey. A comparable technique was
used to draw the French Master Sample conditionally on the rotation groups of the New
Census chiefly for practical reasons, that is, to benefit from a recent sampling frame. In this
article, we are interested in the case where a sampling design, including the sampling units
themselves and their selection probabilities, is defined conditionally on an external survey.
More specifically, we focus on variance estimation for estimators arising from the French
Master Sample.
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1. Introduction

The Master Sample selected by the Institut National de la Statistique et des Etudes
Economiques (INSEE) is a sample of dwellings used as a sampling frame for household
surveys. Until 2004, the Master Sample was obtained, partly by sampling in the census of
1999, partly by using the New Dwellings Sampling Frame (NDSF) so as to represent
the housing built since 1999. This approach involved following (at least) one part of
the new dwellings, which resulted in a nonnegligible increase of the sampling costs.
Since 2004, the comprehensive Census of Population, conducted approximately every
ten years, has been replaced by census surveys conducted annually. The detailed
methodology is described in Godinot (2005). In each French region, small municipalities
(less than 10,000 inhabitants in 1999) are randomly partitioned into five rotation groups
by means of balanced sampling with equal probabilities. Each year, all the municipalities
within one rotation group are surveyed, so that all the municipalities in the region are
surveyed within a cycle of five years. Each large municipality (10,000 inhabitants
or more in 1999) is the subject of an independent sampling design and is stratified
according to the type of address (large addresses, new addresses, or other addresses).
In each stratum the addresses are divided into five rotation groups. Each year, all the
addresses within one rotation group (for the strata of large addresses and new addresses)
or within a subsample (for the stratum of other addresses) are surveyed. After one cycle
of five years, approximately 40% of the addresses in each large municipality are surveyed.
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The use of census surveys requires a change in the drawing of the Master Sample, since
there no longer exists a sampling frame which gives, to date, the exact state of the housing.
The selection of the Master Sample is itself subject to some constraints. First, household
surveys carried out at year ¢ + 1 must be selected in the census samples surveyed at year .
This provides a recent sampling frame, and avoids the extra cost of a specific system to
cover the new dwellings. On the other hand, the principle of multistage sampling used for
the previous Master Sample (Bourdalle et al. 2000) to reduce the survey costs is preserved,
and a sample of Primary Sampling Units (PSUs) is selected. In the particular case of the
Master Sample, these PSUs are denoted as Interviewer Action Areas (IAAs) see
Berlemont et al. (2009), Christine and Faivre (2009). In each French region, these IAAs
are built as follows. Each large municipality stands for one IAA, while small
municipalities are aggregated to create an IAA. A sample of [AAs is then selected with
probabilities proportional to size. To simplify, we will only focus on the case of IAAs
emerging as aggregations of small municipalities in the remainder of the article, since the
case of large municipalities does not involve any specific technical difficulties.

The joining of the two former constraints results in a further difficulty: a selected IAA
must contain enough dwellings belonging to the rotation group surveyed at year ¢ for the
household surveys specifically conducted at year ¢ 4+ 1. For example, if 200 dwellings are
needed in a particular IAA for all household surveys to be conducted in 2006, then the
corresponding TAA must contain at least 200 dwellings located in the small municipalities
from the rotation group surveyed in 2005. That is, the TAAs need to be defined
conditionally on the rotation groups of the census. More specifically, the following
constraint was imposed: each IAA must contain at least 300 dwellings in each of the five
rotation groups. In summary, not only the Master Sample is selected conditionally on the
new census, but the IAAs themselves as well as their probabilities of selection in the
Master Sample are defined conditionally on the new census.

In this article we consider the problem of estimation with the new Master Sample. In
Section 2, we briefly introduce balanced sampling by means of the cube method, and
variance estimation in case of Horvitz-Thompson estimation. The notation for the Master
Sample is given in Section 3, and the sampling design is described. A more detailed
presentation may be found in Berlemont et al. (2009) and Christine and Faivre (2009).
Two variance estimators for an expansion type estimator are proposed in Section 4, and
compared in Section 5 through a set of simulations. Some concluding remarks are given in
Section 6.

2. Balanced Sampling and Variance Estimation

Let U denote a finite population of size N. Let y be a variable of interest which takes the
value y, for unit k in U. We are interested in estimating the total 7, = >, ., yx of the
variable y. Let S denote a random sample selected in U by means of a sampling design
p(+). Let m, = Pr(k € S) denote the inclusion probability of unit k, and 7 = Pr(k,/ €
S) denote the second-order inclusion probability. Write 77 = (a1, . . ., 7, . . ., 7y)’ for
the vector of inclusion probabilities and I(S) = (I1, .. .,It, . . .,Iy)" for the vector
of sample membership indicators, where [ =1 if k€S and 0 otherwise.
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The Horvitz-Thompson estimator

ha=Y Hp=Y % (D

€v Tk kes Tk

estimates without bias the finite population total ¢,.

The sampling design is balanced on a g-vector X; of auxiliary variables if the Horvitz-
Thompson estimator Zy, = Y .y Xclk/ T equals the real total 7y = >, X of the
(vector) x-variable. In what follows, we assume that the sample S is selected by means of
the cube method (Deville and Tillé 2004), which makes possible the selection of
balanced samples if the balancing constraints

Txm = Ix @)

are satisfied, and approximately balanced samples if these are only closely satisfied. A
rejective-type procedure may alternatively be used, see Fuller (2009). The choice of
optimal inclusion probabilities for balanced sampling is discussed in Tillé and Favre
(2005) and Chauvet et al. (2011).

The cube method proceeds in two phases: the flight phase, in which the balancing
constraints are maintained exactly, and the landing phase, in which the balancing
constraints are successively relaxed until the complete sample is obtained. Several
implementations of the cube method have been proposed in the literature; see Tillé€ (2006)
and Tillé€ (2010). In what follows, we consider the implementation described, for example,
in Breidt and Chauvet (2011). Algorithm 1 given in Appendix A covers both the flight
phase and the landing phase. It is currently used in practice, since it permits the selection of
a balanced sample in a reasonable amount of time, even if the number of balancing
variables is large. This implementation proceeds in steps t = 0, 1, . . ., T(S) from 7 (S) =
a to wr(s)(S) = I(S), the final sample. At each step, one or more coordinates of 77,(S) are
randomly rounded to O or I, and remain there forever. During the flight phase, the
balancing equations remain exactly respected. When exact balance is no longer possible,
the constraints are relaxed successively in the landing phase.

The sampling design is assumed to be of fixed size, which is obtained by including the
vector 77 of inclusion probabilities in the balancing variables x. The variance of the
Horvitz-Thompson estimator is then given by the Yates-Grundy (1953) formula:

o 1 woow\’
V(tyz) = — = Ay < - > 3)
' 2 k,zezu;# T

where Ay = m; — -, and may be unbiasedly estimated by

" 1 N (e v\
e = -5 >0 B2 @

kIEsiks=1 T \Tk T

if all 7 are strictly positive. Second-order inclusion probabilities are, however, usually
difficult to compute for a general balanced sampling design.
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A variance estimator may be obtained from (4) and from a simulation-based
approximation of the design variance-covariance matrix,

A= [Aylkev-

Though a direct simulation-based approximation is possible (see Fattorini 2006;
Thompson and Wu 2008), an approximation that uses the martingale structure of the cube
algorithm may be used. More specifically, Breidt and Chauvet (2011) demonstrate that the
A matrix is unbiasedly estimated by

1 LTS

= 52 D AN S (S} S, )
c=1 =1

where S, ...,S., ...,Sc are C independent replicates of the sample S, selected by
Algorithm 1. The corresponding variance estimator for a given sample S is then obtained
by plugging (5) into (4), which leads to

. 1 AP ?
(e = =5 > i (y—" - ﬂ) ©)

kJESk#1 T \Tk Tl

where ﬂ'%D = AgD + ;. The numerical results in Breidt and Chauvet (2011) show a
good performance of this estimator as compared to a naive, simulation-based variance
estimator that does not use the martingale structure, and an essentially unbiased variance
estimation.

Alternatively, Deville and Tillé (2005) propose a variance approximation if the
balanced sampling is performed with maximum entropy. Under the assumptions that (i)
the sampling design is exactly balanced, and (ii) the Horvitz-Thompson estimator is
approximately normally distributed under Poisson sampling, they derive the variance
approximation

N\ 2
VDT(IW)—N—ZWk(l_Wk)<yk y—") @)

diev Tk

where y; = X Byy is a weighted prediction of y, obtained with the ¢ balancing variables x,
and

= ([ Yma-m> X Zm(l )Tt ®)

1= I m =]

Other, slightly different, variance approximations are proposed by Deville and Tillé. A
variance estimator is obtained from (7) using a plug-in principle, by substituting each total
> rey(+) with its Horvitz-Thompson estimator ), ¢(+)/ . The resulting estimator is

yp 2
vm(tw)——Z(l— k)< —m) ©)

qjes
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where y; = xBx, and

A Xy X/I X Vi
Bo= > (1-m) > - m_ (10)

= K

The variance estimator given in (9) essentially ignores sampling variation due to the
landing phase, and may be severely negatively biased if the variance due to the landing
phase is appreciable and/or if the balancing variables have a large explanatory power for
the variable of interest; see Breidt and Chauvet (2011).

3. Notation and Estimation for the Master Sample

In the remainder of the article, let U denote the finite population of N small municipalities
in one French region and let y be a variable of interest. First, the small municipalities
are randomly split into R = 5 rotation groups by selecting R nonoverlapping samples
with equal probabilities, balanced on a g-vector x; of auxiliary variables, following
the technique presented in Tillé and Favre (2004, Section 4). Let oy, = 1/R denote
the probability for municipality k to be selected in the rotation group G,,r =1, ..., R.
Also, let oy, denote the probability that municipalities k and / are selected jointly in the
rotation group G,. Since both the simple random sampling design and the stratified simple
random sampling with proportional allocation may be seen as particular cases of balanced
sampling with equal probabilities, the case when the rotation groups are selected by either
of these two particular sampling designs is covered with our set-up.

The small municipalities are then grouped to obtain a population U; of M PSUs
u;, i=1,...,M, which in the particular case of the French Master Sample and in the
remainder of the article will be denoted as Interviewer Action Areas (IAAs). These IAAs
are built by aggregating contiguous small municipalities, so that each IAA contains at least
300 dwellings in each rotation group. A sample S; of IAAs is then selected with
probabilities proportional to size, and we note 7rj; for the probability for IAA u; to be
selected in §;, conditional on G,, r=1,...,R. Also, note my; for the (conditional)
probability that IAAs u; and u; are selected jointly in the sample S;. The sample S; is
selected by balanced sampling by means of the cube method, with balancing variables

2 => 7 (11)

kEu;
and
Z= (@), .. ..@), . .. &) (12)
with
Z,=> nl(k€G,) for r=1,... R
k€u;

where z{ and z, denote two sets of auxiliary variables known at the design stage for any
municipality k, and 1(-) is the indicator function. The balancing variables z_ are used to
achieve a global balancing of the sample S;, and henceforth to obtain a variance reduction.
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The variables z{ vary from one French region to another, since the more IAAs in a region,
the more balancing variables may be added in the sampling design. The balancing
variables Z; are used to achieve a balancing of the sample S; on each rotation group, so as
to benefit from a balanced sampling frame for each household survey. The z; vector
included the number of main dwellings and the global tax income of the small
municipality k, and the z{ vector included the number of dwellings in peri-urban areas,
rural areas and urban areas (see Berlemont et al. 2009). The global vector of balancing
variables is given by Z; = ((z0)', (Z;)')".

Finally, the small municipalities available for selection in the household surveys (at
year t + 1) are those in a specific rotation group G, (of the census at time 7) within the
IAAs selected in S;. This sample will be denoted as S, so that we have

S,={ke U, keu €S, and k € G,}. (13)

Since the exact inclusion probabilities for the small municipalities k to be included in
the final sample S, are unknown, we propose using an expansion estimator instead of
the Horvitz-Thompson estimator (see Sirndal et al. 1992, p.347). Note that the total ¢,
may alternatively be written as

1y, = ZY,

w;, €Uy
where Y; = Zk@i yx denotes the total of the y-variable in the IAA u;. The proposed
expansion estimator is given by

=Y % (14)

kES, Pkr

where py, = mj; oy, for any unit k in u;. This estimator may also be written as

N Y;
tyr = _ (15)
u; €Sy i
where
- 1k € G,
¥, = ZM
k€u; Ckr

denotes a weighted total of the y-variable for the small municipalities in u; which also
belong to the rotation group G,. It follows from (15) that

~ = k ~
GGy, ... Go=> Ty =) 2 =i, (16)
e, LEC, Xkr
where E(- |Gy, . . ., Gg) stands for the expectation conditional on the rotation groups of

the census. Then, since

] 1k € G,) 1k € G,)
Yr.=Y Y R X (17)

u; €Uy u;€U; k€u; keU Chr
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we obtain

3 5 1(k € G,
EGy,) = EEQ, |Gy, . . .,Ggp) = E ZM 4

kv Qkr

so that 7, is an unbiased estimator of the total 7.

4. Variance Estimation for the Expansion Estimator

The variance of the expansion estimator is given by
V(iyr) = VE(iyrlGh .. .,Gpr) +EV(;)'r|Gla .o »Gr)=Vnc+ Vs

where V(-|Gy, . . .,Gg) denotes the variance conditional on the rotation groups of the
census. From Equation (16), we get

2
Yk 1 Yk W

e =V [T ) = -] > a(2-2)
(EC, Xkr 2k,leyzk;é1 Qkr Ay

where Ay, = ay, — o That is, Viye corresponds to the variance due to the random
selection of the rotation group G, of the new census. The term Vg corresponds to the
variance due to the random selection of the sample S; of IAAs. Using Equation (15), we
can write

~ 5 & 2
Yir 1 Yi Y'r
VMS:E \% —Gl,...,GR =F|—= A[,"(—_L)
u,EZS, i lti,u,-EZUl:u,-#uj ! i ij

where Ayj = 7y — ;. In the sequel, the two terms Ve and Vg are estimated
separately.
A direct estimator for V¢ is

, 1 Aur 2
vne(iy) = =5 M (y—" - 1) (18)

2 S G \ QU Ol

where

k|G = Pr(k,l S SrlGla .. .,GR) = ’7T[,'jifk S uj, e Uj. (19)

It is shown in Appendix B that the estimator in (18) is unbiased for V¢, provided that
all oy, and oy are strictly positive. We now turn to the second term V5. From the
definition

Vus = EV(iy |Gy, . . ., Gg)
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we see that it is sufficient to find an estimator for V(?y,IGl, . . ., Gg), which we can write as

Y:
v(Z”m,, . .,GR>.
u; €Sy i

Consequently, a direct estimator for Vs is
1 Ay (Y T\
R i (Y ‘
st =—5 > (” - ”) (20)
u; U ES:u; 7 u; 7T1ij i 7T1j

and vMS(?y,) estimates Vg unbiasedly if all 7y are strictly positive. Unfortunately,
estimators (18) and (20) require the knowledge of second-order inclusion probabilities
which are usually difficult to compute. In Section 4.1, a simulation-based variance
estimator is proposed. In Section 4.2, we follow Deville and Tillé (2005) in proposing an
alternative variance estimator.

4.1. Simulation-based Variance Estimation

A variance estimator may be obtained from (18) and (20), using a simulation-based
approximation of the design variance-covariance matrices

Ay = [Ay ey
and

Ar = [Anlyweu,-

More specifically, let

1 C T(Gyr) . .
AP =230 MG GG (Gre) 21
c=1 =1
where G,i, .. .,Gy, ...,G, are C independent replicates of the rotation group G,,

selected by Algorithm 1. Similarly, let

1 C_ T(Sk) . .
AP — EZ > AL SIS (S (Siehu(Sie) (22)
c=1 =1

where Sy, . . ., Sk, . . .,Sc are C independent replicates of the sample S;, selected by
Algorithm 1 conditionally on the rotation groups G,, r=1, ..., R.

The first proposed variance estimator is

vip(tyr) = vap ne(yr) + viup ms(lyr).- (23)

The term

AMD

5 o2
Ay ] i (Y v
vupms(lyr) = — = E S ==L
Ui u; ESpiui #u; Tlij i ki

is obtained from (20) by replacing A;; with the corresponding entry A%D from (22) and ry;



Chauvet: On Variance Estimation For The French Master Sample 659

with 77%1) = A% + 7 ;. The term

MD )

. G.) = 1 Z A <yk yz)

MDNC\lyr) — — % _t | — -
2 (IS akl,raku(; Qe Qyy

is obtained from (18) by replacing Ay with the corresponding entry Ak, . from (21), oy,

with agf? = A%’Z + ey, and ayig with agpl, = P for k € u;, | € u;.

4.2.  Maximum Entropy Variance Estimation

We now propose an alternative, non computational-intensive variance estimator,
following the approach suggested by Deville and Tillé (2005). We focus on the first
term V¢ first. Since the rotation group G, is selected by means of balanced sampling with
inclusion probabilities «y,, the variance estimator given by (9) leads us to think of

. G, ?
o neli) = 2 BSP— S (1 - k»(y L Oyf) 24)
r kEG, r

as an estimator of V. In this expression, n(G,) is the number of municipalities selected in
the rotation group G,, y} = X'xBx, is a weighted prediction of yj obtained with the ¢
balancing variables x;, and

R X; X/ X
Bo= 20— a)=tol) S - )Lt

i€G, r®r | jeG,

Unfortunately, the variance estimator given in (24) can not be computed since the
variable of interest y is known on the sample S, only. A tractable variance estimator is
obtained from (24) using a plug-in principle, by substituting each total > reg, (+) with its
expansion estimator Zkes,( D)/ = Zkes, o () /prr- We obtain

n(Gr) =l — o) ( S )2
n(G,) — qjEs, Pkr Oy Oy

vprne(ty) = (25)
where §! = x’k[;xy and
-1
é _ Zan(l —ay) X; X/ a(1 — o) X;
Xy — - -
IES, Pir A Oy IES, Pir A Ay

After some algebra, the variance estimator given in (25) may be alternatively written as

" 2 " G, 2 ~ N\~ /2 N
sorxelir) = Sornell) =~ £S89 (B = o) A, (B — i) (26)

where

2

R . n(Gr) ak,(l - akr) Yk yi
ty) = P
VDT,NC( y ) H(Gr) _ quzS:, Dir o7 a7
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and
A= (1 — o) X Xf
L= el T ) Tk Tk
kES, DPir Ay Ay
We have E(iprac(y)IGi, . . .,Gr) = ¥prac(y,), and under mild regularity

conditions, the second term in the right-hand side of (26) is of smaller order of magnitude
than T;DT_NC(?W). Consequently, vDT_NC(?y,) is an approximately (conditionally) unbiased
estimator for Upr nc(fy,).

We now turn to the second term V). Once again, from the definition

Vus = EV(iy |Gy, . . .,Gg)
we see that it is sufficient to find an estimator for V(?y,IG 1, - - ., Gg), which we can write as
Y:
1% Z—”.Gl’ .. .,Gr |,
U €Sy i

using Equation (15). Since the sample S; is also obtained by balanced sampling by means
of the Cube method, the variance estimator of Deville and Tillé (2005) may still be used.
That is, the variance due to the selection of the Master Sample is estimated by

. S v, v
vprms(ty) = —o—— miSr) Z(I_Wh( - ) 27

m(Sy) — q91,E53, o T

where m(S;) gives the number of IAAs selected in S;, and ?i’i =719,y is a weighted
prediction of Y, obtained with the ¢, balancing variables Z;, where

-1

z z ¥,
oy = Z(l—m, el DS e Py

€Sy Ty u; €Sy Ij

The second proposed variance estimator is thus given by

vor(yr) = vor nc(yr) + vor ms(yr)- (28)

5. A Simulation Study

We performed a limited simulation study to assess the performance of the proposed
variance estimators. We used a population of N = 1,235 small municipalities in the
French region of Brittany. The variables of interest, available from the Census of 1999,
are given in Table 1. The objective was to estimate the variance of the expansion
estimator 7, of the totals of the y-variables of interest. The simulation was performed with
the SAS software. Balanced sampling can be implemented using existing software for
the cube method, such as the R function samplecube in the sampling library (Tillé
and Matei 2008; R Development Core Team 2008), or the SAS Macro fastcube (Chauvet
and Tillé 2005).



Chauvet: On Variance Estimation For The French Master Sample 661

Table 1. Variables of interest in the simulation study

Variable Description

POP22 Number of people in the department of Cotes d’ Armor
POP29 Number of people in the department of Finistére
POP35 Number of people in the department of Ille et Vilaine
POP56 Number of people in the department of Morbihan
FOREIGN Number of foreigners

FORM Number of men, foreigners

FORWACT Number of women in active, foreigners

FORMACT Number of men in active, foreigners

SALMACT Number of men in active, salaried

EMPMACT Number of men in active, employed

SALACT Number of people in active, salaried

EMPACT Number of people in active, employed

NONDIP Number of people, unqualified

NSALACT Number of people in active, nonsalaried
NSALMACT Number of men in active, nonsalaried

UNEMP Number of people, unemployed

The sampling design used in the simulation was meant to mimic closely the exact
sampling design used for the selection of the French Master Sample. The sampling process
described in section 3 was repeated B = 1,000 times to obtain R = 5 rotation groups
Gip, . . .,Ggrp, a population Uy, of IAAs in which a sample S;, was selected with
inclusion probabilities proportional to the number of main dwellings, and the final sample
Sy, for b=1, ..., B. The balancing variables x; used in the selection of the rotation
groups included the inclusion probability, the number of households, the number of
households in collective addresses, the number of people by gender, and the number of
people in five age classes. In the selection of the sample S; 5, the vector z? was limited to
the inclusion probability, and the vector Z; consisted of the number of main dwellings and
the global tax income by rotation group.

In each sample S, ;,, we computed the expansion estimator ?yr,b, the simulation-based
variance estimators VMD,NC(?erb) and VMD.’MS(;};;«J;), the maximum entropy variance
estimators vpr nc(fyrp) and vpr ws(iyrs). The AMP matrix in (21) was obtained from a
single, separate simulation of C = 10,000 samples. Foranyb =1, ...,B,a A%JD matrix
was obtained from (22) and from a simulation run of C = 10, 000 independent feplicates
Sipts - - - Sipc of the sample Sy, selected by Algorithm 1 conditionally on the rotation
groups G,, r =1, . . ., R. For simplicity, we present the simulation results in the case
r =1 only.

As a measure of bias of a point estimator fof a parameter 6, we used the Monte Carlo
percent relative bias (RB) given by

B A
R B! O — 0
RByc(6) = 100 X Zbél ®

where é(,,) gives the value of the estimator for the bth sample. When 6 = VNc(iy,), we have
6 equal to either vpr ey or vyp ne(ly,). When 6 = Vys(3y,), we have 6 equal to either
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vorms(tyr) or vip ms(fy,). The exact variances Vyc(7y,) and Vys(i,,) were replaced by a
Monte Carlo approximation, obtained through an independent run of 30,000 X 50
simulations. More precisely, we repeated D = 30, 000 times the creation of R = 5 rotation

groups Gy 4, . . .,Ggrg, and of a population Uy, of IAAs, ford =1, . . .,D. For any d,
E =50 samples S;4 were selected and the final sample S,, was obtained, for
e=1,...,E. The Monte Carlo approximation of VNC(?W) is

. 1 & - \2
e (Gyr) = m‘; (Byra — 1r)

where
Yk &
;yr,d = Z and1, t\r = Ziyr.d-
kEG, X D=
The Monte Carlo approximation of VMS(?y,) is
1L E
VMC(Z‘W) = ; - Z tw de — t}rd
= e=1
where
byrd = — yrde
E e=1
for any d = 1, . . ., D. The results are presented in Table 2 for the variance due to the

selection of the Master Sample, along with the mean coefficient of determination (R ?)
obtained by predicting ¥;,/7r; with the balancing variables Z;. The results are presented
in Table 3 for the variance due to the selection of the rotation groups of the new census,
along with the coefficient of determination (R 2) obtained by predicting yi/ay, with the
balancing variables X;.

For the two terms of variance, the MD estimator systematically outperforms the DT
estimator in terms of relative bias. The MD estimator is essentially unbiased in any case,
with a relative bias lower than 5% for Vs, and lower than 6% for Vyc. We note that the
DT estimator is systematically negatively biased, which is consistent with the results in
Breidt and Chauvet (2011) in indicating that the DT estimator fails to track the variance
due to the landing phase. In case of Vs, the relative bias of the DT estimator increases as
the R ? of the model increases, as the balancing variables have more and more explanatory
power and as the relative importance of the variance due to the flight phase in the overall
variance decreases. In the case of V¢, the relative bias of the DT estimator is large,
irrespective of the explanatory power of the balancing variables. Our interpretation is as
follows. The landing phase is applied to a subgroup of units in the population only. This
subgroup is obtained randomly (these are the units which remain after the flight phase),
and even the number of units in this subgroup is random. Moreover, in case of the new
census, the units in this subgroup may vary considerably in size, since the small
municipalities have very different sizes. For example, the coefficient of variation for the
municipality sizes in Brittany is equal to 102%. In case of the new census, there is



Table 2. Relative bias for two estimators of the variance due to the selection of the Master Sample
POP22 POP29 POP35 POP56 FOREIGN FORM FORWACT FORMACT
% Rel. Bias RBy;c
DT —7.6 -9.0 —12.8 =79 —14.3 —13.5 —13.7 —16.5
MD 0.6 —-0.5 0.8 2.0 —24 —-0.7 —-3.0 —-2.9
Coeff. of determination R *
0.19 0.17 0.23 0.16 0.48 0.49 0.48 0.48
SALMACT EMPMACT SALACT EMPACT NONDIP NSALACT NSALMACT UNEMP
% Rel. Bias RBy;c
DT —20.2 —22.7 —-21.9 —24.4 —27.5 —31.9 —32.7 —42.7
MD —44 —4.6 —-3.7 —4.1 —-1.6 —-0.6 —-04 —-0.8
Coeff. of determination R >
0.61 0.68 0.66 0.72 0.83 0.86 0.87 0.91

21dWDS 12ISDY YOUIAL] Y] 10.] UODULLST dIUDLIDA U() F2ANDY))

£99



Table 3.

Relative bias for two estimators of the variance due to the selection of the new census

POP22 POP29 POP35 POP56 FOREIGN FORM FORWACT FORMACT
% Rel. Bias RBy;c
DT —22.9 —18.3 —20.6 —19.7 —19.2 —-21.9 —13.3 —23.9
MD 0.2 —-0.9 0.3 —1.7 2.6 4.6 —1.8 33
Coeff. of determination R >
0.18 0.27 0.37 0.22 0.48 0.49 0.48 0.54
SALMACT EMPMACT SALACT EMPACT NONDIP NSALACT NSALMACT UNEMP
% Rel Bias RBMC
DT —31.3 —31.1 —30.0 —30.2 —17.8 —15.9 —16.0 —36.0
MD —-6.0 —-6.0 —-5.7 —-5.7 -1.3 0.2 0.6 0.0
Coeff. of determination R >
0.67 0.72 0.74 0.77 0.85 0.89 0.89 0.93
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consequently a nonnegligible variance due to the landing phase for any variable of interest.
In the case of the selection of the IAAs, the use of inclusion probabilities proportional to
size makes it possible to account for a variation in size of the IAAs, and so to limit the
variance due to the landing phase.

6. Conclusion

In this article, expansion estimation for the French Master Sample has been considered,
and two variance estimators have been compared. The proposed simulation-based
variance estimator is shown to perform well in terms of relative bias, while the maximum
entropy variance estimator may be severely biased. Also, we noted that the variance due to
the landing phase may be appreciable even if the balancing variables have a small
explanatory power for the variables of interest.

To simplify the presentation, we focused on the heart of the new sampling design only,
which involved a random selection of PSUs themselves defined conditionally on the
rotation groups of the new census. Some further specific points must be taken into account
to fully account for the actual sampling design of household surveys. First, the final sample
of dwellings for a specific household survey is obtained via an additional stage of sampling
inside the Master Sample. The global variance is thus estimated by summing one of the
variance estimators proposed in Section 4, which accounts for the variance due to
the selection of the Master Sample, and a variance estimator which accounts for the
subsampling of dwellings. Secondly, the variance of the expansion estimator is reduced by
calibrating on known totals. The effect of this calibration may simply be taken into
account by a residual technique, that is, by replacing in the variance estimator the variable
of interest y with the residual of the regression of the variable y on the vector of calibration
variables (see Deville and Sdrndal 1992).

Appendix

A. Algorithm 1 for Implementation of the Cube Method

Define the balancing matrix A = (ay,...,a, ...,ay), where a; = x;/m. First
initialize with 77(S) = 77 and A(0) = A. Next, at time t = 0, . . ., T(S), repeat the three
following steps.

Step 1:

Let E(t) = F(t) N KerA(t), where
F(t)={vE R :vi =0 if m,(S) is an integer},

with m,(S) = (m1,(S), . . ., mu(S), . . ., m(S)). Then:

e If E(r) # {0}, generate any vector u,(S)# 0 in E(f), random or not. Put
A+ 1) =A(@).

o If E(r) = {0}, let m, denote the largest integer such that F(r) N KerA,, (t) # {0},
where A, () denotes the matrix given by the first m, rows of A(7). Generate any vector
u,(S) # 0in F(r) N KerA,, (1), random or not. Put A(t + 1) = A,, ().
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Step 2:
Compute the scalars /\TI(S) and )\;t(S), which are the largest values of Aj; and Ay, such
that

0=m(S)+ A8 = 1,0 = () — Lu(S) =1,

where the inequalities are interpreted element-wise. Note that A},(S) > 0 and A5,(S) > 0.
Step 3:
Select ;11(S) = 77,(S) + 6, (S), where

AL (S)u,(S) with probability ¢(f)

8(8) = —X5,(S)u,(S)  with probability 1 — g(r)

and g(1) = X5,(8)/(A},(S) + A5,(S)).
The procedure ends at step 7(S), when 7r7(5)(S) has only integer (0—1) components.

B. An Unbiased Variance Estimator for V¢

From the identity

Ajar 1 Awrr
——ay = E — ~aylk,l € G))
k,IES, k=1 Cklr Xkd|G wes; i piCuk»1 %klr
(29)
1 Agr,r
+ ’ akll(kvl € Gr)a
u; U ESpiu; #u; 7T1ij k€u; I€u; Qi r
and assuming all oy and oy g, to be strictly positive, we obtain
A, A
E ——ay|Gy, .. .,Gg | = E ~aylk,l € G,)
k€S, k=1 Xkl Okl|G wEU; ki€ k1 Cklr
AV A,
+ E E g ~aylk,l € G,) = E ~aylk,l € G,),
u; u; EUru #u; kEu,-[euj Okl r kl€U:k#1 Ql,r
which leads to
Ay, Ay r
E E —ay =EE E — Ay G[, .. .7GR
KJES, k#l Akl r Ol|G kIES -kl Xklr Xkl|G
Aw,r
=E ~aylk,l € G,) | = E Axt rayg.

kIET k=1 Xkl kIET K~

The result is thus obtained by plugging

2
_ [ Yk i
ay = \|\——"—
gy (97

into (29).
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