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Optimal Calibration Estimators Under
Two-Phase Sampling

Changbao Wu' and Ying Luan®

Optimal calibration estimators require in general complete auxiliary information. When such
information is not available, the estimation procedure can be combined with two-phase
sampling where a large, less costly first-phase sample measured over the auxiliary variables
is used to get estimates for certain population quantities related to the covariates. In this article
we propose optimal calibration estimators for the population mean, the distribution function,
the population variance and other second-order finite population quantities under two-phase
sampling. The proposed optimal calibration estimators for a second-order finite population
quantity such as the population variance can ideally be used to obtain more efficient variance
estimators for a first-order finite population quantity such as the total or the distribution
function. The estimation strategy can be applied to various measurement error and non-
response problems. The design-based finite sample performances of proposed estimators
are investigated through a simulation study using real survey data from the 1996 Statistics
Canada Family Expenditure (FAMEX) Survey.

Key words: Auxiliary information; measurement error; model-assisted approach;
nonresponse; variance estimation.

1. Introduction

Many highly efficient estimation techniques in survey sampling require strong information
about auxiliary variables, x. For example, the calibration estimator of Deville and Sdrndal
(1992) requires X, the population totals. When such information is not available, a two-
phase sampling scheme can be used where a large, less costly first-phase sample measured
over the x variable is used to obtain a good estimate of X. A smaller and more costly
second-phase sample can then be taken and the study variable y is observed. The major
advantage of using two-phase sampling is the gain in high precision without substantial
increase in cost. Sédrndal et al. (1992, Chapter 9) provide an excellent account of
two-phase sampling.

Recently, Wu and Sitter (2001) proposed a model-calibration approach to using
auxiliary information from surveys. The proposed model-calibration estimator is not
only highly efficient but also optimal among a class of calibration estimators (Wu
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2002). To compute the model-calibration estimator, however, one generally requires the
values of the x variables to be known for the entire finite population. In practice this
complete auxiliary information is often unavailable. Two-phase sampling provides an
ideal solution for the use of optimal calibration estimators under such situations.

Suppose U = {1, 2,..., N} is the set of labels for the finite population and s is the set of
labels for the sampled units. Let y; and x; be the values of the response variable y and the
vector of covariates x associated with the ith unit. Let 7; be the first-order inclusion
probabilities. Assuming the population totals X = Z?]:lx,» are known, the conventional
calibration estimator (Deville and Sérndal 1992) for the finite population total
Y =3 " |y, is constructed as Yo = > iesw;iyi, where the weights w; minimize a
distance measure &, between the w;’s and the basic design weights d; = 1/x; subject to
the so-called benchmark constraints

S wixi=X )

iEs
The x; used in (1) are also referred to as calibration variables.

There are two basic components in the construction of a calibration estimator: a distance
measure ¢, and a set of constraints such as (1). The chi-squared distance measure
D, =>c(w;— d,-)z/(d,»q,-) is commonly used, where the weighting factors ¢; are
unrelated to d;. Other distance measures can also be considered but it has been shown by
Deville and Sérndal (1992) that the resulting calibration estimator is asymptotically equiva-
lent to the one using a chi-squared distance measure with a certain choice of g;. The bench-
mark constraints (1) which calibrate directly over the individual x variables are indeed
ad hoc. There is no compelling reason to exclude the use of other types of constraints.

Optimal calibration estimators have been studied by Wu (2002) under a model-assisted
framework. The following semi-parametric superpopulation model was used to motivate
the optimality considerations,

Ee(yilx) = p(xi, 0),  Vi(y;1x) = [o(x)) 0’ )
where u( -, -)and v(-) are known functions, # and o2 are unknown model parameters, and
E¢, V; denote the expectation and the variance under the model, £. It was also assumed that

Y1, ¥2,...,yy are conditionally independent given the x,’s. Wu (2002) considered the
class of calibration estimators for the population total Y obtained by using

(a) any chi-squared distance measure with the weighting factors satisfying g; > ¢ for
some constant ¢ >0 and N ™' 2V, 47 = 0(1);
(b) any constraint through a dimension-reduction variable u; = u(x;, 0), i.e.,
N

> wiux, 0)=> " u(x;, 6) 3)

i€s i=1
where the functional form of u(-, -) can be arbitrary.

Some of the major results can be summarized as follows:

(i) For any consistent estimator of @ such that =0+ op(1), replacing 6 by 0 in the
constraint (3) will not change the resulting calibration estimator asymptotically.
(i) Let 0 = (Y iesdiqix;x ) 'S iesdiqix;y;. If we use u; =x; 0 as calibration
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variable in (3), where T denotes transpose, the resulting calibration estimator is
identical to the conventional calibration estimator l?c using (1). Hence, the class
of calibration estimators considered by Wu (2002) is very general and includes
the conventional calibration estimator as a special member.

(iii) The model-calibration estimator Y, of Wu and Sitter (2001) obtained by using
u; = E¢(y; | x;) = p(x;, 0) in (3) is optimal under the criterion of minimum model
expectation of the asymptotic design-based variance, £ {A VP(I}A) }. Here AV, refers
to the asymptotic variance under the sampling design, p, and Y is any calibration
estimator from the class.

(iv) For the estimation of the population distribution function

N

Fy@®)=N""Y 1(y;=1)
i=1

where I(-) denotes the indicator function, the optimal calibration variable is
given by g(x;, t) = E¢[I(y; = t)|x;] = P(y; = t|x;), which is dependent on the
particular value of .

(v) To estimate a second-order finite population quantity such as the population
variance or more generally Q = Zﬁy:l Zj\/:“rl ¢(y;, y;), the optimal calibration
variable is u;; = E¢[é(y;, y)) [ x;, x;].

For proofs, the required regularity conditions and more discussion we refer to Wu (2002)
which is available online at www.stats.uwaterloo.ca/~cbwu/paper.html.

It is clear that optimal calibration estimation requires in general the complete auxiliary
information x1, X,,...,Xy. In this article we focus on the use of optimal calibration esti-
mators under two-phase sampling assuming that the complete auxiliary information is not
available but a large first-phase sample on the x variables can be easily collected with
affordable cost.

Estimation of the population mean or total using a regression-type estimator under two-
phase sampling has been discussed in the literature. Less attention, however, has been
given to the estimation of the distribution function, the variance or other second-order
finite population quantities under the context of two-phase sampling. In Section 2, we
present optimal calibration estimators for various first- and second-order finite population
quantities under two-phase sampling under a unified framework. In Section 3, the optimal
calibration estimators for second-order finite population quantities are naturally used to
construct more efficient variance estimators for the regression estimator for the population
mean. Variance estimation for the distribution function is addressed in Section 4. Some
empirical results regarding the finite sample design-based performances of the proposed
estimators are reported in Section 5 using real survey data of the 1996 Statistics Canada
Family Expenditure (FAMEX) Survey for the province of Ontario. Applications to
measurement error and nonresponse problems are briefly discussed in Section 6. Some
concluding remarks are given in Section 7.

2. Optimal Calibration Estimators Under Two-Phase Sampling

For simplicity of presentation, we consider cases where a relatively large first-phase
sample s’ of fixed size n’ is selected using simple random sampling without replacement,
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and x; is measured for all i € s". A second-phase sample s of size n is selected using a
general sampling design p|s’ with first- and second-order inclusion probabilities ;-
and m;;,/, and the response variable y; is observed for i € 5. The estimators presented
below, however, can be extended to cases where the first-phase sampling design is also
arbitrary. Let d;; = 1/m; and d; = (N/n')d;),.

2.1. Estimating the population total

Under Model (2), the model-calibration estimator for the population total Y is defined as
Yyuc = Y. iesW;yi, Where the calibrated weights w; minimize

&, =Y (w;—d)ld;q)

i€s
subject to
> wine 0) = i) Y pix;. ) “
iEs iEs’

Note that the right-hand side of (4) is an estimate for Ziy:l wx;, 9) based on the first-
phase sample s'. It is straightforward to show that

Yuc Z% {Z dijgyi + Z ux;, ) — Z dijy p(x;, 9)11%}
iEs’ iEs

i€s
A ) 2 R n
where By = ZiEsdils’Qiﬂiyi/ZiEsdils’Qiﬂ'i and fi; = u(x;, 0). R
It can be shown that, under some mild regularity conditions, Y, is asymptotically
equivalent to

N N
Yue =5 {Z dijgyi +

iEs

Z plx;, Oy) — Z dj|s plx;, 0N)]BY}

i€s’ iEs

where By = SN qipwiyvil oM qind. wi = nix;, Oy), and 0y are the finite population
parameters estimated by 6. See Wu and Sitter (2001) for a detailed discussion on the
estimation of model parameters. The required regularity conditions were detailed in an
unpublished master’s essay at the University of Waterloo (Luan 2001). It follows that

Z dijy(yi — BYMi)]

iEs

AV(? Y=V, (Yic) =N i_l S2 4+ EzEV
»mc »(Yuc 2N o) EiVa

where E; and V, denote the expectation and the variance under the first-phase and the sec-
ond-phase sampling design, respectively, and S ¢ is the finite population variance for the y
variable. Since the value of S is unaffected by different choices of the calibration variable
u;and E;E\V,[ -] = E\{E;V,}[ ], following the same argument as in Theorem 1 of Wu
(2002), we can show that ¥ uc minimizes E¢[A Vp(l? )] among the class of calibration
estimators Y similarly defined as in Section 1 with (3) modified for two-phase sampling
in the form of (4).

2.2. Estimating the distribution function

The model-calibrated pseudo-empirical maximum likelihood estimator (ME), which is
asymptotically equivalent to the optimal calibration estimator (Wu and Sitter 2001), is
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particularly appealing for the estimation of the distribution function. Under two-phase
sampling, the ME estimator for Fy(r) is defined as Fyz(r) = > e, p;[(y; =1t) where
the weights p; maximize the pseudo-empirical log-likelihood function

A N
ip)=— Zej iy log(p;) )
subject to
1
dopi=10<pi<land Y pigein=— > g1 (©6)
iEs iE€s i€s’

where g(x;, 1) = E¢[I(y; = t)|x;] = P(y; = t|x;). Under a regression working model
v =pux;,0)+ox)e;, i=1,2,....,N @)
where the ¢;’s are independent and identically distributed (iid) as N(O, 02), we have
g0, 1) = Gl{y — p(x;, O}/ {v(x;)a}]

The G(-) is the cumulative distribution function of N(0, 1). In applications the unknown
model parameters 6 and o will have to be replaced by sample-based estimates. Note that
if a prespecified t = ¢ is used in (6) while the resulting weights p; are used in F wi(t) for
an arbitrary ¢, F we () will itself be a genuine distribution function. The optimality of
F wEe(t) at t =t can be established along the lines of Theorem 2 in Wu (2002). When
the regression model (7) is not desirable, a slightly less efficient but more robust logistic
regression model can be used to obtain g(x;, ). See Chen and Wu (2002) or Wu (2002) for
details. A simple algorithm for computing the pseudo-empirical likelihood weights p; can
be found in Chen et al. (2002).

2.3. Estimating second-order finite population quantities

The population variance, the variance of a linear estimator or more generally a
second-order finite population quantity of the form Q = vazl ZJI»V:,-Hd)(yi,yj)
can also be efficiently estimated through optimal calibration. Under two-phase
sampling, the optimal model-calibration estimator for Q 1is given by QMC =
Doiesy j»i wij9(yi»y;), where the weights w;; minimize the modified distance
measure D= >, Zj>i(wij—d,»j)2/(d,-jqij) subject to

NN — 1)

; Z wii Eglo(yis yj) 1 x;, x;]1 = o — 1) Z Z Eclo(yi yj) 1xi, x;] (8)
i€s j>i ies’ J>1
Here d;; = d;j; [IN(N — DV/[n'(n" — 1)] and d;j,» = 1/m;;),-. The weighting factors g;; in

the distance measure are prespeciﬁeq and a common choice would be g;; = 1. This
optimal model-calibration estimator Q- can be explicitly expressed as a regression-
type estimator, as detailed below for the population variance S z.

Consider the finite population variance S )21 =WN-D" ZlN: (v — Y)? which can be
alternatively expressed as S% =[NWN - D! Zi»v:l Zj»vz,»ﬂ(yi — yj)z. Under a linear
regression working model

yvi=x'0+o0x)e, i=12,...,N ()
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where the g,;’s are iid with mean zero and variance 02, we have
E¢l(yi =y 1 X %] = 07 (x; — x)(x; — x)"0 + 0?[0°(x)) + v°(x))]

Let u;; = 9T(xl- —x)(x; —xj)Té ~|—62[v2(x,«) + 7)2(xj)] and v;; = (y; — yj)z. It can be
shown that the resulting optimal model-calibration estimator for § s given by

~ 1 ~
Sz\z/lc = m lz Z dijls"vij + {Z Z Ujj — Z Z dijls’uij}BS

i€Es j>i ies’ j>i i€Es j>i

where és = {Zia doisi dim/qijuijvij}/{ dies Zpidljh/quu?j}. For a general
second-order finite population quantity such as Q, one needs to use v;; = ¢(y;, y)),
uj; = E¢[é(y;, y)) 1 x;, x;], and replace 1/[n'(n" —1)] by N(N — 1)/[n'(n" — 1)] in the
above formulation.

If simple random sampling without replacement (SRSWOR) is also used at the second
phase, S Az,,C reduces to

Ar L1 1 -
6" (sx* —s)0+6° (w POLECIEEDS 712(-";‘))]35 (10)

iEs’ i€Es

a2 2
Syc = sy +

where s is the usual sample variance based on y;, i € s, and s > and s are the sample
variance-covariance matrices for the x variable based on s and s, respectively. If further
the regression model (9) has a homogeneous variance structure, i.e., v(x;) = 1, we have
Siic = sy + 07 (sx* —53) 0Bs.

3. More Efficient Variance Estimators for the Regression Estimator

Under the commonly used regression model (9), it can be shown that éy = 1 and the opti-
mal model-calibration estimator for the population mean ¥ = N -1 vaz 1 y; 1s identical to
the conventional regression estimator under two-phase sampling (Wu and Sitter 2001):

T
Iaarc =% [Z dijsyi+ (Z X;— de'xi) o

i€Es i€s’ iEs

where 8 are the estimated regression coefficients. If SRSWOR is used at the second phase,
the approximate design-based variance of Yj,¢ is given by

V,(Fu) = (nl - fV)S% + <i - nl> s
where S} is defined as before, S3 is the finite population variance defined over the residual
variable ¢; = y; — x! 0y, and Oy is the finite population regression coefficients. The con-
ventional variance estimator for Yy, is obtained if one replaces S % by s% and Sé by s,2;, the
sample variances based on the second-phase sample s, and using &; = y; — x] 0. See for
example Cochran (1977, p.343). We denote this basic variance estimator by vo(Yy,c).

An improved variance estimator which makes more complete use of the large first-
phase sample measured over the covariates x can be easily developed as follows. The
S,z/ can be more efficiently estimated by SA[%/IC given by (10). As for SE, the optimal
model-calibration estimator can be similarly constructed by noting that E;(e;) = 0 and
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E¢l(e; — ej)2 [x;,x;] = oz[vz(xi) + ‘vz(xj)]. The resulting estimator for SE% is given by

D BRI ety

iEs’ i€s

2

‘§§:SE+ éE

where By, is similarly defined as I§S but using v;; = (¢; — é_,-)2 and u;; = v2(x;) + vz(xj). It
is interesting to notice that, if v(x;) =1, S 7 =s¢, the large first-phase sample on x
contains no extra information to improve the estimation of Sé. See Wu (2002) for more
discussion on this issue.

Our proposed variance estimator is as follows:

- 11 11 1 1\, -
91 (Yye) = (n’_N>s)2/+ <n_n’)sé+ (W—N)HT(sz —53)0B;

1 1 1 1\ A I 1\s |.
w2 e ‘”2“‘")] o) (o))

i€Es’ iEs

If v(x;) = 1, the very last term in vl(I?Mc) vanishes, and in this case vl(f’Mc) reduces to
v;(y,,) proposed by Sitter (1997) if we also replace BS by 1. Note that, under the model
), Eg(és) =1, Eg(éE) = 1, an alternative variance estimator is obtained if we replace
both és and éE by 1. This is given by

- 11 11 1 1\, X
WZ(YMC) = (n/—N>S)2/+ (n_n’>s§+ (W_N) 0T(sX2 —s§)0
1.1 lz 2 _lz 20|62
+(n N> o v (x;) p ‘U(xi)](f

iEs’ i€Es
Both v; and v, are design-consistent. The design-based finite sample performances of
v, and v, are further investigated in Section 5 through a simulation study. Also included
in the simulation study is the delete-1 jackknife variance estimator, v;. The detailed
formulation of v; was given by Sitter (1997).

4. Variance Estimation for the Distribution Function

4.1.  Analytical variance estimators

Analytical variance estimators for F e (t) which make more efficient use of the first-phase
sample can be developed in the same spirit to v; or v,. Following the arguments of Chen
and Wu (2002), it can be shown that

I 1
Fyp(t) = Y Z dys 1(y; = 1)

iEs

1 1
— 1) —— d;yyg(x;,t
| D s == D dy gl )

i€s’ i€s

1
By +o0, (ﬁ) (11)

where 2’ = )" e, d;jjy, By = vazl[g(xi, ) —gnl(y; = t)/vazl[g(xi, 1) — gy1’, and
gv=N - ny:l g(x;, ). Under two-phase sampling with SRSWOR at both phases,
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we have

1 o1\,
[FME([)] = <n_N>SI <n_n’) Sh

where S,2 and § ,2) are the finite population variances defined over the variable
Ii=1y;=t)and D, =I(y; =1t) — g(x;, t)BN, respectively.

The usual substltutlon estimator for \% [FME(t)] is denoted by vO[F we(®)], with SI
replaced by s} and Sp replaced by sh, the sample variances based on s.

A more efficient variance estimator is readily available if we estimate both S,2 and Slz)
using the general method described in Section 2.3. The resulting estimators S 7 and S 5 can
both be expressed as

S2=s2+ ZZ ZZ”U BF
)z€r j>i 1) i€Es j>i

where By = 3 e, DoisiliiViil D ies D jsi u,2, and s? is the corresponding sample var-
iance based on s. For S7, v = (l; — Ij)z, u,-j = Eg[(I,- — Ij)2 |x;,x;1=g +g —28:8;
and g; = g(x;, 1); for Sp, v;; = (D; — D))*, uy; = Eg[(D; — D)* |x;, x]=gi(1 —g) +
g;j(1 — g;). As usual, any unknown model parameters appearmg in D; or u;; will be
replaced by appropriate sample -based estimates. Let ‘Z)][FME(Z‘)] be the estimator of
v, [F wEe(t)] obtained by usrng S? ; and S2 b in place of S, and S} D respectlvely

Note that S, NN — 1)~ 'F Y(t)[l — Fy(1)], an alternative estimator for s? 7 could sim-
plybe N(N — 1)~ FME(t)[ FME(t)] We denote the resulting estimator of V), [FME(t)] as
vz[FME(t)] where SD is estimated by SD, as in v; [FME(t)] Similar to the mean case, both

v; and v, are design-consistent estimators of V, [F we(®)].

4.2.  Jackknife variance estimator

The pseudo-empirical maximum likelihood estimator F we(t) 1s a nonlinear estimator and
its exact design-based variance does not have a closed form. The conventional delete-1
jackknife variance estimator often provides an attractive alternative in such cases.

Under two-phase sampling, the delete-1 estimator F welj] needs to be computed
differently for j € s and for j € s’ —s. Let s(j) denote the set s with the jth unit
deleted. Let ﬁME[j] =Y iesj Pil(y;=1) if jEs, where the weights p; (i #j)
maximize [(p) =) ;e ;) ds log(p;) subject to Ziau)pi =1 (0<p;<1) and
Siesp PigEn ) =0"— 17" Y e 8, 0; let Fypljl=>lies pil(yi=0 if
jEs' —s, where the weights p; maximize [(p) = > iesdis log(p;) subject to
Siespi=10<p;<Dand Y e piga;, )= "= 1" e, g, 1). The usual
jackknife variance estimator is

0 Fyp()] = —— Z Pl j1 = Fyp()) (12)
JEs’'
This variance estimator is consistent if SRSWOR is used at both phases and the first-phase
sampling fraction n’/N is negligible, since F we(t) is asymptotically equivalent to a
regression type estimator given by (11) (Sitter 1997). If the first-phase sampling fraction
cannot be ignored, an ad hoc adjustment can be made by multiplying v, by 1 — n'/N. This
has been done in the simulation study.
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The major advantage of using v; is the operational convenience. For parameters in a gen-
eral form of W = W{Fy(¢)}, the ]ackknlfe variance estimator for W = W{F ME ()} can be
readﬂy formulated by replacing FME[]] and FME(I) in (12) by W[]] W{FME[]]} and
W= W{F we(t)}. This is most useful when the method is applied to infinite populations
where parameters of interest are often in the form of 6 = 0(F).

5. Some Empirical Results

In this section we report some simulation results regarding the design-based finite sample
performances of the proposed estimators using real survey data from the 1996 Statistics
Canada Family Expenditure (FAMEX) Survey for the province of Ontario. The data set
contains 2,396 observations over a variety of variables. In the simulation, the variable
y, total expenditure, was used as the response, and x; (number of people in the household)
and x, (total income after taxes) were included as auxiliary variables. It was found that a
simple linear regression model y = 35+ 8;x; + B,x, + € gives a reasonable fit to the
data, with the nonhomogeneous variance structure Vi(g) = x, o? fitting slightly better
than the constant variance model.

Treating the data set as a fixed finite population, we first selected a two-phase sample
with SRSWOR at both phases, and then computed various estimators presented in
Sections 2, 3, and 4. For the distribution function Fy () we included results on five differ-
ent values of 7 corresponding to the 10th, 25th, 50th, 75th, and 90th populat10n quantiles.
The process was repeated B = 5,000 times for point estimators Y, MC» S wc and F wEe(t), and

= 1,000 times for variance estimators v, v, v,, and v;.

The performance of an estimator T for a certain population quantity 7 was evaluated
using the relative percentage bias (RB%) and the relative efficiency (RE) defined as

B A R

RB% =~ > BT 100 ana rE=ET0)

Bim T MSE(T)
where YA}, was computed from the b th simulated sample, MSE(f) =B Zf: l(f“h —T),
and f"o denotes the baseline estimator for comparison. For the estimation of ¥
Sy and Fy(n), T is given by 3=n"'Yie,vi si = (1= 17" Yie (v~ and
Fy(t)=n" > iesI(y; = 1), respectively.

Table 1 reports the simulated RE’s for the optimal-calibration or the model-calibrated
pseudo-empirical maximum likelihood estimators for the population mean Y, the popula-
tion variance S% and the finite population distribution function Fy(¢) at t = ¢, o = 0.10,
0.25, 0.50, 0.75, and 0.90. The first-phase sample size was chosen as n’ = 400. The
absolute values of the RB’s are all less than 2% and are not reported here to save space.

Table 1. Relative efficiency of estimators for Y, S% and Fy (1)

I’l/ n ;.MC gjzwc FA‘MEU) atr =1,
0.10 0.25 0.50 0.75 0.90
400 40 3.30 1.32 1.61 2.30 2.34 1.98 1.45
80 2.73 1.33 1.70 2.05 2.13 1.87 1.61

160 2.01 1.22 1.42 1.69 1.72 1.59 1.45
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Table 2. Relative bias (in %) of variance estimators for )Q’MC and F e ()

n/ n v YMC ﬁME(t) at t = ta
0.10 0.25 0.50 0.75 0.90
400 40 V0 —-1.7 —23.6 —4.1 —-4.9 —-3.5 —224
v 2.1 —24.5 —-3.2 —4.5 —-3.7 —234
Uy 2.1 —24.6 —3.4 —4.7 —4.0 —23.6
vy 1.7 16.4 3.8 -7.1 —3.6 61.8
80 V9 —4.5 —-9.7 —2.8 —-3.6 —-0.2 —6.6
R —4.1 —10.5 -2.9 —-33 —0.1 —6.8
Vg —4.3 —10.7 -3.1 —-3.5 —-0.3 -7.0
vy —-9.2 1.5 -7.0 —-9.1 —6.8 —-0.9
160 9 0.5 —4.8 0.3 —0.6 —-0.4 —-3.2
v 0.8 —4.3 0.5 —-0.7 —-0.4 —3.1
Vg 0.5 —4.5 0.3 —-0.9 —-0.6 —-34
vy -2.3 -5.6 —4.3 —-5.6 -59 7.4

The proposed estimators perform uniformly better and are much superior to the conven-
tional estimator f‘o in all cases. With fixed first-phase sample size, the gain in efficiency
seems larger when the second-phase sample size n is smaller, although such a trend is
not monotonic in terms of sample size. As pointed out by one of the referees, this is
due to the fact that Vp(f) — Vp(fo) as n— n’ for fixed n’. As for the distribution function
Fy(t), the improvement is more dramatic when ¢ is not in the tail regions.

For variance estlmators the true values (i.e., T in the definitions of RB and RE) of
Vv (YMC) and V, (F we()) were estimated from another 5,000 independent simulation
runs. The simulated RB’s of v, v;, v, and v; are reported in Table 2. All RB’s are
less than 11%, except for those cases relating to the estimation of the variance of
I:"ME(O.IO) and I:"ME(O.90) when n = 40. The RB’s in these cases all take negative values
and are smaller than —20% for vy, v; and v,. The jackknife estimator v; also significantly
overestimates the variance in these cases. It seems that none of these estimators, including
the naive v, provides acceptable estimates when 7 is small and 4 is in the tail region.

The simulated RE’s for the variance estimators of YMC and F, wEe(t) are presented in
Table 3. Note that we excluded the RE’s for the case of n = 40 at t = ¢ and 7 99 Where

Table 3.  Relative efficiency of variance estimators for Y yc and F 0]

n/ n kY YMC ﬁME(t) att = ta
0.10 0.25 0.50 0.75 0.90
400 40 1 1.16 — 1.18 1.08 1.29 —
Vy 1.12 — 1.19 1.09 1.30 —
vy 0.85 — 0.22 0.87 0.28 —
80 v 1.14 1.19 1.20 1.06 1.42 1.40
Vg 1.14 1.21 1.21 1.06 1.42 1.42
vy 1.26 0.12 0.76 0.66 0.85 0.11
160 1 1.14 1.31 1.23 1.07 1.44 1.37
Vo 1.16 1.34 1.25 1.09 1.45 1.38

vy 1.12 0.61 0.86 0.58 0.96 1.05
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the bias is not negligible, since comparison in terms of RE under such cases is probably
misleading. The variance estimator for baseline comparison is v.

Table 3 can be summarized as follows: (i) v; and v, perform similar to each other and
are uniformly better than v; (ii) the improvement from using v, and v, over v is only
marginal for estimating VP(YMC); (iii) v; and v, seem more efficient for estimating
V,(Fy(t)) for t at large quantiles; and (iv) the jackknife variance estimator, which
does not reuse the auxiliary information available at the first phase, is less stable and
less efficient in most cases. One explanation for (ii) is probably the fact that the linear
model y=0¢+Bx; +0B,x,+¢& with the nonhomogeneous variance structure
Vi(e) = x, o’ only provides a slightly better fit than the constant variance model. Under
such circumstances there is little room to improve the estimation of Sz by using auxiliary
information through a nonhomogeneous variance structure. The marginal gain comes
from the estimation of S,z/ using S ,ZWC. When the variance structure is clearly non-
homogeneous, higher efficiency can be expected from using v; and v,. See the theoretical
and empirical results reported in Wu (2002) for the case of known complete auxiliary
information.

6. Applications to Measurement Error and Nonresponse

The proposed optimal calibration estimators under two-phase sampling are applicable to
estimation problems under measurement errors or nonresponse. Let y; be the true value of
a characteristic of interest for the i th unit in the finite population. Suppose it is difficult or
very expensive to obtain exact measurement but an inaccurate value (i.e., measurement
with error), say z;, of y for the ith unit, can be obtained quite easily. In such situations
the two-phase sampling technique is often employed. A large first-phase sample s’ is taken
and the cheap inaccurate measurements z; are collected for all i € s'. A smaller second-
phase sample scs’ is drawn and the exact measurements y; are collected using
more extensive effort. The goal is to estimate various finite population quantities defined
over y;.

The relationship between the y;’s and the z;’s can be described by the so-called
regression calibration model (Carroll et al. 1995),

yi=ot+ﬁzl-+8,», i:1,2,...,N (13)

where the €;’s are assumed independent and identically distributed random variates with
E,(e))=0and V,(g,) = o, and the subscript m refers to the measurement error model
(13). If we treat z; as an auxiliary variable, the methodology developed in Sections 2,
3, and 4 can be applied directly here for estimation under the assumed measurement error
model.

Item nonresponse is often handled through imputation. If the response variable y is
highly correlated with certain covariate(s) x and missing values do not occur for the x
variables, a direct analysis based on the observed sample data using our proposed estima-
tion strategy may be more desirable. The original sample with complete information on x
can be viewed as a first-phase sample, and the subsample with observed responses on y is
treated as a second-phase sample. The loss of information due to the nonresponse can be
retreated from auxiliary information through the optimal estimation strategy. The
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inference is conditionally valid for the given sample. An advantage of this approach is
that the resulting optimal calibration estimators are design-consistent even if the super-
population model (2) is misspecified. This is in contrast to estimation based on imputed
data where the validity of the results depends on the correctness of the model used for
imputation.

7. Concluding Remarks

The calibration method has gained much popularity since its emergence in the early 90s,
and calibration estimators are routinely computed by many survey organizations. The
optimal calibration approach provides a unified framework for the efficient estimation
of various finite population quantities when complete auxiliary information is available.
It has been demonstrated in this article that the method also provides a flexible and
efficient way of using auxiliary information at the estimation stage under a two-phase
sampling scheme. The proposed optimal calibration estimators for a second-order finite
population quantity such as the population variance can perfectly be used to obtain
more efficient variance estimators for a first-order finite population quantity such as the
total or the distribution function. The gain in efficiency can be appreciable even for a
first-phase sample with moderate size. Applications to measurement error problems or
nonresponse are straightforward. The method has the potential to be applied to estimation
problems under infinite populations where a two-phase sample is available.
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