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Optimal Weighting of Index Components:
An Application to the Employment Cost Index

Michael K. Lettau and Mark A. Loewenstein1

1. Introduction

This article considers the problem of how best to estimate an index whose components are

themselves estimated with varying degrees of precision. Let the index in period t be given

by

I�t �
XN

i�1

qimi �1�

where mit is the value of the ith component and qi is the known, ®xed weight given to the ith

component in the overall index. For example, I� may be a price index in which case, mi is

the proportionate change in price over the period for the ith class of goods or services and

qi is category i's share of the total budget. Naturally, if we knew the true values of the mi's,

it would be straightforward to calculate the value of I�. Unfortunately, we are only able to

obtain an estimate of each mi. Depending on the nature of our sample, some of the mi's may

be estimated much more precisely than others.

The following question immediately comes to mind: Might we want to over(under)

weight those components that we are able to estimate most (least) precisely? More gener-

ally, what are the optimal weights? This article develops a procedure for solving precisely

this problem. We then apply our procedure to the wage component of the Employment
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Cost Index (ECI) making use of the historical data that are used in the actual calculation of the

ECI. While we apply our procedure to the ECI, our approach is equally valid for other indices.

Our estimating technique can be thought of as an example of composite estimation.

When we underweight a component in a price index because there is not enough informa-

tion on good i to estimate its change in price very precisely, we are implicitly using

information on the price changes of other goods to help estimate the change in good i's

price.2

We should explicitly point out that sample sizes are treated as ®xed in our analysis.

Rather than adjusting the weights used to aggregate the various components of an index,

it would generally seem preferable for the survey designer simply to choose sample sizes

optimally to begin with. However, there are at least three reasons why this may not always

be feasible. First, a survey may have competing uses. The survey design that minimizes

mean squared error for one of the statistics of interest may not minimize the mean squared

error for another. For example, the same establishment survey is used to produce both the

Employment Cost Index, which is a Laspeyres index that measures changes in employers'

cost of compensating workers after controlling for compositional changes in the distribu-

tion of employment, and the Employer Cost of Employee Compensation, which measures

average compensation costs over time. Second, the strati®cation required by the ``opti-

mal'' survey may be infeasible or very costly. For example, in the case of the ECI, it would

be necessary to stratify by not only industry, but also by occupation. However, one does

not know what particular occupations one will encounter at a given employer until that

employer is interviewed. Third, one might obtain information on variances only by exam-

ining results that were obtained when a survey was ®elded in the past and it may be too

costly or even infeasible (in the case of a longitudinal survey) to change the survey design

in the immediate future.

2. Optimal Weighting of Index Components

Because one does not directly observe the components mit, the index in Equation [1] is not

observed, but rather must be estimated. Let the estimated value of the ith component be

given by

mit � mit � eit �2�
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2 Current Population Survey estimates are well-known examples of composite estimates. As noted by Bailar
(1975), the composite estimates utilize the fact that in the CPS there is ``an overlap of about 75 percent of the
persons in sample from one month to the next. If there is a fairly large positive correlation over time for persons in
sample, (one) can make use of this to provide estimates with smaller variances.'' The composite estimate
averages the simple level estimate for the current month with another estimate ``of level based on the composite
estimate for the previous month to which has been added the estimated change from the preceding month to the
current month'' and which ``is based on the part of the sample that is common to the two months.'' See Cantwell
and Ernst (1992) for further discussion of composite estimation in the CPS, especially issues arising as a result
of the 1994 procedural changes in the CPS. See Wolter (1979) for a good explanation of how composite
estimators can be used in association with rotation schemes to reduce variances. Zieschang (1990) shows
how composite estimation can lower variances of estimates obtained from the Consumer Expenditure Survey.
Randolph and Zieschang (1988) derive composite estimators for local area price indices; when applied to estimate
city level rental physical housing depreciation rates, these estimators result in large improvements in mean
squared error.



where eit is a random variable with mean 0 and variance j2
it and where E�eitejt� � 0 if

i Þ j. Letting bit denote the weight given to this component, the estimating index is given by

It �
XN

i�1

bitmit �3�

The expected mean squared error in the estimated index is de®ned by

MSEt ; E �It ÿ I�t �
2

ÿ �
�4�

The optimal weights, b0
it, minimize (4). To ®nd the optimal weights, substitute (1) and

(3) into (4) and use (2), simplify to obtain

MSEt � E
XN

i�1

bitmit ÿ
XN

i�1

qimit

 !2 !

� E
XN

i�1

biteit �
XN

i�1

�bit ÿ qi�mit

" #2 !

�
XN

i�1

b2
itj

2
it �

XN

i�1

XN

j�1

�bit ÿ qi��bjt ÿ qj�mitmjt �5�

Differentiating with respect to bit yields the ®rst-order conditions to the minimization

problem:

b0
itj

2
it �

XN

j�1

�b0
jt ÿ qj�mitmjt � l �6a�

XN

i�1

b0
it � 1 �6b�

where l is the Lagrange multiplier corresponding to the normalizing constraint that the b's

sum to 0. To help interpret these conditions, let us rewrite (6a) as:

b0
itj

2
it � mit�I

0
t ÿ I�t � � l �6a0�

where

I0t �
XN

j�1

b0
jtmjt

The ®rst term in (6a') captures the effect of an increase in bit on variance, while the second

term captures the effect of an increase in bit on bias. If the weights are such that the new

index exceeds (is less than) the true index, then the second term is positive and would

cause bi to be smaller (larger). The size of this depends on mit.

Equation (6) is a linear system of equations and can therefore be solved using Cramer's
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rule. However, it is possible to express the solution in a form that is more useful:3

b0
it �

1 �
PN
j�1

�mit ÿ mjt��mt ÿ mjt� =j
2
jt

PN
j�1

�j2
it =j

2
jt� �

PN
j�1

PN
k�1

mjt�mjt ÿ mkt��j
2
it =j

2
kt� =j

2
jt

�7�

where mt �
P

j mjtqj

Equation (7) indicates that the degree to which it is optimal to overweight and underweight

the individual cells depends crucially on the differences in the cell means, (mi ÿ mj), and the

variances j2
it.

4 In general, the smaller are the differences in the cell means relative to the var-

iances, the greater is the over- and underweighting in response to suboptimal sample weights.

In the extreme case where the cell means are all the same, Equation (7) reduces to

b0
it �

1
j2

itPN
j�1

1
j2

jt

� �
so that each component's weight should be inversely proportional to the variance with

which its value is estimated.5 At the other extreme, it follows immediately from (6)

that if the variances j2
it are all 0, then b0

it � qi, so that there is no over or underweighting.

To gain further insight into the optimal weighting scheme, consider the special case

where there are only two cells. In this case, one can solve for b0
it to obtain

b0
it � qi �

qjj
2
jt ÿ qij

2
it

�m1t ÿ m2t�
2 � j2

1t � j2
2t

: �70
�

It is apparent from (7') that if j2
2t=j

2
1t � q1=q2, then b0

1t � q1 and b0
2t � q2. Thus, it is not

optimal to overweight or underweight either component if j2
it � k=qi for i � 1 and i � 2, that

is, if the variance with which a component's value is estimated is inversely proportional to the

component's proper weight in the index. Note, for example, that this condition will hold if

component i's value is estimated as the average of ni independent observations, provided

that the variance associated with each observation is the same and ni is proportional to qi.

From (7a), one sees that if j2
2t=j

2
1t > q1=q2, then b0

1t > q1 and b0
2t < q2. Thus, if component
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3 Letting xit � bit ÿ qi and T � Sjxjtmjt , Equation (6a) can be rewritten as

xit � qi � �mit=j
2
it�T ÿ �l=j2

it� � 0 �a�

Multiplying (a) by mit and summing over i yields:

1 �
X

i

m2
it

j2
it

 !
T �

X
i

mitqi ÿ l
X

i

mit

j2
it

� 0 �b�

Summing (b) over i and using the fact that xit � bit ÿ qi and Sibit � 1 yieldsX
i

mit

j2
it

T �
X

i

qi ÿ l
X

i

1

j2
it

�c�

Solving (b) and (c) for T and l and substituting into (a) yields Equation (7).
4 While one might initially expect that the optimal weights b0

it should be expressible in terms of their distance
from qi, note that the ®rst term on the right hand side of (6a) involves bit but not qi. This re¯ects the fact that
other things being the same, variance can generally be reduced by shifting weight from higher weighted compo-
nents to lower weighted components.
5 Note that if the cell means are all the same, then the expected value of the index will be the same for all weight-
ing schemes, but mean squared error will not.



1 is estimated relatively more precisely than component 2 after controlling for each com-

ponent's importance in the index (i.e., if j2
1t � k1=q1, j2

2t � k2=q2, and k1 < k2), then it is

optimal to overweight the ®rst component and underweight the second. Note that this condition

will obtain in our example above if n1=q1 > n2=q2.

While Equation (7) characterizes the weights that will minimize the mean squared error in

the estimated index, this equation cannot be implemented in practice because the cell means,

mi, are unknown (indeed, if the cell means were all known, one could calculate the value of the

index directly from (1). One possible approach is simply to substitute the estimated cell means

mit for the unobservable true cell means mit in the ®rst-order conditions (6a'), which gives us:

bitj
2
it � mit�It ÿ ÃIt� � l �6a00�

where ÃIt �
XN

i�1

qimit

The weights solving (6a'') and (6b) are given by

Ãbit �

1 �
PN
j�1

�mit ÿ mjt��mt ÿ mjt� =j
2
jt

PN
j�1

�j2
it =j

2
jt� �

PN
j�1

PN
k�1

mjt�mjt ÿ mkt��j
2
it =j

2
kt� =j

2
jt

�8�

where mt �
X

j

mjtqj

We will examine this solution more carefully subsequently. First, we address the problem

of how to estimate mean squared error when the true cell means mi, are estimated with

error.

3. Estimating Mean Squared Error

Recall from (5) that MSEt �XN

i�1

b2
itj

2
it �

XN

i�1

XN

j�1

�bit ÿ qi��bjt ÿ qj�mitmjt:

Using the fact that E�m2
it� � m2

it � j2
it and E�mitmjt� � mitmjt if i Þ j, we therefore have

MSEt � E
XN

i�1

XN

j�1

�bit ÿ qi��bjt ÿ qj�mitmjt �
XN

i�1

b2
itj

2
it ÿ

XN

i�1

�bit ÿ qi�
2j2

it

 !
�9�

Thus, if

Ãj2
it

are unbiased estimates of the variances,

ÃMt �
XN

i�1

XN

j�1

�bit ÿ qi��bjt ÿ qj�mitmjt �
XN

i�1

2�bitqi�Ãj
2
it ÿ

XN

i�1

q2
i Ãj2

it �90
�

is an unbiased estimate of MSEt.
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Having derived a statistic to estimate mean squared error, let us return to our problem

of choosing weights to minimize expected mean squared error. One possible approach is to

choose weights to minimize the mean squared error statistic, ÃMt. As shown below,

the weights minimizing ÃMt depend on estimated variances and estimated cell means.

Since our derivation of mean squared error required ®xed cell weights that are independent

of estimated cell means, the minimized value of ÃM cannot be used as an estimate of

mean squared error. There is no guarantee that the weights that minimize ÃMt will minimize

expected mean squared error, but this certainly seems a reasonable approach to take.

Furthermore, as discussed below, a comparison of the resulting ®rst-order conditions

with (6a'') yields insights into the weighting scheme (8) obtained by substituting

estimating cell means for the true cell means in (7).

Differentiating (90) with respect to bit yields the ®rst-order conditions that must be

satis®ed by the weights that minimize ÃMt

qij
2
it � mit

XN

j�1

�bjt ÿ qj�mjt � l �10a�

XN

i�1

bi � 1 �10b�

This is a linear system of equations and is therefore theoretically solvable. However, if the

number of cells is large, the standard linear solution is not empirically tractable. Nevertheless,

it is possible to compare the weights that satisfy the ®rst-order conditions (10a) with those that

satisfy (6a''), obtained by substituting estimated cell means for the true cell means in (6a').

To help gain some intuition, let us ®rst consider the case where there are only two cells.

When there are only two cells, the solution to (6a'') and (6b) can be rewritten as

Ãbit � q1 �
qjj

2
jt ÿ qij

2
it

�m1t ÿ m2t�
2 � j2

1t � j2
2t

�80
�

In contrast, the solution to (10a) and (10b) when there are only two cells is given by

ÃÃbit � qi �
qjj

2
jt ÿ qij

2
it

�m1t ÿ m2t�
2

�11�

Comparing (8') and (11), one sees that j Ãbit ÿ qij < j
ÃÃbit ÿ qij. That is, (8') constitutes a more

conservative reweighting scheme than (11). A similar result should hold in the more general

case. The system of equations (6a''), which is obtained by substituting the estimated cell means

mit for the unobservable true cell means mit in (6a'), does not account for the fact that we do not

know the true index bias with certainty and thus overstates the effect of a change in b1 on

expected bias. To see this, note that the ®rst-order conditions in (10a) can be rewritten as

bitj
2
it � mit�It ÿ ÃIt� � �qi ÿ bit�j

2
it � l �10a0�

Equations (6a'') and (10a') are identical if bit � qi. Other things the same, a low value

of

j2
it
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will cause cell i to be overweighted, that is, cause bit to exceed qi. But for bit > qi,

the left-hand side of (6a'') will exceed the right-hand side of (10a'): when we ignore

the fact that the bias is estimated with uncertainty, we will overstate the cost of over-

weighting beta. Similarly, for bit < qi, the left-hand side of (6a'') will be less than the

right-hand side of (10a'): when we ignore the fact that the bias is estimated with

uncertainty, we will understate the gain to underweighting beta. Thus, the weights

satisfying (6a'') constitute a more conservative reweighting scheme than those satis-

fying (10a').

4. An Application Using the Employment Cost Index

We now illustrate our proposed procedure with actual data used to calculate the Employ-

ment Cost Index. The Employment Cost Index or ECI measures changes in employers'

cost of compensating workers, controlling for changes in the industrial-occupational com-

position of jobs. The index is calculated using a two-step aggregation procedure. The ®rst

step aggregates microdata from individual quotes to estimate compensation for approxi-

mately 650 categories of labor, where the categories of labor are de®ned by pseudo indus-

try (PSIC) and major occupation group (MOG). The PSICs correspond approximately to

2-digit SIC industries. The second step aggregates these PSIC/MOG cells to form the

index.

Regarding the ®rst step of the aggregation, if a cell does not have a suf®cient number

of nonimputed quotes, it is collapsed to the cluster/MOG level. A cluster is a group of

two to ®ve PSICs. For example, if a cell contains only one quote, but the cluster/MOG

cell contains four additional quotes, compensation is averaged among the ®ve quotes,

and this average is then applied to the PSIC/MOG cell with only one quote. If the entire

cluster/MOG cell does not contain a suf®cient number of quotes, the cell is collapsed to a

higher level of aggregation, up to the major industry group (MIG)/MOG level, which is the

highest level of aggregation used. Note that this collapse procedure implicitly de®nes a

weighting scheme for the ECI.6 While the current procedure is not unreasonable, it cer-

tainly has an element of arbitrariness.

One would like to compare alternative aggregation schemes. Toward this end, we

assume that the natural log of the ratio of the average hourly earnings in quarter t to quarter

t ÿ 1 for the jth job in the ith PSIC/MOG cell is given by

ln�wijt=wijtÿ1� � mit � eijt �12�

where eijt is a random variable with mean 0 and variance j2
it. Letting qi denote cell

i's share of the total wage bill in the base year, where each cell is de®ned by a

unique industry-occupation combination, the true ECI is given by Equation (1).7 Letting

bi denote the actual weight given to the ith cell in the estimated ECI and letting mit denote

45Lettau. Loewenstein: Optimal Weighting of Index Components

6 For example, suppose for simplicity that the index has only two components. Suppose the ®rst cell only has one
quote and the second cell has four quotes and suppose that all quotes have the same sample weight. If average
compensation in the ®rst cell is estimated as the average of all ®ve quotes - that is, if the ®rst cell is collapsed
into the second - then in effect cell 1 is only accorded one ®fth of its true weight, so that b1 � �1=5�q1 and
b2 � q2 � �4=5�q1. Thus, the ®rst (second) component is under (over) weighted in the estimated index.
7 In practice, the ECI is calculated as an arithmetic mean of average wage changes. We use the geometric form
because it is more convenient to work with. For a detailed description of the ECI, see BLS Handbook of Methods
(1997), U.S. Bureau of Labor Statistics.



the sample mean of ln�wit=witÿ1� for those jobs in the ith cell, the estimated index is given

by (3). Letting ni denote the number of sample observations in cell i, mit has mean mit and

variance j2
it=nit.

It is straightforward to estimate j2
it. Speci®cally, Equation (10) can be estimated by

regressing the change in the log wage rate on PSIC/MOG dummy variables. One can

then estimate the within-cell variances j2
it from the residuals to this regression. Denoting

this estimated residual by Ãj2
it, our estimate of the mean squared error is

ÃMt �
XN

i�1

XN

j�1

�bit ÿ qi��bjt ÿ qj�mitmjt ÿ
XN

i�1

2�bit ÿ qi�
Ãj2

it

nit

�
XN

i�1

q2
i

Ãj2
it

nit

Using data from 1990±1994, we have calculated the expected mean squared error esti-

mate, ÃMt, for the procedure that is currently being used. Averaging over all periods, we

®nd that the average mean squared error associated with the current weighting scheme

is 0.574 ?10ÿ6. Table 1 also presents the average mean squared error associated with three

other possible weighting schemes: a scheme that never collapses and schemes that

always aggregate up to the cluster/MOG and MIG/MOG level, respectively.8 The more

aggregated de®nitions for the categories of labor in the ®rst step of the ECI aggregation

largely eliminate the need for a formal collapse procedure, thus simplifying the calculation

of the ECI.

Of the four schemes, the current procedure produces the lowest estimated mean squared

error at 0.574 ?10ÿ6, which is slightly lower than the estimated, mean squared error under

no collapsing. The mean squared errors are slightly larger for the more aggregated

schemes. To put these estimates in context, we also report the average value of the

mean squared error normalized by the ECI estimate,P
t

����
Zt

p
ECIt

T

This estimated statistic is very similar for all four of the aggregation schemes. For addi-

tional insight into this result, we have estimated the expected squared difference

between a PSIC/MOG cell mean and its MIG/MOG cell mean. The estimate basically

equals the average of the squared difference between a PSIC/MOG cell mean and the

mean outside the cell but within its MIG/MOG, with an adjustment for the fact that the

means are estimated rather than known with certainty.9 We estimate the parameters

separately for all quarters from March 1990 through December 1994, with the restric-

tion that each PSIC/MOG cell must have at least two nonimputed quotes and each

higher-level cell must have at least two nonimputed quotes outside each of its PSIC/

MOG cells. The resulting parameter estimates appear in Table 2. The last column of
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8 We use wage and salary data only, and we restrict the sample to the private sector. In actual practice, collapsing
cannot be avoided when a cell is empty. However, since our present concern is with cells that have a small sample
size but are not empty, we have dropped empty cells and reallocated their weights to all nonempty cells in pro-
portion to their size. This has very little effect on our estimates of mean squared error. In obtaining the mean
squared errors in Table 1, we have assumed that the within-cell variance j2

it is the same for all cells. However,
we have also obtained separate estimates for each of the nine major occupational groups, in the process allowing
within-cell variances to differ across the major occupational groups. When one takes employment weighted
averages across the occupational groups, one obtains mean squared error estimates that are virtually identical
to those in Table 1.
9 A more detailed description of this estimation can be found in the Appendix.



Table 2 refers to the test statistic for the joint restriction that the means for all PSIC/

MOG cells equal the means for their corresponding MIG/MOG cells. The marginal sig-

ni®cance shows the lowest level of signi®cance at which this null hypothesis is

rejected. It is clear from the table that the expected squared difference between a

PSIC/MOG cell mean and its MIG/MOG cell mean, while not necessarily zero, is cer-

tainly quite small.

The estimating procedures discussed above reallocate weights within MIG/MOG cells

but not outside of them. An alternative, more aggressive approach is to use the weighting

scheme described by (8). In this approach, weights are reallocated across MIG/MOG cells

as well as within them; indeed, the decision to reallocate a weight from one PSIC/MOG

cell to another is completely independent of whether or not the two cells are in the

same MIG/MOG. When one uses these weights, the value of ÃMt turns out to be

0.039 ?10ÿ6, which is markedly lower than the mean squared error associated with the cur-

rent procedure or any of the other weighting schemes listed in Table 1. However, this is not

a meaningful comparison. Our mean squared error derivation requires ®xed cell weights

that are independent of estimated cell means. The weighting schemes listed in Table 1

all satisfy this requirement. The weights in (8) clearly do not.

Calculating the mean squared error for this scheme is very dif®cult because one must

take into account variances in the weights caused by variances in the mean squared esti-

mates. As an alternative, we perform a Monte Carlo simulation. Using the parameter esti-

mates in Table 2, we simulate a set of sample quotes for each of the twenty quarters.10 We

next determine the resultant weights for the current procedure and the weights described

by (8). Since we know the underlying parameters generating the simulated sample quotes,

we can then calculate both the ÃMt statistics and the true expected mean squared errors for

the two aggregation schemes using Equation (5).

We have performed 60 simulations, where each simulation itself involves simulating

sample quotes for each of the twenty quarters from 1990±1994. As expected, the average

value of ÃMt for the current procedure, 0.582 ?10ÿ6, is very close to the average value of the

true mean squared error of 0.583 ?10ÿ6, verifying that ÃMt is a consistent estimate of the

expected mean squared error. As we also suspected, ÃMt is an underestimate of true

mean squared error for our alternative procedure that chooses weights according to (8).

The average minimized value of ÃMt is again quite small at 0.011 ?10ÿ6, while the true

mean squared error for this procedure is 0.390 ?10ÿ6. This mean squared error is only

47Lettau. Loewenstein: Optimal Weighting of Index Components

Table 1. Mean squared error estimates for alternative aggregation schemes

ECI Mean squared error Normalized root
Mean squared error

No collapsing 0.007880 0.588 ?10ÿ6 0.1016
Current procedure 0.007909 0.574 ?10ÿ6 0.0998
Cluster/MOG 0.007893 0.652 ?10ÿ6 0.1052
MIG/MOG 0.007901 0.668 ?10ÿ6 0.1040

10 Besides the parameter estimates in Table 2, the simulation also utilizes estimates of the variance of wage
growth across MIG/MOGs. Our simulated set of sample quotes therefore has similar means, variances, and
sample sizes to those that are observed in the actual data.



about two-thirds as large as the expected mean squared error associated with the current

procedure. The weighting scheme in (8) apparently results in an index that has a consider-

ably lower mean squared error than the current procedure.

5. Conclusions

This article has examined the problem of how best to estimate an index whose components

are themselves estimated with varying degrees of precision. Given suf®cient information

on the underlying parameters, we have characterized the component weights that mini-

mize the mean squared error in the estimated index. Although the true mean squared error

cannot be observed in practice, we implement our procedure by replacing unobserved cell

means and variances by their estimated parameter values. This is a more conservative

reweighting scheme than one that minimizes a statistic that is an unbiased estimate of

the mean squared error.

We have illustrated the application of our procedure using actual ECI historical data.

Interestingly, our small estimates for the bias between the PSIC/MOG cells and the

higher-level cells suggest that the ECI collapse hierarchy is reasonable. Our results further

indicate that a procedure that aggregates up to the MIG/MOG level performs nearly as

well as the current ECI procedure. An advantage to the MIG/MOG aggregation scheme

is that it virtually eliminates the need for any collapse procedure and thus simpli®es the
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Table 2. Parameter estimates for composite estimation. PSIC/MOG cells versus MIG/MOG cells

Quarter No. of No. of Within Within Bias Adjusted Marginal
PSIC/ MIG/ PSIC/ MIG/ Squared Bias Signi®cance
MOG MOG MOG MOG Squared of Test
Cells Cells Variance Variance Statistic

9003 500 68 0.00451 0.00454 0.00047 0.00017 2.1%
9006 498 66 0.00396 0.00403 0.00041 0.00015 0.0%
9009 498 68 0.00370 0.00370 0.00027 0.00002 0.8%
9012 496 68 0.00321 0.00323 0.00026 0.00004 0.0%
9103 488 67 0.00348 0.00346 0.00020 ÿ0.00002 70.2%
9106 492 68 0.00629 0.00622 0.00028 ÿ0.00014 99.8%
9109 486 67 0.00356 0.00362 0.00028 0.00006 0.0%
9112 480 68 0.00299 0.00303 0.00024 0.00005 14.7%
9203 475 68 0.00359 0.00367 0.00029 0.00007 0.1%
9206 468 67 0.00292 0.00296 0.00024 0.00006 1.9%
9209 461 66 0.00336 0.00350 0.00046 0.00026 0.0%
9212 454 66 0.00317 0.00316 0.00019 ÿ0.00001 99.6%
9303 456 66 0.00300 0.00299 0.00018 ÿ0.00001 84.0%
9306 449 63 0.00252 0.00252 0.00015 ÿ0.00001 27.1%
9309 441 61 0.00283 0.00281 0.00013 ÿ0.00004 57.9%
9312 446 61 0.00257 0.00253 0.00011 ÿ0.00005 99.8%
9403 440 57 0.00362 0.00362 0.00023 0.00000 2.1%
9406 422 58 0.00288 0.00296 0.00035 0.00016 0.0%
9409 409 59 0.00309 0.00307 0.00020 ÿ0.00004 6.3%
9412 406 59 0.00314 0.00317 0.00029 0.00007 0.0%

Average 0.00342 0.00244 0.00026 0.00004



calculation of the ECI. The current procedure and a procedure that aggregates up to the

MIG/MOG reallocate weights within MIG/MOG cells, but not outside of them. A proce-

dure that chooses weights to approximately minimize mean squared error is a more aggres-

sive approach, since weights are reallocated across MIG/MOG cells as well as within

them. Our results indicate that this procedure yields an index that has a substantially lower

expected mean squared error.

While we have applied our procedure to the ECI, our approach is equally valid for other

indices. Note also that we have only considered an ECI whose categories of labor are

de®ned by PSIC/MOG cells, and we have only considered collapse schemes that aggregate

across industry clusters. A more exhaustive evaluation would start with no assumption as

to how individual quotes should be combined into categories of labor. Our procedure for

estimating within cell variance and the expected bias when one uses a higher level aggre-

gate to estimate a lower level cell mean and our derivation of the expected mean squared

error associated with an arbitrary aggregation scheme provides the necessary theoretical

framework for such an analysis.

Finally, we might note that our approach to calculating a price index is similar in spirit

to what has become known as the stochastic approach to index number theory, which, as

described by Selvanathan and Prasada Rao (1994), `` considers the index number problem

as a signal extraction problem from the messages concerning price changes for different

commodities.''11 While the economic approach to index numbers assigns a weight to a

price relative on the basis of its economic importance, the stochastic approach assigns

the weight to a price relative on the basis of the strength of its signal. Diewert (1995)

has criticized the stochastic approach on the grounds that (1) the variance assumptions

that are made are not consistent with the observed behavior of prices and (2) ``if price rela-

tives are different, then an appropriate de®nition of average price cannot be determined

independently of the economic importance of the corresponding goods'' (p. 21). Neither

of these criticisms applies to the approach that we have presented. Our variances are

driven by the data on hand. Furthermore, our idealized weights in the absence of sampling

error are presumably those suggested by economic theory. Sampling considerations cause

our estimating weights to deviate from these economic weights, with the result that our

approach essentially combines elements of both the economic and the stochastic

approaches.

Diewert (1995) concludes that ``in the present context where all prices and quantities

are known without sampling error, signal extraction approaches to index number theory

should be approached with some degree of caution,'' but he goes on to note that ``there

is a huge role for statistical approaches to index numbers when we change our terms of

reference and assume that the given price and quantity data are only samples.'' Of

course, this is precisely the motivating factor behind the approach we have taken in this article.
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11 The stochastic approach to index numbers dates back to Jevons (1865) and Edgeworth (1888). Modern
contributions to the literature include Balk (1980), Clements and Izan (1987), Bryan and Cecchetti (1993),
and Selvanathan and Prasada Rao (1994). Diewert (1995) provides a critical review of the literature.



Appendix

Equation (A1) puts the data from individual quotes into the framework of a regression

model.

y � Xg � e �A1�

where: y � n ´ 1 vector of ln(wijt=wijtÿ1)

X � n ´ k matrix of dummy variables for the PSIC/MOG cells

g � k ´ 1 vector of mjt

e � n ´ 1 vector of residuals

We estimate the parameters of Equation (A1) separately for each quarter t, so we drop the t

subscript in the matrix de®nitions and in subsequent equations. Sample weights are nor-

malized to sum to one. To simplify the ensuing discussion, we assume homoskedasticity

throughout; experimentation with the date indicates that our results do not appear to be

very sensitive to this assumption. The variable n refers to the number of quotes, and k

refers to the number of PSIC/MOG cells. Let mc
j denote the expected wage growth of a

quote that is outside of cell j but in cell j's MIG/MOG.

De®ne a matrix M � I ÿ XD�X0QX�ÿ1X0Q, where the matrix I is an n ´ n identity matrix

and Q is an n ´ n diagonal matrix such that the element in the jth row and jth column is

quote j's sample weight. The matrix D is a k ´ k matrix. The j; kth element of D is zero

if j � k or if cell k is outside of cell j's MIG/MOG. If j Þ k and if cell k is in cell j's

MIG/MOG, then the j; kth element of D equals cell k's sample weight divided by the total

sample weight of all cells other than cell j that are in j's MIG/MOG.

Premultiplying Equation (A1) by M yields

My � MXg � Me �A2�

Note that My is an n ´ 1 vector, the jth entry of which is simply the amount by which quote

j's wage growth exceeds the average wage growth of all quotes that are in quote j's MIG/

MOG but are not in quote j's cell. Note also that since MX � X�I ÿ D�, Equation (A2) can

be rewritten as

My � Xb � Me �A3�

where b is a k ´ 1 vector whose jth entry is mj ÿ mc
j .

Let the k ´ 1 vector b be the weighted least squares estimate of b and let e be the nx1

vector of residuals. The regression model provides natural estimates for the variance

and bias squared:

E��e0Qe�� � j2
f1 ÿ trace�X0QQX�X0QX�ÿ1

�g �A4�

E�Xb�0Q�Xb�� �Sjpj�mj ÿ mc
j �

2
� j2

ftrace�X0QQX�X0QX�ÿ1
�

� trace�D0X0QXD �X0QX�ÿ1X0QQX�X0QX�ÿ1
�g �A5�

where the variable pj equals the sum of the sample weights among quotes from cell j. The

estimate for the within-cell variance corresponds to the usual least-squares estimate of the

residual variance. (Note that if the sample weights all equal 1=n, the trace of
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[X0QQX�X0QX�ÿ1] equals k=n, so that we have the usual n ÿ k correction for the degrees of

freedom in an ordinary least-squares regression.) The estimate for the bias squared equals

the weighted average of the squared difference between the sample mean for the cell and

the sample mean inside the cluster but outside the cell, with an adjustment for the fact that

means are estimated rather than known with certainty.

We estimate the variance within a MIG/MOG but outside a PSIC/MOG cell (j2c
j ) using

the residual variance from the regression Equation (A6), which is the same as Equation

(A1) except that the PSIC/MOG dummy variables are replaced by MIG/MOG dummy

variables.

y � Xclgcl
� h �A6�

where: Xcl
� n ´ kcl matrix of dummy variables for the cluster MOG cells.

gcl
� kcl ´ 1 vector of parameters

h � n ´ 1 vector of residuals

kcl
� the number of cluster/MOG cells

Finally, we use Equation (A7) to test the joint restriction that the means for all PSIC/

MOG cells equal the means for their corresponding MIG/MOG cells.

y � Xclgcl
� Xcgc

� e �A7�

where: Xc
� n ´ �k ÿ kcl) matrix of dummy variables for the PSIC/MOG cells, after

dropping one variable from each MIG/MOG cell.

gc
� �k ÿ kcl

� ´ 1 vector of parameters.

Equation (A7) is equivalent to Equation (A1), except the parameters are rede®ned so that

the joint restriction is equivalent to gc
� 0.
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