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Optimal Winsorizing Cutoffs for a Stratified Finite
Population Estimator

P.N. Kokic! and P.A. Bell?

Abstract: Within stratum expansion esti-
mation is a popular method of estimating
totals in a stratified finite population. How-
ever, if by chance several unusually large
observations should fall in the sample,
then the expansion estimator may grossly
overestimate population totals. One tech-
nique to deal with this problem is to
reduce sampled observations greater than
a cutoff to a value closer to that cutoff,
and then estimate the total using the new
adjusted values. The resulting estimator is
called the Winsorized estimator of a total.
Although the Winsorized estimator is
biased, it may have considerably smaller
mean squared error than the expansion esti-
mator. Necessarily, different Winsorizing
cutoffs should be used for different strata.
In this paper we examine the problem of
estimating the optimum set of Winsorizing
cutoffs for repeated surveys, where the cut-
offs will be used for Winsorizing samples

1. Introduction

Consider a stratified finite population such
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in future repeats of the survey. It is shown
that an approximation to the optimum set
of Winsorizing cutoffs may be obtained by
expressing the cutoffs for all strata in
terms of a single parameter L, and then
searching for that value of L where a par-
ticular function equals zero. The function
is a weighted sum of the tail probabilities
and tail means above the Winsorizing cut-
offs. It is found that by using simple esti-
mates of these quantities, a good estimator
of the optimum L value and hence of the
optimum set of Winsorizing cutoffs may
be constructed. In a computer simulation
study the estimator is found to have con-
siderably smaller mean squared error than
the expansion estimator.

Key words: Finite population; expansion
estimator; Winsorized estimator; simple
random sampling.

that in stratum 4 there are N, values of
a variable X); € R taking the values X,
Xy ooy XNy, where h = 1,..., H. We con-
sider only non-negative variables. To esti-
mate the population total

H N,

=33
h=1 i=1

we select without replacement from each
stratum A, a simple random sample, s, of
size n;, from the set {1,2,...,N,} and
construct the Winsorized estimator of the
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total

H
7= (Nu/m) D Xul(Ky)
h=1

i€sy,
where K, are non-negative numbers,
Xpi(Kn) = Xpiy  if Xpy < Ky,
=f,Xp + (1 — 1)K}, otherwise,

and 0 < f; < 1. The values K}, are called the
Winsorizing cutoffs. Following Gross,
Bode, Taylor, and Lloyd-Smith (1986),
when f, =0, T is called the Winsorized
Type I estimator, and when f, = n,/N,, it
is called the Winsorized Type II estimator.

If for all 4, K}, = oo, then T reduces to the
simple expansion estimator in a stratified
population

H
> WNa/m) Y X
pos]

i€sy,

This estimator is unbiased under the simple
random sampling scheme mentioned above.
In a finite population containing a few
unusually large values of Xj; which we
shall call outliers, there is a chance that
the sample contains some of these outliers,
in which case the expansion estimator may
grossly overestimate the true value T.

The Winsorized estimator, 7, reduces
sampled units greater than the cutoffs to a
value between the cutoff and their original
value so that their effect is not so great.
We know that 7 is a biased estimator of
the total, but at the same time it has signifi-
cantly less variance than the expansion esti-
mator. The aim in the present paper is to
show how to estimate the cutoffs {K,} reli-
ably and simply from survey data so as to
minimise mean squared error of T.

The Winsorized estimator is robust in the
sense that outlying observations do not
inflate its mean squared error as much as
that of the expansion estimator. Winsoriz-
ing has the advantage over other robust
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techniques in that it is simple to perform
in practice and straightforward to explain
to users of statistical results, both impor-
tant considerations when running large
scale surveys. We examine the problem of
estimating the optimum set of cutoffs for
repeated surveys, where the cutoffs will be
used for Winsorizing samples in future
repeats of the survey.

Ernst (1980) showed that for simple
random sampling with replacement from a
continuous distribution, a Winsorizing
cutoff may be chosen so that the Winsor-
ized Type I estimator has less mean
squared error than any other estimator
that reduces sampled values. However, the
Winsorized Type II estimator has several
attractive practical properties. In particu-
lar, as n, approaches N, the contribution
of an outlier to the Type IT Winsorized esti-
mator tends to the value of the outlier,
whereas for Type I it tends to the cutoff
K;,. Furthermore, Gross et al. (1986) has
demonstrated that there is little difference
in practice between the mean squared
errors of both estimators. Hence, only Win-
sorized Type II estimators will be con-
sidered in this paper, and so from now on
we set fj, = n,/Nj,.

Dalén (1987) and Tambay (1988) have
also investigated properties of the Winsor-
ized Type II estimator. Tambay set the cut-
offs of the Winsorized estimator using a
quartile distance method and found that in
a number of practical situations it some-
times, although not always, had smaller
mean squared error than the simple
expansion estimator. He chose these cutoff
values on the basis that they were robust
against large outliers in the sample. We
argue that the tail of the distribution must,
to some degree, be taken into account
when choosing the cutoffs.

It is possible to show that the Winsorized
Type II estimator is a special case of
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Chambers (1986) robust finite population
estimator. Chambers, however, concentrates
on the issue of how to achieve robustness in
a finite population setting when auxiliary
information is taken into account. The rela-
tionship between Chamber’s estimator and
ours provides a method of generalising the
Winsorized estimator to the case when auxi-
liary size information is available for all
units in the finite population. This generali-
sation will not be examined in this paper.
Other related works that have considered
Winsorizing in the context of finite popu-
lation sampling include Searls (1966),
and Hidiroglou and Srinath (1981). The
approach in these papers was to fix the
Winsorizing cutoff prior to sampling. In
repeated surveys this approach is attractive,
as previous samples may be used to deter-
mine the cutoffs for Winsorizing in future
repeats of the survey, but the problem still
remains of how best to estimate the cutoffs.
In the present article we address this problem
for a stratified random sample in which dif-
ferent cutoffs are used for different strata.
Exact optimal Winsorizing cutoffs can be
chosen if the underlying distribution for
each stratum is known. The algorithm to
find the exact cutoffs requires the evalu-
ation of the tail probability and tail mean
above a given value for each stratum. In
the case where there is only one stratum
and a large sample, a distribution can be

accurately fitted and hence the optimum"

cutoff can be accurately estimated.

However, in most surveys there are many
strata, a large number often with sparse
sample. We are usually trying to select a
large number of cutoffs simultaneously
while controlling bias at a broad stratum
group level. Consequently, we cannot be
confident about the distribution we fit to
each stratum, and hence we lack confidence
about our estimate of the optimum set of
cutoffs.

The new approach developed in Section 2
is to represent the H cutoffs {Kj} by a single
parameter L, thus reducing the dimension
of the problem. A simple method of estimat-
ing L from a stratified random sample is
developed. In Section 3 we investigate, in a
computer simulation study, how well our
estimator performs.

2. Theoretical Developments

2.1. Model and notation

Assume that for each h, {X};,i=1,...,N;}
is a sequence of uncorrelated and identically
distributed random variables with

Em(Xhi) = Hh

ahd

(1)

Var,,(Xy) = of < o0

and assume that Xj; possesses a density
gn(x) >0 for all x>0. Furthermore,
assume that {Xj;i=1,...,Ny,h=1,
..., H} is statistically independent of the
sample selection process. Here and through-
out E,, denotes expectation over the model
at (1) and E; denotes the design expec-
tation, that is, over the sample selection
process. If no subscript is used then the
expectation is firstly over the design and
then the model.

Our aim is to choose cutoffs {K},} so that
the Winsorized estimator 7' has minimum
total mean squared error, E{(T — T)*}.
The total mean squared error not only
captures the variability of 7' due to the
modelling assumptions given above, but
also the variability resulting from the strati-
fied simple random sampling scheme. That

iS, E= EmEd-
Let
Ju=1, if Xj; 2 K,
=0, otherwise.

From now on, unless otherwise indicated,
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let >, denote the sum over h=1,...,H,
> the sum over i = 1,..., N, and to sim-
plify notation the second subscript, i, has
been deleted from the variables X and J,
except where it is needed for reasons of
clarity. Also let n=> ,n, be the total
sample size.

2.2. Main results

Under the assumptions made in the pre-
vious section we have the following result.

Theorem 1. The minimum of the total mean
squared error E{(T — T )*} occurs for those
values of K, satisfying
(Nn/mp = 1)(Ky — ) + B
= (Nu/mp = V(K En(J1) — En(XnJh)}
@)

where

B=> Ny(1-/3)
h

X {KhEp () — En(X3Jy)} (3)

is the bias. Furthermore, at the minimum

B=—(n—1)">" Ny(l —fi)(Ky — ).
7

The proof of this theorem is given in the
Appendix.

Notice that equation (2) depends on the
tail probabilities and tail means in each
stratum. Any algorithm to find the opti-
mum set of cutoffs {Kj,} would therefore
involve calculating, or estimating, these
quantities. The theorem below leads us to
a simple way of estimating {K}.

Theorem 2. Suppose that for all h, n, > 1
and n, /N, < 1. Then

0< 14 (Ny/my — 1)(Ky — py) /B < i,
(4)

Furthermore, suppose that N, n — oo in
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such a way that for all h, n,>1 and
e<m/ N,<l—¢, where 0<e<1/2.
Then as N, n — oo

(Np/my = 1)(Ky — pp) ~ =B —00.  (5)

It should be noted that in the statement of
this theorem the total number of strata is
assumed to remain fixed as N, n — oo,
although it may be large as is often the
case in practice. The proof of this theorem
is also given in the Appendix.

According to expressions (4) and (5),
for the optimum set of cutoffs {Kj},
(Ny/ny — 1)(Ky — ) will be  approxi-
mately constant for large n. Note that the
distributions of data in individual strata
are important in determining the Winsoriz-
ing cutoffs. According to (5) if there are
large outliers in a particular stratum, then
that stratum will affect the values of the
optimum cutoffs through the bias term B.

Let L= (Nh/nh — 1)(Kh — :U’h) Since
equation (5) holds at the optimum set of
cutoffs {K,}, an approximate solution
to (2) would be obtained by setting
L=Ly,=—-Band

Ky = (Ny/my = 1)"'L+ py. (6)
From (3) it follows that
L=> Ny(1-£3)
A
X {Em(Xth) - KhEm(Jh)} (7)

In Section 3 below we show in a particular
situation that this approximation provides
an answer almost as good as the optimum.

The approach outlined at (6) and (7) is
attractive from several points of view.
Firstly, we have reduced the problem of
finding the optimum set of cutoffs {K,}
from a search in H-dimensional space to a
1-dimensional search. Furthermore, we do
not need accurate estimates of the tail
means and probabilities in each stratum,
but rather of a linear combination of them
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across all strata as described by equation
(7). We expect that this quantity can be
more accurately estimated than the indivi-
dual tail means and probabilities. In the
following subsection we introduce a simple
method of estimating the quantity L, from
sample data.

2.3.  Estimation

Let  Xji= (Xp — mn)(Np/np— 1), and
Ji=1if X;;>L and Jj; =0 otherwise.
Notice from (6) that Jj;=Jy. From
equations (6) and (7), to estimate L, we
must find the value of L such that
F(L) =0, where

= N (1 - 1)
h

X {(N/ny, = 1) En(X5 Ji)
— (Ky — ) En(J)}

=L{1 +ZnhEm(J;)}
h

= mEn(Xi ). (8)

A

Notice that in expression (8), E,,(J;; ) and
E, (X, Jy) are, respectively, the tail prob-
abilities and tail means in stratum A4, and
w, in the formula for {X};} is the stratum
mean. It would be natural to estimate
these unknown quantities by their sample
counterparts. Note that we focus on the
problem of estimating the Winsorizing cut-
offs for use in future repeats of the same
survey. Therefore, the random variables
{X,;} in the above formulation refer to the
future time point when the sample is to be
drawn and the cutoffs defined by (8) are
approximately optimum for that sample.
Let {yp:i=1,...,m,h=1,...,H} be a
sample taken from a previous run of the
survey. Assume that these values were gen-
erated by the same random process that
will determine the future sample values as

described in Section 2.1. Then we obtain
the following estimator of the function
F(L) based on information collected in a
previous run of the survey

= L{l + > (m/my)
h

x Z " I(yh L)} ”h/mh
x Z Vil (Vi =
where Z* is the sum over i=1,...,my,
I is the indicator function
i = (Nu/mw = V) (Vi — 1) )

and y, = m;l Z Y- Our proposed tech-
IASRY
nique for estimatling Ly is to search for the
value of L such that f(L) =
Let yly =y = -+ 2V be the values
of {y;;} sorted in descendlng order. Notice
that f(y(1)) = »{1)» and f(y(,) is negative.
Furthermore, the function f is piecewise
linear, continuous and decreasing. There-
fore, one way to estimate L, is to sequen-
tially determine the values f(y(j)),
j=1,2,... and stop the first time f(y(;))
is negative. The estimated value of L, is
then obtained by linear interpolation
between y(;_;) and y(j). That is, estimate
L, by evaluating

L=1{y5f0G-0) =250 L)Y
{f( Y- 1) f(y(*j))}
and set K, = (N/ny, — )7L+ 3.

As can be seen from the process above,
estimating L, is particularly simple. The
values in each stratum are relocated by sub-
tracting the stratum mean and then scaled
by multiplying by the stratum weight
minus one. We then search for the point
where f(L)=0. This would typically
involve only the few largest y;; values.
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In the following section, in a computer
simulation study, we evaluate how well
performs our method of estimating the
optimum set of cutoffs.

3. Evaluation

Our primary interest in the estimation
scheme introduced in Section 2 lies in how
it may be applied to repeated surveys. In
particular, data from one survey are used
to estimate the optimum Winsorizing cut-
offs that are to be used in subsequent collec-
tions of the same survey. In our analysis
it is assumed that superpopulation models
governing the distribution of the popu-
lation units in a future repeat of the survey
and for the sample used to estimate the
cutoffs are identical, and statistically inde-
pendent. Typically both these assumptions
are made in practice when using data
collected in a previous repeat of the survey
to design future collections of the same
survey.

To evaluate the approach of Section 2
we simulate data using a known model of
stratum distributions based on a real
survey. For repeated samples from the
modelled population, the estimates K, are
obtained and the root mean squared error
(RMSE) and standard error (SE) of the
corresponding Winsorized estimator based
on an independent sample in a future
repeat of the survey is calculated. All
RMSEs in this analysis were calculated
from formulas and hence are exact. The
formulas for the RMSE were obtained
from expressions (A.1), (A.2) and those
just below (A.2) in the Appendix. The
exact RMSEs were evaluated by substitut-
ing K, into these expressions. The perfor-
mance of the estimator based on {K}} is
gauged by comparison of these RMSEs
with the standard error of the simple expan-
sion estimator.

Data from the quarterly survey of stocks

Journal of Official Statistics

run by the Australian Bureau of Statistics
(ABS) were used. This survey aims to
measure the value of all stocks of
materials, work in progress and finished
goods owned by private sector businesses
in Australia, see ABS (1990).

The population consists of about 463,000
businesses obtained from a list maintained
by ABS. The survey is stratified by industry
and each industry is stratified by up to five
employment size strata, the top size strata
being completely enumerated. The sample
size is 8,500. Since there are no Winsorizing
cutoffs in completely enumerated strata,
these strata have been excluded from any
further analysis.

The industries were grouped together
into four broad industry groups: Mining,
Manufacturing, Construction and Other.
We selected optimum cutoffs to minimise
mean squared error of the four broad
industry level estimates and another set of
cutoffs for the all industries level estimate.
The population was simulated from the
following model using a program written
in SAS.

For simplicity, we shall assume that
n, = my, for all h and also that the sizes of
the corresponding populations are the
same in all strata. Let {Y};} denote the
population values from which the sample
used to estimate the cutoffs was drawn. As
noted before, assume that {Y};} and {X};}
are independent and identically distri-
buted. Also assume that {X};} are indepen-
dent and

Xni = i GpiVii + (1 — Gp) Zy,; (10)
where

P(ly=1)=pp, Pl =0)=1-p,

0<pp<1

P(Guy=1)=1-¢, P(G,;=0)=c¢,

0<exl

log (V},) is distributed as a normal random



Kokic, Bell: Optimal Winsorizing Cutoffs for a Stratified Finite Population Estimator 425

variable with mean v}, and standard error 7,
and log(Z,) is a normal random variable
independent of V;. That is, the stratum dis-
tributions g, are mixtures of two lognormal
distributions with a point mass at zero. The
variable X); represents the level of stocks
held at a business. Frequently, businesses
do not hold any stocks at all, and hence
the value of p, in some strata was quite
small. The stratum level distributions of
the positive stock values were found to be
well approximated by a lognormal distribu-
tion. Under these circumstances the mixture
model at (10) fitted the data quite well. The
parameters pj, v, and 7, were estimated for
each stratum using 11 quarters of survey
data. Their estimates are given in Table 1.
The variable Z,; in the model is a gross
error term introduced to analyse the perfor-
mance of the Winsorized estimator in the
presence of unusually large observations.
For this study, the mean of log(Z,;) was
set to 3 units larger than the mean of
log (Vy), vy This implies that the gross
error term for stratum /4 has approximately
20 times the mean of the variable V};. For
the simulation study the values € = 0, 0.01
were chosen to cover most situations of
practical interest. When &=0.01 very
large observations will occur infrequently
in the population. In practice it is very diffi-
cult to accurately estimate totals from sam-
ples drawn from this type of population.
Notice that even when e = 0, since the log-
normal distribution can be highly skewed,
there was still a high probability of moder-
ately large observations occurring in the
sample of some strata.

To evaluate the performance of the
estimator of the cutoffs {K,} a computer
simulation study was performed. To pro-
duce a single value of the set of cutoffs
{K,}, a complete sample of data was gener-
ated using the model at (10). Using the
simulated data, the L values and hence the

cutoffs {Kj,} were then calculated using the
algorithm in Section 2.3.

For each of the industry level estimates,
1,000 independent replicates were pro-
duced. Simulated values of {Kh} corre-
sponding to the Sth, 25th, 50th, 75th and
95th percentiles of the L values were
obtained. For each of these sets of K
values, the total mean squared errors of
the corresponding Winsorized estimator
based on the independent sample {Xj;,
iesy,h=1,...,H} were calculated using
an exact formula derived for the model
(10). Tables 2 and 3 list the percentiles of
the simulated values of L, and the exact
RMSEs, SEs and biases under model
(10) of the corresponding Winsorized esti-
mators, relative to its expected value under
the model.

From the results in Tables 2 and 3 we see
that in most cases the Winsorized estimator
has considerably less RMSE than the
expansion estimator. In nearly all cases the
optimum value, Ly, was close to the 75th
percentile of the simulated values of L and
at the optimum the mean squared error of
the Winsorized estimator was always con-
siderably less than the variance of the
expansion estimator.

When there was no gross error term in the
model, that is when € = 0, the cutoffs were
estimated with a reasonable degree of accu-
racy, see Table 2. In fact, between the 25th
and 95th percentiles of L, the resulting esti-
mators were only slightly worse than the
optimum. In the case of Mining this range
of L values gave a Winsorized estimator
with RMSE within 14% of the optimum,
for Manufacturing this range gave an esti-
mator with RMSE within 3% of the opti-
mum and for Other within 2% of the
optimum. The effects of Winsorizing in the
Mining sector seem to have been most
dramatic probably due to the very long
tails of the stratum distributions. In this
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Table 1. Values of Ny, ny, py, vy and 7, by stratum. The first two digits of h represent
industry and the final digit indicates the size of the stratum within industry

h Ny ny Ph Vi h h Ny, 1y Ph Vi h
Mining

011 360 6 0.17 7.8 034 022 175 6 047 120 0.32
012 29 6 047 12.0 1.00 023 71 18 0.64 13.0 0.86
013 20 8 087 142 096 024 28 6 055 138 0.36
021 2123 55 026 103 1.4

Manufacturing

031 2505 6 0.66 7.5 1.05 142 189 6 094 114 0096
032 410 6 0.75 9.7 097 143 55 6 065 134 0.79
033 175 31 081 12,6 1.03 144 18 6 098 141 0.64
034 62 29 075 132 088 151 369 6 041 9.6 0.87
041 111 6 075 9.7 1.07 152 54 6 0.89 11.6 0.99
042 28 6 100 13.0 1.02 153 23 7 058 144 0.32
043 16 10 075 138 1.12 154 9 6 0.83 133 0.80
051 596 6 0.67 92 0.76 161 195 6 0.63 99 0.54
052 96 6 098 11.8 0.54 162 42 6 098 11.0 092
053 47 19 092 133 0.65 163 11 6 065 138 0.32
054 20 13 079 145 059 164 8 6 078 133 1.22
061 346 6 0.67 9.7 075 171 6815 428  0.68 94 1.11
062 56 9 085 125 072 172 899 132 0.83 114 0.95
063 21 19 0.77 149 072 173 308 99 0.81 12.8 0.87
064 11 10 094 145 079 174 59 20 072 141 0.57
071 815 6 0.65 9.8 0.81 181 1179 6 0.5 94 092
072 137 10 0.85 123 0.81 182 178 7 074 114 0.67
073 56 6 082 13.0 0.63 183 69 18 093 133 1.01
074 26 9 099 138 0.82 184 21 14 074 151 0.40
081 2954 8 0.56 86 0.78 191 1055 47 051 102 1.45
082 569 61 078 12.0 1.06 192 66 6 083 11.5 0.60
083 235 58 082 129 0.87 193 32 6 0.83 133 0.67
084 76 14 078 135 0.84 194 10 7 086 135 1.05
091 8192 250  0.71 9.5 1.08 201 824 6 0.70 8.1 0.78
092 868 105 083 11.6 0.77 202 76 6 100 121 1.28
093 288 45 093 128 1.06 203 24 6 072 11.5 1.04
094 53 12 086 145 0.70 211 1512 31 0.71 9.9 0.96
101 154 6 065 11.0 127 212 244 15 079 120 0.77
102 47 6 082 123 0.89 213 120 28 0.88 132 0.83
103 20 6 095 139 0.65 214 37 16 090 145 0.64
111 4218 110  0.68 84 093 221 2862 66 0.56 102 1.07
112 581 39 084 104 0.87 222 504 15 086 11.0 1.08
113 239 67 0.69 11.5 0.78 223 182 110 090 132 1.09
121 755 11 065 107 074 224 34 19 0.86 146 0.67
122 129 11 1.00 124 0.81 231 4528 186  0.71 9.1 1.54
123 75 18 091 139 0.60 232 457 66 0.88 12.0 0.91
131 52 6 051 100 1.07 233 213 95 0.81 13.0 1.18
141 1603 8 071 92 082 234 45 22 094 136 0.89
Construction

241 20106 682 031 105 133 262 242 24 0.65 120 1.34
242 199 34 062 121 1.15 263 94 28 072 137 117
243 42 6 051 134 1.01 264 23 6 080 135 0.97
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Table 1. Continued

h N, ny, Dh 8 Th h N, A 178 T
244 9 8 059 159 062 271 4459 35  0.26 93 122
251 1509 58 023 114 095 272 182 6 046 103 0.89
252 41 9 073 129 129 273 84 26  0.65 12.7 1.26
253 8 6 044 115 1.10 274 15 6 054 132 0.78
261 2420 103 034 106 1.25

Other

281 19 6 0.63 95 1.15 372 1331 12 0.80 10.1 1.31
282 7 6 075 13.0 0.66 373 296 9 083 112 092
291 1577 29 054 103 1.12 374 52 6 100 121 1.11
292 93 6 078 12.1 0.83 381 16915 430 0.66 104 1.22
293 18 6 042 124 090 382 1049 194 084 127 0.93
301 1478 97 0.61 10.7 131 383 395 162 0.8%8 13.8 0.83
302 116 29  0.82 133 097 384 72 53 092 148 0.63
303 28 10 0.75 141 098 391 5854 172 069 109 1.09
311 3500 122 054 106 1.13 392 232 31 086 122 092
321 8326 647 046 107 1.50 393 42 28 086 134 1.32
322 660 179 0.72 126 1.16 401 9229 78 0.75 10.0 0.85
323 176 134 071 13.7 121 402 626 6 0.86 9.3 0.88
341 7281 235 0.57 105 124 403 41 6 077 100 1.56
342 481 109 081 129 1.04 411 7518 51 0.34 82 0.71
343 118 49 080 14.1 0.83 412 345 8 0.17 8.4 1.40
351 21725 1992 061 109 1.37 421 46688 1271 0.69 10.3 1.07
352 1792 476 0.79 12,5 131 422 1295 80 0.73 11.2 1.03
353 516 345  0.82 139 1.09 423 155 58 078 129 1.30
361 22057 398  0.68 10.6 0.84 424 20 13 0.74 142 0.79
362 639 46 087 124 0.72 431 27550 54  0.67 83 091
363 157 25 0.76 132 0.79 432 3630 72 0.78 10.2 0.80
364 33 12 080 14.6 042 433 1061 15 0.78 104 091
371 53720 291 0.64 8.8 1.19 434 158 6 088 114 0.5

case the possible gains from Winsorizing
were much greater. The amount of bias
induced by Winsorizing is for most cases
virtually insignificant except in the case of
Mining for the reasons described above.
There was only a small chance of signifi-
cantly underestimating the cutoffs and actu-
ally obtaining a Winsorized estimator with
RMSE larger than the expansion estimator.

When ¢ was set to 0.01, see Table 3, the
performance of the Winsorized estimator
was considerably better than the simple
expansion estimator. For most values of
the estimated cutoffs, the Winsorized esti-
mator significantly outperformed the
expansion estimator. In fact, between the

5th and 95th percentiles of L the Winsor-
ized estimator nearly always had consider-
ably smaller RMSE than the expansion
estimator. Furthermore, the ratio of the
relative RMSEs of the Winsorized esti-
mator at the 50th percentile of L to the
RMSE of the expansion estimator was
considerably less when € = 0.01 than when
e = 0. In other words, when the population
is contaminated with a small proportion of
very large outlying observations, there is a
very high chance that the estimated cutoffs
will result in a Winsorized estimator with
considerably smaller RMSE than the
expansion estimator. As demonstrated in
Table 2, even when there are not many out-
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Table 2. Exact RMSEs, SEs and biases relative to expected total of the Winsorized esti-
mators corresponding to percentiles of the simulated L values, ¢ = 0

Percentile L (=10%) Relative Relative Relative
RMSE % SE % bias %

Mining

5 3.3 254 12.0 -22.4
25 5.2 19.9 13.4 -14.7
50 7.6 18.3 14.5 -11.2
75 12.2 17.8 16.4 —-6.9
95 29.0 19.5 19.3 -2.9
Expansion 00 26.0 26.0 0.0
estimator
Manufacturing

5 12.6 3.3 2.7 -1.9
25 16.0 3.0 2.7 -1.3
50 19.2 3.0 2.8 -1.0
75 244 2.9 2.8 0.6
95 39.8 3.0 3.0 0.2
Expansion 00 3.2 3.2 0.0
estimator
Construction

5 15.8 10.9 7.3 -8.1
25 20.6 9.6 7.6 -5.8
50 27.1 9.1 8.2 —4.0
75 36.5 9.1 8.7 -2.5
95 65.7 9.5 9.4 -1.0
Expansion 00 10.5 10.5 0.0
estimator
Other

5 36.1 2.2 2.0 -0.9
25 40.9 2.1 2.0 -0.7
50 48.4 2.1 2.0 -0.5
75 65.0 2.1 2.1 -0.3
95 122.0 22 2.2 -0.1
Expansion 00 2.2 2.2 0.0
estimator

lying observations in the population there is
still a high probability that the estimated
cutoffs will be reasonably good.

Notice also that the percentile values of L
and hence of the cutoffs are greater when
€ = 0.01. This illustrates the fact that the
optimum Winsorizing cutoffs depend to
some extent on the size of the outlying
observations.

There is a very wide range of L values
which produce a Winsorized estimator

with smaller mean squared error than the
expansion estimator. Thus, even though L
depends on the largest values from each
stratum, and so is estimated with a high
degree of variability, the flatness of the
optimum ensures that with high prob-
ability the resulting Winsorized estimator
has smaller mean squared error than the
expansion estimator.

The RMSE of the Winsorized éstimator
was also minimised over all possible values
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Table 3. Exact RMSEs, SEs and biases relative to expected total of the Winsorized esti-
mators corresponding to percentiles of the simulated L values, e = 0.01

Percentile L (+10°% Relative Relative Relative
RMSE % SE % bias %

Mining

5 4.1 424 19.6 -37.6
25 7.3 37.5 20.2 -31.6
50 14.7 333 21.8 -25.2
75 333 30.9 25.1 -18.0
95 113.0 36.1 353 -1.5
Expansion 00 70.0 70.0 0.0
estimator
Manufacturing

5 33.7 7.6 4.5 -6.1
25 50.6 6.5 4.8 -4.4
50 70.0 6.1 5.2 -3.2
75 98.2 5.9 5.5 22
95 190.9 6.3 6.2 -0.9
Expansion 00 74 7.4 0.0
estimator
Construction

5 33.2 22.5 9.5 -20.4
25 57.1 18.5 11.0 -14.9
50 89.5 16.6 12.5 -10.9
75 133.3 16.0 13.9 -1.9
95 280.9 17.5 17.1 -3.6
Expansion 00 24.6 24.6 0.0
estimator
Other

5 103.7 5.1 33 -3.9
25 139.6 4.9 3.4 -3.5
50 183.3 4.3 3.8 -2.0
75 254.5 4.2 4.0 -1.3
95 472.6 44 44 -0.5
Expansion 00 5.1 5.1 0.0
estimator

of K, by solving (2) exactly. It was found
that the RMSE of this overall “best”
possible Winsorized estimator was only
slightly smaller than the minimum RMSEs
achieved by the Winsorized estimators in
Tables 2 and 3. This result indicates that
the degree of error associated with using
the approximate formula for the optimum
K, is relatively minor and can usually be
ignored.

It is clear from the analysis above that the

Winsorized estimator nearly always outper-
forms the expansion estimator in terms of
mean squared error. It is also useful to
examine the risk, or frequency, with which
unusually large errors are made by each esti-
mator. To perform this analysis, for each of
the industries 1000 independent replicates
of the absolute relative error, | 7/T — 1|,
of both the Winsorized and expansion esti-
mators were produced. To be consistent
with the previous analysis, the sample used
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Table 4. Estimated percentiles of the absolute relative errors of the Winsorized and expan-
sion estimators. Based on 1000 independent simulations

Percentile e=0 e =10.01
Expansion Winsorized Expansion Winsorized
estimator estimator estimator estimator
Mining
10 0.028 0.029 0.056 0.067
25 0.072 0.067 0.129 0.150
50 0.139 0.139 0.259 0.266
75 0.242 0.225 0.400 0.374
90 0.342 0.313 0.597 0.473
Manufacturing
10 0.004 0.003 0.010 0.011
25 0.010 0.009 0.023 0.023
50 0.021 0.020 0.047 0.047
75 0.036 0.035 0.079 0.076
90 0.053 0.051 0.113 0.104
Construction
10 0.012 0.012 0.021 0.033
25 0.032 0.032 0.063 0.078
50 0.066 0.066 0.134 0.139
75 0.117 0.114 0.218 0.213
90 0.164 0.154 0.305 0.279
Other ‘
10 0.002 0.003 0.006 0.007
25 0.007 0.007 0.015 0.017
50 0.015 0.015 0.031 0.031
75 0.025 0.024 0.055 0.052
90 0.035 0.035 0.079 0.076

to calculate the estimates of the total was
drawn independently of the sample used to
calculate the Winsorizing cutoffs. Various
quantiles of these absolute relative errors,
as given in Table 4, provide a useful
comparison of the risk associated with the
estimators.

In general the Winsorized estimator
nearly always outperforms the expansion
estimator above the 50th percentile of
absolute relative error. These benefits are
more clearly illustrated when comparing
the results for the population with more
outliers to the one with fewer extreme obser-
vations. At the 75th and 90th percentiles of
absolute relative error, when € = 0.01, the

relative improvement obtained from Win-
sorizing is quite dramatic and much greater
than when € = 0. However, at the same time
the Winsorized estimator performs slightly
worse at the lower percentiles of absolute
relative error when & = 0.01. These facts
illustrate the trade-off between bias and
variance of Winsorizing. The protection
that is obtained against extremely large
errors from Winsorizing is usually at the
price of introducing a small amount of
bias in estimation.

4. Conclusions

Winsorizing in sample surveys is a practical
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and effective tool for improving the effi-
ciency of estimation. As large outlying
observations are a common and serious
problem in many sample surveys, their
treatment is usually necessary. However,
there is a hidden danger in Winsorizing:
that is, if the cutoffs are set to the wrong
value there is a significant chance that the
resulting estimator will be worse in terms
of its mean squared error than the original
estimator. The technique presented in Sec-
tion 2 of this paper provides a reliable
method of estimating the optimum Winsor-
izing cutoffs for the expansion estimator in
repeated surveys. If the cutoffs are esti-
mated from a previous independent run of
the survey, there is a high probability that
the Winsorized estimator will have con-
siderably smaller mean squared error than
the simple expansion estimator.

The results described in the evaluation
section of this paper indicate that the tech-
nique works effectively in practice. As
expected, when outliers are not present in
the sample data the advantages of Winsoriz-
ing are only minor. In this situation there is
also a small chance that the resulting esti-
mator has slightly larger mean squared
error than the simple expansion estimator.
However, when a small proportion of
extreme outliers is present in the sample,
Winsorizing the expansion estimator
according to the technique described in
this paper leads to a considerable improve-
ment in the general performance of the
estimator.

The Winsorizing technique described in
this paper is also applicable to one-time
surveys. Computer simulation results (not
presented here) indicate that if the cutoffs
are estimated from the current sample
data, then the Winsorized estimate of a
total based on the same sample has con-
siderably smaller mean squared error than
the corresponding expansion estimator.

For model (10), the improvements are of a
similar magnitude to those for the Winsor-
ized estimator given in Tables 2 and 3.

There are a number of practical issues
that arise when Winsorizing survey data,
which have not been dealt with in this
paper, but that may be worthy of future
investigations. Firstly, the cutoffs are opti-
mum only at the level which estimates are
being formed. If estimates are also required
at a finer level of categorisation, then either
the cutoffs will have to be recalculated or
the original cutoffs used. In the former
case more efficient estimates will result.
However, the estimates of totals at the
finer level of categorisation will not sum to
the estimate of the total at the higher level,
which often is of serious concern to users
of survey results. In the latter case this is
not a problem. However, estimates of the
total in the subcategory may be less effi-
cient than those obtained using the opti-
mum Winsorizing cutoffs. This may not be
a major concern as according to our analy-
sis there appears to be a wide range of
cutoffs that result in reasonably efficient
estimators.

Secondly, the Winsorizing cutoffs in this
paper have been chosen to produce opti-
mum estimates of level. In repeated sur-
veys, estimates of change in level or
movement are also important. It is not
clear how the individual movements can
be Winsorized in a natural way. The most
sensible course of action seems to be to
Winsorize each survey’s data as described
in this paper, but to choose cutoffs that
minimise the mean squared error of move-
ment. Such cutoffs could be expected to be
lower than those for minimising the mean
squared error of level since the biases
created by Winsorizing the level estimates
would partly cancel each other in the
Winsorized estimate of movement.

Finally, it is possible to generalise
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Winsorizing when auxiliary information is
available for all units in the population.
As mentioned in the Introduction, the
estimator, T, is in fact a special case of the
robust finite population estimator examined
in Chambers (1986). This relationship
suggests a fairly straightforward extension

Appendix
Proof of Theorem 1

Journal of Official Statistics

of Winsorizing to the case where the survey
variable is related to the auxiliary variables
according to a linear regression model.
The cutoff will then be a function of the
auxiliary variables. The theory developed
in this paper may be appropriate for find-
ing the optimum cutoff function in this case.

To find the minimum we differentiate E{(7 — T )*} with respect to K}. From Cochran
(1977, p. 23), the design mean squared error is

2
E (T =T)} = Ny(Na/my — 1)SE(Ky) + [Z N{ X, (K;) - X’h}:'
T 7

where

Xh = Nh—l ZX;"', Xh(Kh) = ]Vh_l ZXhi(Kh)

and

Si=®Ny—1)7" Z{Xhi(Kh) — Xu(Kn) ).

Hence the total mean squared error is

E{(T-T)}} = ZNh(Nh/nh — 1)Var, {X,(K;,)} + Ztharm{Xh(Kh) = X}
P’ h

+ Y ME{X,(K,) - X,}]
T

2
(A1)

The final term inside the square brackets above is the total bias B. We may calculate an
expression for each term in (A.1) under our modelling assumptions at (1) as follows.

Note that
Xn(Kn) = Xy + (1 = f3) (Ky — Xp) T
Hence the bias

B=Y " NiE,{Xy(K;) — X;}
7

=Y Ni(1 = i {KhEp (1) — En(Xi 1)}
h

Also, since

(A.2)

En{XP(Ki)} = oi + pi; + (1= i) (K7 En(J) = 2K4Eps (X Ty) + En(X} 1)}
+ 2(1 = fi){KhE(Xp i) = En(Xi2 T1)}
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Var, {X,(K)} = oF + (1 = fi) [KP En(Jh) = 2KnEp(XnTh) + En(Xil J1)
~ {KhEn(J4) = En(XnIn) Y]+ 2(1 = fi) { Ko En (X 1)
= K ttnE(T) = (X0 T4) + thEn(XnTh)}-
Likewise,
Var, {X,(K,) — Xp} = (1 = i) [KZ En(J1) — 2Ky Ep(X3J4) + En(Xi J4)
— {KhEm(1) = En(Xn )},
To find the derivative of (A.1) note that for p > 0

oo

En(X] 1) = | w7

Ky
and so
0
mEm(Xif’Jh) = —K/gn(Kp).
Thus, after some simple algebra, we may show that
OB

3K, Ny(1 = f3)En(J3)

%Varm{th)} = 2(1 = ) KnEn(Th) — En(Xn J)}1 = En(T)}

+ 2(1 _fh){Em(Xth) - uhEm(Jh)}
and

-a-%Varm{Xh(Kh) — X} = 201 = [y K En(T) — En(Xa ) H1 = En(J)}-

Consequently,

%E{(T— T2} = 2NN /s = (1 = iV A Kn ) — Em X T} — En(T)}

+ 2(N2 /1) (1 = i) L E (X0 Th) = 1 E(T)}
+ No(1 = ) { K Em(T1) = Em(X3 i) H1 = En(J4)}
+ 2BN;(1 = fu) En(Jp)

= 2(Ni? /m) (1 = fi) Em(T){ K = 1 = KnE(T4) + En(Xi J1)}
+ 2BN,(1 = f3) Ep(J1)- (A.3)
As E,,(J;) > 0, on setting the RHS of (A.3) to zero we obtain the relationship at (2). We

now show that the set of K}, values satisfying (2) minimise E{(T — T 2}

Note that by (A.2), B> — Y Ny(1 - fi))m, and so
F) h

a—mE{(f' -T)Y}>0

for all K, > pp + (Ny/my — 1) ZN,,(I — i)y Also as K, — 0
7
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B—%—hE{(T —T)*} = 2N,(1 —f,)B < 0.

Thus, since the derivative is continuous, the minimum of E{(T — T )*} must occur at a
local minimum. The only candidate for a local minimum is the set {K,} satisfying (2).
Let us evaluate the second partial derivatives at this point. Now
i .
a2 EUT = T} = 2N /m) (1 = /i En(I){1 = En(I)} + 2{Ni(1 = fi) En(J)}*
h
at the solution of (2), and for & # k
i A
WE{(T —T)*} = 2N, Ni(1 = i) (1 = fo) E(J1) Epa (Jic)-

If A is a matrix with the kth element in the hth row equal to (82 /8K, 0K;)E{(T — T )*} at
the solution of (2) and x” = (x1,...,Xxg), then for all x,

2
x"Ax = {thNh(l —fh)Emuh)} + 325 (Nu/m) (1 = i) En(In){1 = Em(J4)} > 0.
h h

That is, A is positive definite, so the solution of (2) is a local, and hence a global minimum of
E{(T-T)"}.

Finally, the expression immediately after (3) follows by multiplying both sides of (2) by
ny, summing over the subscript 2 and applying expression (A.2). This completes the proof
of Theorem 1.

Proof of Theorem 2
From (A.2) it follows that B < N, (1 — f,){KLE.(J},) — E,.(X,J,)}. By this relationship,
n,/ Ny, < 1, and (2) it can be seen that

Ky — i = (ny — V{E, (X Ji) — K4E(Jy)} = 0. (A4)

By (A.4), since X}, has a non-degenerate distribution and », > 1, Kj, — p;, > 0. Thus from
(A.4) and (2)

0> 1+ B/{(Ny/my, —1)(Ky — )}
= {KyEn(Jy) = En(Xu J))} (K — ) = — (mp = 1) (A.5)

Since forany 0 < 6 < 1,if0=>1+y> —6then0<1+y ' <1—(1+6)7", we see that
(A.5) implies (4).
To prove the second part of the theorem we begin by showing that

m}?x(Kh — ) — oo as N,n— oo. (A.6)
We shall prove this by contradiction. Assume that for all 4, K, — pu;, < M. Since
0
_{Em(Xth) - KhEm(Jh)} = '_Em(']h) <0
0K,

E(XnJp) — KhEp(Jy) 2 Ep[{ Xy — (M + ) M (X, > M + )] > 0.
Therefore there exists a § > 0 such that for all A
Em(Xth) - KhEm(Jh) >0
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and hence it follows from (A.4) that for all sufficiently large n,
m'allx(Kh — ) = 6m;1x(n,, -1 =zén/H-1)>M
where H is the number of strata. This contradicts our original assumption and so the result

at (A.6) must hold. It is now a simple matter to establish (5). Since B <0 and
n,/N, < 1 — ¢, it follows from (4) that for all 4,

—B > (Ny/ny — 1)(Kp — 1)
>{(1=e) = 11Ky — ).
Therefore by (A.6), B— —oco as N,n — oo. Also since n;,/N, > € and n, > 1
(7! = 1)(Ky — pa) > (Na/ny = 1)(Ky — p14)
B(n' 1)
> — B/2.

WV

Therefore, for each s, K}, — p, — oo as N,n — oo. This result, the relationship at (A.5) and
since E(X},) < oo implies that

1+ B/{(Ny/ny — 1)(Ky — )} — 0

as N,n — oo. Result (5) of the theorem follows from this expression.
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