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Organization of Small Area Estimators Using a
Generalized Linear Regression Framework

David A. Marker 1

1. Introduction

For the last 25 years the special problems of deriving estimates for small areas or domains

(subsets of the entire population) from sample surveys have received increasing attention

within the survey sampling literature. Many attempts to derive such estimators have been

either ad hoc approaches for speci®c problems, assuming speci®c models for the data, or

attempts to apply large-sample sampling theory to problems of small samples. In this

article existing small area estimators are described, including Bayesian ones that have

been proposed. The goal is to develop a more coherent understanding of the problem

and methods with which such estimation can be undertaken.

The typical survey sampling approach to estimation is to design the survey to produce

design-consistent estimates, that is, estimates whose expectations over the set of all

possible samples are consistent for the unknown parameters. Kish (1987) points out that

not all domains for which estimates are desired are ``major domains,'' that is, domains

of the population for which design-based estimates of acceptable precision can be pro-

duced. Frequently estimates for smaller ``minor domains'' are desired but the standard

design-based estimates are too unstable.

Minor domains of interest depend on the subject matter. In many demographic and

health surveys, minor domains of interest include geography, and combinations of race,
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age, sex, and ethnicity. Examples of geographical small area estimates (derived from a

national survey) that are frequently discussed are state-level health indicators, inter-censal

population and housing estimates for states and counties, and poverty indicators for school

districts. This article examines estimators only for geographical domains, although some

of these estimators may also be appropriate for other types of domains.

When the domains of interest are known in advance it may be possible to design the

sample to ensure that suf®cient sample sizes are available for each domain to allow for

precise design-unbiased estimates (Singh, Gambino, Mantel 1994). Auxiliary variables

may be used to improve the precision of design-unbiased estimates. The traditional survey

sampling ratio, regression, and post-strati®ed small area estimators are all methods for

incorporating auxiliary data into the estimation procedure. SaÈrndal and Hidiroglou

(1989), Cassel, Kristiansson, RaÊbaÈck, and WahlstroÈm (1987), and Ghangurde and Gray

(1978) give examples of using such estimators, the ®rst two modifying traditional regres-

sion estimators based on the set of observed residuals and the third using regression to

adjust unbiased direct estimates. However, using auxiliary data in conjunction with the

observed data in a non model-dependent manner may not be suf®cient to provide precise

estimates. Budgets may prevent one from allocating enough sample to all domains. Also,

additional domains are often speci®ed after the survey is designed. It is therefore common

to encounter domains of interest for which the sample data are insuf®cient to provide pre-

cise design-unbiased estimates. It is then necessary to ``borrow strength'' from the data

observed from other domains or time periods using some form of model-dependent esti-

mator to improve the stability of the estimates.

Survey sampling practitioners, empirical Bayesians, and Bayesians frequently disagree

on the philosophical basis for estimation, but small area estimation is one area where

there is a consensus on the need for model-dependent estimation. This article reviews

the different small area estimators developed by these three groups of statisticians

(survey sampling practitioners, empirical Bayesians, and Bayesians) and explains the

interrelationships between the different estimators.

2. Interrelationships Among Small Area Estimation Techniques

Researchers and practitioners with different statistical philosophies have developed

different procedures for the derivation of small area estimates and measures of their

accuracy. Ghosh and Rao (1994) provide an excellent description of many of the techniques

found in the current literature, pointing out the importance of the level of aggregation at

which the models are developed. In this article the estimators are organized from a general

linear regression perspective, summarizing and showing where certain methods can be

viewed as minor variations or generalizations of others. It is hoped that this will lead to

a clearer understanding of the present techniques and their interrelationships.

The next subsection contains a review of estimators developed using the traditional survey

sampling approach. Later subsections review empirical Bayesian and hierarchical Bayesian

approaches. In Section 3 the interrelationships between the estimators are summarized.

2.1. Traditional survey sampling approach to small area estimation

It is appealing to consider sample designs such that direct estimates of adequate precision
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can be obtained for all domains of analytic interest from the sample data. The properties of

direct estimators (Schaible 1993a) are well known and free of any dependence on models.

Unfortunately, there is frequently a need for estimates for domains for which the direct

estimators are subject to unacceptably large variances, if direct estimates can be obtained

at all. Survey statisticians have proposed a number of small area estimators in an attempt to

overcome this limitation.

This section will describe how these estimators can be placed in a general linear

regression framework of the form Y � B0 � B1X1 � B2X2 � B3X3 � . . . � e where Y is

a continuous variable, the X variables are (assumed) known predictor variables, and the

B's are regression coef®cients. The relationship of the estimators to regression is

developed here to explain their commonalities and to give guidance on how the methods

can be generalized. Various small area estimators make assumptions regarding whether

the predictor variables, X, are continuous, ratios, or indicator variables, and also about

the form of the error structure of Y .

Nine different survey sampling approaches are reviewed here. Seven of these are

described by Purcell and Kish (1979): symptomatic accounting techniques (SAT), regres-

sion-symptomatic (also known as symptomatic regression or ratio-correlation) procedures,

sample regression, synthetic estimation, the base unit method, synthetic regression, and

structure preserving estimation (SPREE). Two others ± the vital rates method and com-

ponents of variance regression ± have been added to their enumeration. Apart from the

SAT and SPREE, all of these methods can be formulated in the regression framework.

Only SAT is nonstochastic; it will be described brie¯y before discussing the other

procedures. The SAT and vital rates methods are concerned exclusively with estimation

of vital statistics or the population at the small area level, whereas the remaining methods

are of more general application. Therefore, we discuss the SAT and vital rates methods

before proceeding to the remaining methods.

2.1.1. Symptomatic accounting techniques

The SAT simply updates old census ®gures by adding or subtracting values of variables

directly related to (symptomatic of) the change of interest. For example, in estimating

population sizes for small areas symptomatic variables are births, deaths, immigration,

and migration. If all factors in¯uencing the variable of interest could be independently

listed and measured, there would be nothing else needed. The updated population for an

area could be simply estimated as: (previous population)� (registered births)ÿ (registered

deaths)� (immigration)ÿ (emigration).

Unfortunately, births are not always easily assigned to small areas, some births may go

unregistered, and migration is dif®cult to measure. Applications of the SAT assume this

model to work without error. Since this small area technique is nonstochastic, it will

not be considered further.

2.1.2. Vital rates

The SAT can be generalized (Bogue 1950) using the rates of change in births and deaths

rather than the counts of births and deaths. Implicit in this vital rates method is the assump-

tion that the ratio of the birth (or death) rate for a given small area to the birth (or death)

rate for a larger region remains constant from one census to the next. (Birth rate is de®ned
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as the number of births divided by the size of the population.) If these rates have been

stable or falling since the last census, then this assumption of a constant ratio of rates

may be sound. If, however, the rates are rising, then this assumption of the constant ratio

of rates assumption is unlikely to hold in practice.

To demonstrate how the vital rates method is a regression technique, consider for

example the problem of estimating the population for small area i within state s, with

the small areas a mutually exclusive and exhaustive partition of s. The number of births,

Bit, is available from hospital or local records. The population of small area i is estimated

from its birth rate, BRit, which itself must be estimated. The vital rates technique assump-

tion of a constant ratio of birth rates over time (for all small areas i in state s) is given by

�BRit=BRst� � �BRi�tÿ1�=BRs�tÿ1��, where BRit is the birth rate in small area i from time

period t ÿ 1 to t, and BRst is the birth rate in state s (which contains small area i) from

time period t ÿ 1 to t.

It is assumed that the state-level rates BRs�tÿ1� and BRst are available from of®cial

sources, as is the small area i birth rate from the previous period BRi�tÿ1�. Thus, the current

birth rate in small area i is, under the constant ratio assumption, given by

B ÃRit �
BRst

BRs�tÿ1�

:BRi�tÿ1� �1�

The vital rates estimate of the population total for small area i at time t is Popit � Bit=BRit,

where Bit is the number of births in small area i from time period t ÿ 1 to t.

The vital rates technique assumes that no knowledge is gained about state s or its small

areas by examining other states; therefore, it is appropriate to develop a separate univariate

regression model for each state. One possible univariate regression model for each state is

a model without an intercept term:

Yi � BXi � ei E�ei� � 0 V�ei� � j2Xi=Wi �2�

where Yi � BRit; Xi � BRi�tÿ1�; Wi � �Ni�tÿ1��=�Ns�tÿ1��; Ni�tÿ1� is the population in small

area i at time t ÿ 1; and Ns�tÿ1� is the population in state s at time t ÿ 1. Wi, the proportion

of the state's population in small area i, is assumed not to have changed from time

t ÿ 1 to t. The variance assumption V�ei� � j2Xi=Wi implies small areas with large birth

rates will be most variable, as will those small areas with smaller populations, Ni. The

weighted least squares estimate of ÃB is:

ÃB �

X
ies

YiXi=�Xi=Wi�X
ies

X2
i =�Xi=Wi�

�

X
ies

WiYiX
ies

WiXi

�
BRst

BRs�tÿ1�

�3�

It follows from Equation (2) that

B ÃRit � ÃBXi �
BRst

BRs�tÿ1�

BRi�tÿ1� �4�

This is equivalent to the vital rates assumption found in Equation (1). Thus, under the

model in (2), the vital rates technique is simply the weighted least squares solution to

univariate regression.

It is worth noting that if the assumption that the Wi are stable across time holds, the
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population in small area i could alternatively be estimated by Nit � WiNst, without using

the model in (2). If the Wi vary across time Equation (3) can still be used but it will yield a

weighted average of the BRit that is not necessarily equal to BRst.

2.1.3. Symptomatic regression

Symptomatic regression uses data from two past censuses to determine for a set of small

areas the relationship between changes in the variable of interest and changes in a set of

symptomatic variables. That relationship is then used to predict the change in the variable

of interest for each small area from the most recent census to the current time from

observed changes in the symptomatic variables during the same period.

The symptomatic regression procedure takes the ratio for each symptomatic variable of

the most recent census to the preceding census as the independent variables for each small

area. The corresponding ratio for the variable of interest is then regressed on the

symptomatic variables. The same ratios for the symptomatic variables are derived using

their present values and the most recent census data to obtain the updated values of these

variables. Combining these current values of the symptomatic variables with the

previously derived regression coef®cients provides an estimate of the change since the

last census in the dependent variable. By multiplying this number by the dependent

variable's value at the time of that census the symptomatic regression estimate for the

present period is determined.

The multiple symptomatic regression method uses the model Y � XB � e, e , N�O;S�;

where Y is an �I ´ 1� column vector �Y1;Y2; . . . ;YI�
0; Yi; i � 1; . . . ; I, are the ratios for the

dependent variable in each small area i of the most recent census to the preceding census;

X is an �I ´ p� design matrix of Xir; i � 1; . . . ; I and r � 1; . . . ; p, the ratios of the most

recent census values to the preceding census values for area i for the p symptomatic

variables (e.g., number of births or income tax forms ®led); and S � diagfj2
g, an I ´ I

matrix. The least squares estimate for B is then ÃB � �X0X�ÿ1X0Y.

The small area symptomatic regression estimation procedure uses the estimate
ÃY�

i � X�
i

ÃB, where X�
i are the p symptomatic variable ratios of their present value to their

value at the time of the most recent census for small area i. The estimate of change ÃY�
i is

then multiplied by the most recent census value for the small area to give the symptomatic

regression estimate of the present total for small area i. As with the vital rates method,

symptomatic regression is thus a form of multiple regression on a set of symptomatic

variables.

Purcell and Kish (1979) noted that this method is based on the assumption that the

statistical relationship between the independent and dependent variables in the last

intercensal period will remain the same in the current postcensal period. In addition to

depending on the stability of this relationship over time, the symptomatic regression

procedure's accuracy relies on the strength of the multiple correlation of the symptomatic

variables with the dependent variable.

Bogue's vital rates method can be generalized into the multivariate framework (Schmitt

and Crosetti 1954) by choosing among a variety of symptomatic variables based on their

historical correlations with the dependent variable. Current versions of the vital rates

method would use multiple correlations (multiple regressions) rather than univariate

associations. Symptomatic regression has been applied to produce estimates of population
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(Bogue and Duncan 1959), retail trade (Woodruff 1966), and single-family housing

permits (Otelsberg 1981). Pursell (1970) and Martin and Serow (1978) examined the

utility of including dummy variables in the symptomatic regression as a form of

pseudo-strati®cation.

Some researchers have also used symptomatic regression in combination with other

small area techniques. For example, the U.S. Bureau of the Census has averaged three

different methods, multiple symptomatic regression, administrative records, and

component method II (U.S. Department of Commerce 1974 and 1980), to derive its

population and per capita income estimates for states, counties, and sub-county areas.

Four symptomatic variables are used in the symptomatic regression: school enrollments,

number of Federal income tax returns, car registration, and size of work force. The

administrative records and component method II methods use symptomatic accounting

techniques to track births, deaths, and the elderly, and the vital rates methodology to track

migration at the sub-county level. Just as multiple symptomatic regression and vital

rates have been shown to be a form of regression, so too is the U.S. Bureau of the

Census's method.

2.1.4. Sample regression

One of the major drawbacks of the symptomatic regression technique is that it assumes a

constant relationship between the independent and dependent variables reaching back to

the census preceding the most recent one. The sample regression method introduced by

Ericksen (1973), and based on earlier work by Hansen, Hurwitz, and Madow (1953),

instead makes use of sample data on the dependent variable for a sample of small areas.

The sample regression method can use any variables that are available for all small areas

as explanatory variables, but in all of its small area applications the changes in

symptomatic variables since the most recent census have been used. As with symptomatic

regression, Ericksen's method requires a linear relationship among the variables.

The sample regression method follows a similar procedure to symptomatic regression

but has a less demanding set of assumptions. Rather than estimating the regression

coef®cients from ratios of symptomatic variables from one census to the next, sample

regression uses the relationship between aggregate-level sample estimates and explanatory

variables for a sample of small areas. The coef®cients are computed from a regression that

is only computed for those small areas with available sample data, but these coef®cients

are then applied to all small areas. Traditionally, the sample regression estimator has used

ratios of current values to the most recent census value for both the dependent and

explanatory variables. It is this historical version of the sample regression estimator that

is described below.

Suppose that sample data are available for only n of the I small areas. The sample

regression method can be written as Y � XB � e, e , N�O;S�; where Y is an �n ´ 1�

column vector of yi; i � 1 . . . ; n, the ratios of the most recent small area sample estimate

in area i to the previous census value for small area i; X is an �n ´ p� design matrix of

Xir; i � 1; . . . ; n and r � 1; . . . ; p, the ratios of present values to previous census values

in area i for the p symptomatic variables (e.g., number of births or income tax forms ®led);

and S � j2I � T , where I is an n ´ n identity matrix and T � diagftig is a diagonal matrix

of sampling errors for each small area i. The weighted least squares estimate ÃB of B is used
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with the Xir to compute the estimates for all of the I desired small areas in the same manner

as with symptomatic regression, with ÃB � �X0Sÿ1X�ÿ1X0
P

ÿ1 Y.

Sample regression no longer requires consistency of the relationship between the X and

the Y over more than one census period but assumes that the relationship holds across all

areas i since the last census. The trade-off is the additional variance from the two-stage

sampling procedure, ®rst choosing a sample of small areas and then sampling within those

areas. The sample regression method also depends on the representativeness of the two-

stage sampling process, choosing a sample of areas i and then sampling within those areas.

If the sample of areas (or the samples within the areas) is not representative (with respect

to the independent variables) of the full range of areas, extrapolating the regression

coef®cients to other areas may produce poor estimates. The less-restrictive set of assump-

tions shows the sample regression method to be a generalization of the regression

approach to small area estimation.

The sample regression method has been applied to the undercount in the 1980 U.S.

decennial census (Ericksen and Kadane 1987). Successful extrapolation to nonsampled

small areas is dependent on the sampled areas being representative of the range of values

taken by the independent variables used in the regression equation. If it is anticipated that

small area estimates will be developed using this approach, the sample design for the

survey should include this consideration when ®rst-stage strati®cation variables are

determined.

This approach can be improved on for small areas that were included in the sample

(Ghosh and Rao 1994). For these areas a weighted combination of the direct small area

estimator and the sample regression estimator can be produced (see the discussion in

Section 2.2). For the many small areas without sample data this does not provide any

improvement over the sample regression estimator.

2.1.5. Components of variance regression

Vital rates and symptomatic regression do not rely on any sample data to produce small

area estimates, instead relying on stable relationships across time. Sample regression

uses sample data at the small area level for a sample of small areas. Unlike the earlier

regression models that are modeled at the small area level, the components of variance

regression model is at the element level.

In the components of variance regression method, the error term has two components,

one random and the other small area speci®c (Fuller and Harter 1987). The model is

Y � XB � e, where each element of e; eik, can be divided into an area-level error term,

vi, and an element-level error term, uik, that is, eik � vi � uik, where i � 1; . . . ; n;

k � 1; . . . ; ni; and ni is the number of individual elements (e.g., people, establishments)

sampled in small area i. Y is a �Sni ´ 1� column vector of yik and X is a �Sni ´ p� design

matrix (p is the number of independent variables); V is a �Sni ´ 1� column vector with the

®rst n1 rows v1, the next n2 rows v2, etc., U is a �Sni ´ 1� column vector of uik,

V , N�O;Svv�, and U , N�O;Suu�.

The least squares regression estimates, ÃB � �X0X�ÿ1X0Y, are computed for B. The

average residual for small area i; Åei, is then computed for each small area. Given the

assumed error structure, E�vijÅei� � ÅeiGi, where Gi � �
P

vv �nÿ1
i Suu�

ÿ1Svv.

Thus it is possible to produce estimates of vi for each small area. This allows each small
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area to have an area-speci®c component, while the regression equation provides an overall

estimate across all small areas. It is important to observe that vi cannot be estimated for

small areas i without any sample data. In such cases vi is estimated as zero.

The components of variance approach can be expanded to include multivariate

regression (Fay 1987) or to allow each sub-area (e.g., counties), in addition to each small

area (e.g., states), to have a separate means by splitting vi into two terms, one for the sub-

area within the small area and one for the small area itself (Pfeffermann and Barnard 1991).

The Pfeffermann and Barnard model de®nes the error term as eikl � vi � uik � wikl, where

l � 1; . . . ; nik, the number of individual sampled elements in the kth sub-area within small

area i; and V , N�O;Svv�, U , N�O;Suu�, and W , N�O;Sww� are each �SiSknik ´ 1�

column vectors.

2.1.6. Synthetic estimation

Synthetic estimation is different from the symptomatic or sample regression methods.

Synthetic estimation in its simplest form ®rst obtains national or regional subgroup

estimates, say by age-race-sex subgroups, and then derives a small area estimate by taking

the appropriate weighted average of these national subgroup estimates where the weights

re¯ect the age-race-sex composition of the small area. The accuracy of this method

depends on how similar each population subgroup's national/regional average is to its

small area average and also on the accuracy of the weights.

Before presenting synthetic estimation in a regression framework, consider a standard

formulation. The synthetic estimator of the average of characteristic Y for small area i is:

ÃÅYi:: �
X

j

Ni j Åy: j:

 !
=Ni: �5�

where Ni j denotes the size of the population in small area i; i � 1; . . . ; I, and subgroup

j; j � 1; . . . J; Ni: is the total population in small area i, and Åy: j: is the sample average of

Y for subgroup j, across all small areas.

Synthetic estimates were ®rst proposed in 1968 by the National Center for Health

Statistics to obtain state estimates for disability rates from the National Health Interview

Survey. Bogue and Duncan (1959) foreshadowed the use of synthetic estimates when they

suggested generalizing the vital rates version of symptomatic accounting techniques by

estimating each population subgroup separately using the symptomatic variable most

highly correlated with that group, and then combining the subgroups to derive an estimate

of the small area. This can be thought of as a synthetic estimate based on historical rather

than on sample data.

Using a superpopulation approach (see Section 2.2), Holt, Smith, and Tomberlin (1979)

examined whether synthetic estimation can be placed in the general linear model frame-

work as Yi j k � Bj � ei j k where Yi j k denotes the kth sampled individual of small area i and

subgroup j, Bj is the mean value for subgroup j, and ei j k is the error term distributed

N�O; j2
� for i � 1; . . . ; I; j � 1; . . . ; J; and k � 1; . . . ;Ni j. This is a one-way analysis of

variance model that assumes, as in synthetic estimation, that the expected value of all

individual units belonging to a subgroup j will be equal, regardless of the small area

they come from. The least squares and best linear unbiased estimate (BLUE) of Bj is
ÃBj � Åy: j: � SiSk[syi j k=Skni j where kes denotes those individual units in the sample and

8 Journal of Of®cial Statistics



ni j denotes the number of sampled elements in small area i and subgroup j. The best linear

unbiased predictor (BLUP) of the average in small area i is given by

ÃÅYi:: �
X

j

ni j�Åyi j: ÿ Åy: j:� �
X

j

Ni jy: j:

 !
=Ni: �6�

The synthetic estimate is the last term in Equation (6). The BLUP is thus not the

synthetic estimate unless there are no sampled data from small area i (in which case the

®rst term in Equation (6) is equal to zero). Using the superpopulation approach, therefore,

does not lead to the classical form of the synthetic estimator except in an extreme case.

Rather, the BLUP uses the observed data directly, and the synthetic estimate is used to

predict the nonsampled values. With small samples available from most small areas these

two estimators will be quite similar. However, when unequal probabilities of selection are

used in situations such as populations with highly skewed distributions for Y (e.g., energy

consumption per establishment) the two estimators may be quite different if, for example,

the sample includes with certainty all of the members of the population with the largest

values for Y . It is important to note that the superpopulation (empirical Bayes) form of

the synthetic estimator in Equation (6) is asymptotically consistent (as ni j approaches

Ni j;
ÃÅYi:: approaches ÅYi::), while the traditional synthetic estimator is not.

Gonzalez and Waksberg (1973) derive a general variance estimate for synthetic

estimators. They suggest using the average mean squared error (MSE) for all domain

estimates and using it show synthetic estimates to be preferable to regional averages for

estimating errors in vacancy rates in the 1970 U.S. Census. Their MSE estimate gives

only an estimate of average error over all domains; there is no way to derive an estimate

of the accuracy of any single small area estimate from this procedure. Despite the short-

comings of this estimator, it makes a large step forward in providing a measure of accuracy

for small area estimates that can be applied without assuming the validity of the underlying

model. Marker (1995) improves on this estimator by developing a small area-speci®c MSE

that combines a small area-speci®c variance estimate with an average squared bias term. If

the variance is a large component of the MSE, this estimator can identify small areas

whose estimates are signi®cantly more accurate than the estimates for other small areas.

To examine the effectiveness of the average MSE as a measure of accuracy, Gonzalez

(1973) compares a standard normal distribution to the empirical distribution of the biases

(as measured against the 1960 U.S. Census values) of the synthetic estimates in multiples

of the average root mean squared error (RMSE). The empirical distribution (when the true

total is small) is more concentrated inside one RMSE and beyond two RMSE than is the

standard normal distribution. The larger the true total the less obvious this difference from

a normal distribution becomes. For the largest estimates the deviations are reversed, with

the empirical distribution being ¯atter than the normal distribution.

Other papers using synthetic estimation for small areas include those by Aliaga and Le

(1991), DiGaetano, Waksberg, Mackenzie, and Yaffe (1980), Gonzalez and Hoza (1978),

Levy and French (1977), Namekata, Levy, and O'Rourke (1975), Schaible (1980), and

Shpiece (1981). DiGaetano et al. and Nemkata et al. both examined using synthetic

estimation for the National Health Interview Survey. The Aliaga and Le, DiGaetano

et al., Gonzalez and Hoza, and Levy and French papers compared synthetic estimation
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with other small area techniques. The Levy and French, Namekata et al., Schaible, and

Shpiece papers all discussed the impact of the assumptions underlying the synthetic

estimator.

Levy (1978) attempts to place synthetic estimation in a multiple regression framework,

with the subgroup means being the unknowns estimated from the sample. The independent

variables in his regression are the population proportions of subgroups j within small area

i. However, use of the population proportions as the independent variables does not

produce the synthetic estimator as a regression estimator. As shown below, the

independent variables should be indicator variables of the different subgroups. Let each

subgroup cross-classi®cation (e.g., 18- to 44-year-old black males) be a separate

symptomatic variable, and let Yi j k � B1X1 � B2X2 � B3X3 � . . . � BJXJ � ei j k, where

Xj �
1; if Yi j 0k is such that j 0 � j

0; otherwise

�
and ei j k , N�0; j2I�. The least squares estimate of B � �B1; . . . ;BJ�

0 is then
ÃB � �X0X�ÿ1X0Y, where X is an �n:: ´ J� matrix in which each row is entirely ®lled with

zeros except for a one in the column representing the subgroup to which that element

belongs. Sort the sampled units so that all n:1 rows of the X matrix with a one in column

one are ®rst, all n:2 rows with a one in column two are second, etc. Then

�X0X�ÿ1
� diagfnÿ1

:1 ; nÿ1
:2 ; nÿ1

:3 ; . . . ; nÿ1
:J g; X0Y� �y:1:; y:2:; y:3:; . . . y:J:�

0; ÃB� �X0X�ÿ1X0Y�

� Åy:1:; Åy:2:; Åy:3:; . . . ; Åy:J:�
0; ÄYi:: � SjSk

ÃBjXj � SjNi j Åy: j:; where diagfg is a diagonal �J ´ J�

matrix, ÄYi:: is the regression estimate of the total, and Ni j denotes the population size of

subgroup j in small area i. That is, when the X matrix is composed of indicator variables,

it is possible to put synthetic estimation in a multiple regression framework. In particular,

synthetic estimation is shown to ®t an individual-level regression model of the same form

as components of variance, where the small area random effects, vi, are all set equal to

zero.

The estimates produced by the synthetic estimator can be unstable when the subgroup

means are themselves unstable. This can occur for two different reasons: the overall

sample size may be small, so that the subgroup means are based on small samples; or

when the overall sample size is large, the number of variables that impact the estimates,

and therefore the number of subgroups, is large, so that the resulting sample size for each

subgroup is small. There are two methods for improving the stability of these subgroup

means (and hence the synthetic estimates). First, the means can be modeled and predicted

from all of the data where the variables that determine the subgroups are used as the

independent variables (Elston, Koch, Weissert 1991). The predicted value for each sub-

group is then used in the synthetic estimate instead of the sample average (in Equation

(5)). To the extent that the model describes the true underlying relationship in the data

these predicted values will produce accurate estimates for each small area. The second

approach is to place a prior distribution on the subgroup means and combine the sample

data with prior information to produce estimates for each subgroup that are optimal

conditional on the prior (Marker 1995).

Synthetic estimation uses past census data (sometimes updated from other sources) to

determine the subgroup composition of each small area. It does not make any assumptions

about historical correlations among variables. It is assumed that the average response for a
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given subgroup is the same in every small area. The failure of this assumption causes the

synthetic estimator to underestimate large deviations from the overall average that occur in

some small areas. Three adjustments to the standard synthetic estimator have been pro-

posed (referred to as composite estimators) to make it more sensitive to these deviations

and are described below. These adjustments are to combine the synthetic estimator with

either sample-based estimates, administrative records, or regression estimates.

2.1.7. Composite estimators

There are several forms of a composite estimator. The ®rst form uses a weighted average

of both the design-unbiased sample mean for small area i; Åy1i:, and the synthetic estimate,

Åy2i:, where the weights are inversely proportional to the mean squared errors of the two

estimators (Schaible, Brock, Schnack 1977; Schaible 1978a; Schaible 1978b.) The for-

mula for this composite estimator is

ÃÅy3i: � ti Åy1i: � �1 ÿ ti�ÃÅy2i: �7�

where

ti �
MSE ÃÅy2i:

ÿ �
Var� Åy1i:� � MSE ÃÅy2i:

ÿ �
and Åy1i: � SjSkwi j k yi j k=SjSkwi j k; wi j k is the weight for the kth respondent in subgroup j in

small area i; i � 1; 2; . . . ; I; j � 1; 2; . . . ; J; k � 1; 2; . . . ; ni j; ÃÅy2i: � SJ
j�1�Ni j Åy: j:=Ni:�, where

Ni j is the population of subgroup j in small area i, Åy: j: � SiSkwi j k yi j k=SiSkwi j k, and Ni: is

the population of small area i.

To use this composite estimator, the quantity ti, which is a function of Var� Åy1i:� and

MSE� ÃÅy2i:�, needs to be estimated. Var� Åy1i:� can be estimated directly from the survey

data in small area i. However, since in multi-stage samples many small areas contain

only one or two sampled primary sampling units (PSUs), these estimated variances can

be subject to extremely large variation. Thus, the Var� Åy1i:� are sometimes calculated

from generalized variance expressions (Wolter, 1985). A method for the calculation of

MSE� ÃÅy2i:� is described in Marker (1995). When no members of the sample come from a

particular small area, then the composite estimator is simply equal to the synthetic

estimator.

This composite estimator has been used at the National Center for Health Statistics to

calculate state level disability estimates (Malec 1993). The method of Fay and Herriot

(1979) is a similar composite estimator using sample regression rather than synthetic

estimation. Such an estimator has recently been proposed for allocating 6 billion USD

annually to counties in the United States to aid school districts with many poor children

(Citro et al. 1997). A composite estimator combining sample regression and direct estima-

tors is developed at the county level. A similar composite estimator (but with different

covariates) is derived at the state level. The county-level composite is then ratio-adjusted

to match the state-level estimator.

Another alternative composite estimator is to combine the synthetic estimate with the

regression methods. The percent deviation of the synthetic estimator from its (assumed)

true value can be modeled as the dependent variable in a symptomatic regression equation

(Levy 1971). This cannot be solved directly since the true values, and therefore the percent
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deviations, are unknown. Levy suggests estimating the regression coef®cients based on

collapsed sets of small areas and then using those values to revise the synthetic estimates

for each small area. A more direct approach simply incorporates the synthetic estimator,

along with the symptomatic variables, as independent variables in the sample regression

method (Nicholls 1977; Gonzalez and Hoza 1978). The method of Nicholls and Gonzalez

and Hoza is known as synthetic regression. Thus, synthetic regression assumes that any

adjustments to the synthetic estimator to account for model failure can be expressed as

a linear function of symptomatic variables.

The Schaible composite estimator can be shown to be similar to the components of

variance estimator described earlier. It was previously demonstrated that the synthetic

estimator can be expressed as a regression on a set of dummy variables. This allows

one to rewrite Equation (7) as ÃÅy3i: � ti Åy1i: � �1 ÿ ti�BX where X is a set of dummy

variables for the subgroups used in the synthetic estimator. In the notation of components

of variance the sample mean in small area i can be written as a regression estimate plus a

small area random effect, vi. Thus ÃÅy3i: � t�i �BX � vi� � �1 ÿ t�i �BX � BX � t�i vi. If an

average MSE across small areas is used for MSE� ÃÅy2i:� in Equation (7), then this is of

the same form as the components of variance estimator.

2.1.8. Structure preserving estimation

Purcell and Kish (1979, 1980) developed a contingency table approach to small area

estimation. Their estimates are known as structure preserving estimates (SPREE) and

are derived using the techniques of iterative proportional ®tting (IPF). IPF for contingency

tables is well documented (see Bishop, Fienberg, Holland 1975) and has many important

properties such as known convergence to the maximum likelihood estimates for each cell.

When applied to small area estimation, the contingency tables typically have three dimen-

sions corresponding to small areas, the categories of the variable being estimated, and the

population subgroups, respectively. The initial values for each cell of the contingency

table are typically data from a past census. These values are then updated by IPF to

correspond to marginal totals that re¯ect either a recent sample or updated values of

symptomatic variables. Purcell and Kish present six versions of SPREE which allow for

when the initial data are known for either all cells or only certain subsets.

One limitation on using SPREE occurs if the size of the sample available for updating is

small and one of the sampled marginal values is zero. The SPREE estimate of all cells in

the row (or column) adding up to that marginal will be zero, regardless of the original

census data.

Pham and Thomsen (1988) present a potential application of the SPREE estimator using

administrative records which are available for all small areas in Scandinavian registries.

The administrative records are used as the symptomatic variables for updating out-of-

date employment data.

SPREE estimates can provide improvements over synthetic estimates by re¯ecting the

more complex relationships between subgroups and small areas that are found in the

census data used for initial values. However, if the interrelationships have changed since

the last census, SPREE will not re¯ect such changes. Therefore, the utility of SPREE

estimates is highly dependent on the availability of recent census data. This methodology

is used in Australia where censuses are conducted every ®ve years (see, for example,
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Feeney 1987; Steel 1988.) SPREE can be written as a log-linear model, but unlike the ear-

lier estimators discussed in this chapter, it cannot be expressed as a linear regression

model.

2.2. Empirical Bayes or superpopulation approaches

The next two subsections discuss empirical Bayes and hierarchical Bayes approaches to

small area estimation. While the purpose of these sections is not to compare the different

philosophical approaches, it is necessary to understand the basic concepts underlying the

methods before discussing the actual models.

Many researchers have proposed alternative empirical Bayes approaches to address the

lack of suf®cient data for direct estimates. These empirical Bayes approaches (also

referred to as superpopulation or predictive approaches) assume that the population data

are a sample from a larger superpopulation that can be adequately represented by an

empirical Bayes model. Optimal estimators are derived dependent on the assumed model.

In some of the papers discussed below, an attempt has been made to examine the

robustness of such estimators against different types of model failure.

Scott and Smith (1969) present a clear description of the different populations of

inference for superpopulation versus traditional survey sampling approaches. They argue

that the superpopulation is often what is truly of interest, especially with repeated surveys

where the population of inference is recognized to change across the time of the repeated

surveys.

A detailed development of the superpopulation approach to survey sampling is given by

Cassel, SaÈrndal, and Wretman (1978). They describe various Bayesian approaches,

including the concept of exchangeability, but stop short of placing Bayesian prior

distributions on their models. The authors of this book have developed a number of

empirical Bayes estimators that attempt to balance variance and bias. Comparisons of

these estimators are included in Cassel et al. (1987), SaÈrndal and Hidiroglou (1989),

and LundstroÈm (1988).

One method for examining the robustness of empirical Bayes small area estimators is to

determine how the estimator would change under alternative models. Holt, Smith, and

Tomberlin (1979) examine ®ve different sets of assumptions that are commonly used in

traditional approaches to small area estimation such as synthetic estimation. For each of

these assumptions the optimal model-based estimators of the population total are derived

and their MSEs calculated. Next, they address the often-asked but seldom-answered

question, ``What if my assumptions are wrong?'' Their answer is to calculate the biases

resulting from using any of these estimators if one of the other four models were instead

correct. This procedure provides some indications of how the different estimators behave

under less than ideal situations. They suggested moving ``away from the search for a

single multipurpose estimator with reasonable average properties that may be poor under

certain circumstances toward classes of estimators from which a single estimator is

selected for each speci®c problem.''

The U.S. Bureau of the Census produces small area estimates using an empirical Bayes

technique for estimation of per capita income for 39,000 units of local government (Fay

and Herriot 1979). Previously the U.S. Bureau of the Census had imputed county total
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estimates for unknown values within a county. Fay and Herriot derived two separate

estimates for small areas: a sample regression estimate based on census symptomatic

data and a direct sample estimate based on the census 20 percent sample in each small

area. An average (across small areas) lack of ®t for the regression model was calculated,

as was the sample variance for the 20 percent sample. Using the inverses of these variance

estimates as weights, a combined James-Stein estimator was proposed. In order not to

deviate too far from the sample estimate, the ®nal estimate was constrained to deviate

no more than one standard error. This estimator was empirically demonstrated to be

superior to the previously used county estimates.

2.2.1. Time series models

The empirical Bayes approach can be expanded to borrow strength not only from other

small areas but also from previous surveys that include the same variable. Pfeffermann

and Burck's (1990) application of this approach involves a survey that is repeated at

regular intervals. A time series methodology is used to update the previous survey

estimates to the present time period. The Fay-Herriot approach can also be expanded to

include random time series effects in addition to ®xed small area effects (Rao and Yu,

1994).

Recently there has been increased interest in such time series models for producing

small area estimates for labor force surveys. Tiller (1992) modeled U.S. Current

Population Survey time series to include trend, seasonal, and irregular components, plus

additional explanatory variables. State estimates are then a weighted average of the sample

data from the current and all previous months. A simpli®ed version of this model was

implemented by the U.S. Bureau of Labour Statistics for 39 states and the District of

Columbia. A similar approach has been examined for Canadian unemployment rates

(Pfeffermann and Bleuer 1993) where the complex sample rotation patterns were

accounted for by separately estimating survey errors for each household panel.

These time series models can also be used to improve trend estimates for small areas.

Pfeffermann, Feder, and Signorelli (1998) estimate survey error autocorrelations and

separate them out from trend estimates for the Australian labor force survey. They

demonstrate that such models can produce better estimates of population values and

forecasts of future values.

2.2.2. Models with random and ®xed effects

Another expansion of the empirical Bayes framework uses a multiple linear regression

model where the deviations from the model are split into random and ®xed effects

components (Fuller and Harter 1987; Battese, Harter, Fuller 1988.) This allows the

expectation to vary from small area to small area. This method can be applied to the

situation where one wants to predict Y given X and Z, but Z is measured with error

(Fay 1987). A multivariate linear regression model is used to predict Y and Z given X.

Fay's example uses state-level estimates of three- and ®ve-person family median

income (Z) in predicting four-person family median income (Y). This goes beyond the

usual empirical Bayes procedure in that it uses auxiliary data (Z), in addition to the

sample, in the estimation process. Datta, Fay, and Ghosh (1991) improve on Fay's

procedure by examining empirical Bayes, regression, and two types of hierarchical Bayes
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estimators for four-person family median income. Ghosh, Nangia, and Kim (1996) expand

this further by including time series effects.

The Fuller and Harter model can be extended to allow not only the intercept, but also the

regression coef®cients, to vary from small area to small area. Holt and Moura (1993a,b)

extend the model in this way and also explore the effect of including small area level

covariates. Through a series of simulations they examine when the MSE of a small area

is likely to be improved by these generalizations and also when the estimators are robust

to departures from the assumptions of the models.

For each of these generalizations Holt and Moura produce BLUPs. Introduced by

Henderson (1975), BLUPs are the linear models version of empirical Bayes estimators

when the model includes random effects. Robinson (1991) examined the relationships

between these two types of estimators and showed that when the random effects are

normally distributed the BLUPs are equivalent to empirical Bayes estimators. When

parametric assumptions are made for the random effects the BLUPs are equivalent to

parametric empirical Bayes predictions. Harville (1991) pointed out that while the

predicted point estimates produced by BLUPs and empirical Bayes estimators are often

the same, they treat variance estimation differently. Both frequently underestimate their

mean squared errors, but, since empirical Bayes ®ts easily into a hierarchical Bayes frame-

work, it is easier to incorporate the extra variation into empirical Bayes estimation.

Schaible (1993b) and Harville differentiate between the terms BLUE and BLUP by using

BLUE for a model parameter (assumed constant under the model) and BLUP for a ®nite

population total or mean.

Prasad and Rao (1990) develop approximate MSEs, and estimates of the MSEs, for the

Fuller and Harter, and Fay and Herriot, estimators. They point out that empirical Bayes

estimates of MSE underestimate the true MSE by not accounting for the variation in

the estimates of the model-dependent variances. By adjusting for this component of

variation, their MSE estimator is unbiased, conditional on the model. Lahiri and Rao

(1995) show that this estimator of MSE is still unbiased if Prasad and Rao's assumption

of normality is eliminated. Prasad and Rao's methodology can be used to produce

model-dependent approximate MSEs for the Fay and Herriot estimator expanded to

include random time series effects (Rao and Yu 1994).

Thus a number of authors have proposed empirical Bayes approaches to small area

estimation, borrowing strength from other small areas. In recent years this approach has

been expanded by borrowing strength across time (Tiller 1992), through multivariate

regression (Fay 1987), adding small area ®xed effects (Fuller and Harter 1987), and

adding small area covariates (Holt and Moura 1993a,b). The next section examines the

more general approach of placing a prior distribution on the parameters of the small

area model.

2.3. Bayesian approaches

It is important when either examining or using model-dependent approaches to emphasize

that a model is not chosen because it is believed to be correct, but rather on the basis of

one's belief that it will adequately approximate the truth. When using empirical Bayes

models it is, therefore, important to examine robustness to model failure. Alternatively,
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using a subjective or hierarchical Bayesian approach, it can be assumed that a class of

models contains the truth. One assumes a prior distribution that is then updated by the

observed sample to derive optimal estimators conditional on the speci®c set of data that

are observed.

From the subjective Bayesian view the ®nite population Y � �Y1;Y2; . . . YN� is unknown

but prior information about Y is known. This is re¯ected in a prior subjective probability

distribution on the random variables Y given by p(Y). Inference on Y proceeds by

computing the posterior distribution p�Yj�s; y��, where �s; y� are the sample labels, s,

and data, y.

Bernardo, in a note on a paper presented by Dempster (1975), suggests the appropriate-

ness of using a Bayesian (as compared to empirical Bayesian) approach by explaining that

any superpopulation model can be expressed as part of the prior speci®cation. He suggests

that use of a class of priors would lead to more robust inference. This is a view also

expressed by Ericson (1982).

Bayesian improvements to the standard regression and synthetic regression methods

appear to be particularly appropriate for a survey that is repeated over time. In such cases

a hierarchical model can be developed, at least in part, from the experience gained from

previous iterations. Malec (1981) assumes the population (e.g., the persons in a country)

can be partitioned into exchangeable (Ericson 1969) sub-areas (e.g., regions). Then the

regression estimate can be improved by taking a weighted average of the regional and

national estimates. He also assumes that there is exchangeability across time. The compo-

site estimate then includes a sample estimate, past and present regional estimates, and past

and present national estimates. Malec and Sedransk (1985) derive Bayes estimators for

small areas in a three-stage clustered sample design using categorical auxiliary variables.

This methodology has been expanded to incorporate continuous auxiliary variables

(Farrell, MacGibbon, Tomberlin 1997), but in an empirical Bayesian framework.

Stroud (1987) discusses a Bayesian procedure when an equal sample size has been

selected in all small areas. For unequal sample sizes he suggests two alternatives. First,

if there are only a few areas, use numerical integration to derive the Bayesian solution

since using empirical Bayes would ``ignore uncertainty (arising from estimates based

on only a few areas) concerning the variance of the means.'' Second, if there is a large

number of small areas, he suggests using empirical Bayes techniques since this source

of uncertainty (in estimating variances) will be reduced.

In some situations one desires to optimally estimate the mean and variance of a set of

parameters (e.g., the distribution of median per capita income across small areas). This is a

slightly different problem than the typical attempt to develop a best estimate for particular

small areas. Louis (1984) provides a theoretical model and empirical example for this by

matching the sample mean and variance to the posterior expected mean and variance. His

shrinkage factor is the square root of the Bayes shrinkage and is, therefore, inferior for

estimating individual means. Thomsen (1994) and Spjùtvoll and Thomsen (1987),

provide an example using this shrinkage factor for Norwegian labor statistics.

The work of Louis can be expanded to include constrained hierarchical Bayes

estimators. Ghosh (1992) constrains the posterior expected mean and variance to be able to

determine a set of small areas whose values are beyond a certain predetermined cut-off,

for example those with median incomes of under 15,000 USD. His constraint on the
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Table 1. Summary of small area estimation techniques

Information used:

Technique Total Yi:: Sample Data Symptomatic variables Assumptions
estimated by Xi (examples)

Vital rates xi�tÿ1�

xst

xs�tÿ1�

No Births, deaths Ratio of small area rate
to state rate invariant
since last census.

Symptomatic regression X�
i

ÃB No Rates of change of Regression equation
births, deaths, etc. since invariant since census
last census and between before the most recent.
the last two censuses

Sample regression Xi
ÃB Yes Rates of change of Changes in sampled

(Dependent variables births, deaths, etc. small areas are
at area level) representative of those in

other areas.

Components of Xi
ÃB � Ãvi Yes Number of tax forms, Sampled small areas are

variance regression (Dependent variable crops, etc. representative of other
at individual level) areas.

Synthetic estimation
XJ

j�1

Ni j Åy: j: Yes Indicator variables for Subgroup means are
(Independent variable) each subgroup j equal in each small area.

Population proportions
invariant since most
recent census.

Note: xst refers to symptomatic variable in state s (containing small area i) at time t. X�
i are the symptomatic variables for small area i for a more recent time period than is used to

compute the regression coef®cients.



shrinkage is based on the relative magnitudes of the posterior expected variance and the

observed variation among the Bayes estimates for the different small areas. Ghosh

replaces Louis's assumption of normality with more general assumptions of quadratic

loss or posterior linearity (Ericson 1969). This constrained hierarchical Bayes estimator

was compared to traditional Bayes and empirical Bayes estimators by Datta, Fay, and

Ghosh (1991) and found to provide fairly similar estimates.

Marker (1995) and Marker and Waksberg (1994) use the concept of exchangeability to
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produce a generalized version of the synthetic estimator. The subgroup means are no

longer assumed equal, but rather to be exchangeable with common prior mean and

variance. For each subgroup a weighted average is taken of the sample and prior mean.

This posterior expectation for each subgroup is then used to produce small area estimates

by weighting them according to the subgroup decomposition of the small area. Such an

estimator could be of use, for example, when a sample of small areas is selected as part

of each cycle of a repeated survey. Historical data would then be available for the mean

of subgroups of the population, but not for small area means.

3. Summary of Interrelationships

Section 2 described the interrelationship among the different small area estimation

techniques. Many of the estimators can be viewed in a hierarchical structure where

each method builds on the others either by relaxing the multiple regression assumptions

or including new sources of information. Table 1 summarizes the relationships for vital

rates and the four traditional survey sampling regression estimators.

These ®ve regression estimators make very different use of sample data. Vital rates and

symptomatic regression do not use sample data, relying on data from the census. Sample

regression and components of variance use sample data as part of the dependent variable,

the former at the small area level while the latter uses it at the individual level. Synthetic

estimation uses sample data at the small area level as the independent variables.

Figure 1 pictorially demonstrates this structure with each arrow above the dotted line

pointing toward the more general type of estimator. Bogue (1950) generalized the

symptomatic accounting technique into the vital rates technique by using the rates of

change since the previous census. Schmitt and Crosetti (1954) provided a multivariate

version of the vital rates technique. Vital rates was shown to be a special case of multiple

regression on symptomatic variables, and symptomatic regression and the synthetic

estimator were also shown to be forms of multiple regression.

A series of small area estimators have been developed using multiple regression,

synthetic estimation, and the sample-based direct estimator as building blocks. Ericksen

(1973, 1974) suggested generalizing the regression techniques to include sample data at

the small area level. This enabled him to loosen the assumptions necessary for

symptomatic regression. Fuller and Harter (1987) also included sample data in a

(components of variance) regression equation, but at the individual level, and allowed

the error term to have two components, one random and the other small area speci®c.

Numerous authors have taken these estimators and placed them in empirical Bayes and

hierarchical Bayesian frameworks that allow for direct examination of the appropriate

underlying model assumptions.

The sample regression technique can be combined with synthetic estimation to develop

the synthetic regression techniques of Levy (1971) or Nicholls (1977) and Gonzalez and

Hoza (1978). The sample regression technique may also be combined with the direct

sample estimate to derive the composite estimator suggested by Fay and Herriot (1979).

Combining the sample estimate with the synthetic estimate results in the composite

estimator introduced by Schaible, Brock, and Schnack (1977) and Schaible (1978a,

1978b). Incorporating data from multiple survey cycles allows for the inclusion of time

series components in these estimators.
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For many small areas there is often no sample available to use in a composite estimator.

The sample (or components of variance) regression estimator is always usable (since the

model is developed for those areas with sample data and then applied to all areas) but is

only effective if a strong linear relationship exists among the available variables.

4. References

Aliaga, A. and Le, T. (1991). Methodology for Small-Area Estimation with DHS Samples.

Estadistica, 43, 53±90.

Battese, G.E., Harter, R.M., and Fuller, W.A. (1988). An Error-Components Model for

Prediction of County Crop Areas Using Survey and Satellite Data. Journal of the

American Statistical Association, 83, 28±36.

Bernardo, J.M. (1975). A Discussion of ``A Subjectivist Look at Robustness'' by

Dempster, A.P. and ``Beyond Location Parameters'' by Hempel, F.R. Bulletin of the

International Statistical Institute. 46, Book 1, 386±387.

Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W. (1975). Discrete Multivariate

Analysis, Theory and Practice. Cambridge, Massachusetts: MIT Press.

Bogue, D.J. (1950). A Technique for Making Extensive Population Estimates. Journal of

the American Statistical Association, 45, 149±163.

Bogue, D.J. and Duncan, B. (1959). A Composite Method for Estimating Postcensal

Population of Small Areas by Age, Sex, and Color. Vital Statistics, 47:6.

Cassel, C.M., Kristiansson, K.E., RaÊbaÈck, G., and WahlstroÈm, S. (1987). Using Model-

Based Estimation to Improve the Estimate of Unemployment on a Regional Level in

the Swedish Labor Force Survey. Small Area Statistics, An International Symposium.

New York: John Wiley and Sons, 141±159.

Cassel, C.M., SaÈrndal, C.E., and Wretman, J.H. (1977). Foundations of Inference in

Survey Sampling. New York: John Wiley and Sons.

Citro, C.F., Cohen, M.L., Kalton, G., and West, K.K. (1997). Small-Area Estimates of

School-Age Children in Poverty. Interim Report 1: Evaluation of 1993 County

Estimates for Title 1 Allocations. Washington, DC: National Academy Press.

Datta, G.S., Fay, R.E., and Ghosh, M. (1991). Hierarchical and Empirical Multivariate

Bayes Analysis in Small Area Estimation. Proceedings of the U.S. Bureau of the Census

Annual Research Conference, 63±79.

DiGaetano, R., Waksberg, J., Mackenzie, E., and Yaffe, R. (1980). Synthetic Estimates for

Local Areas from the Health Interview Survey. Proceedings of the Section on Survey

Research Methods, American Statistical Association, 46±55.

Elston, J.M., Koch, G.G., and Weissert, W.G. (1990). Regression-Adjusted Small Area

Estimates of Functional Dependency in the Noninstitutionalized American Population

Age 65 and Over. American Journal of Public Health, 81, 335±43.

Ericksen, E. (1973). Recent Developments in Estimation for Local Areas. Proceedings of

the Social Statistics Section, American Statistical Association, 37±41.

Erickson, E. (1974). A Regression Method for Estimating Population Changes of Local

Areas. Journal of the American Statistical Association, 69, 867±875.

Ericksen, E. and Kadane, J.B. (1987). Sensitivity Analysis of Local Estimates of Under-

count in the 1980 U.S. Census. Small Area Statistics, An International Symposium.

New York: John Wiley and Sons, 23±45.

20 Journal of Of®cial Statistics



Ericson, W. (1969). Subjective Bayesian Models in Sampling Finite Populations. Journal

of the Royal Statistical Society B, 31, 195±233.

Ericson, W. (1981). Bayesian Sampling Lecture Notes. Unpublished, University of

Michigan.

Ericson, W. (1982). Personal communication.

Ericson, W. (1983). A Bayesian Approach to Regression Estimation in Finite Populations.

University of Michigan Technical Report, 120.

Farrell, P.J., MacGibbon, B., and Tomberlin, T.J. (1997). Empirical Bayes Small-Area

Estimation Using Logistic Regression Models and Summary Statistics. Journal of Busi-

ness and Economic Statistics, 15:1, 101±108.

Fay, R. (1987). Application of Multivariate Regression to Small Domain Estimation.

Small Area Statistics, An International Symposium. New York: John Wiley and

Sons, 91±123.

Fay, R. and Herriot, R. (1979). Estimation of Income for Small Places: An Application of

James-Stein Procedures to Census Data. Journal of the American Statistical

Association, 74, 269±277.

Feeney, G.A. (1987). The Estimation of the Number of Unemployed at the Small Area

Level. Small Area Statistics, An International Symposium. New York: John Wiley

and Sons, 198±218.

Fuller, W.A. and Harter, R.M. (1987). The Multivariate Components of Variance Model

for Small Area Estimation. Small Area Statistics, An International Symposium. New

York: John Wiley and Sons, 103±123.

Ghangurde, P.D. and Gray, G.B. (1978). Estimation for Small Areas in Household

Surveys. Proceedings of the Section on Survey Research Methods, American

Statistical Association, 712±715.

Ghosh, M. (1992). Constrained Bayes Estimation with Applications. Journal of the

American Statistical Association, 87, 533±540.

Ghosh, M., Nangia, N., and Kim, D.H. (1996). Estimation of Median Income of Four-

Person Families: A Bayesian Time Series Approach. Journal of the American Statistical

Association, 91, 1423±1431.

Ghosh, M. and Rao, J.N.K. (1994). Small Area Estimation: An Appraisal. Statistical

Science, 9:1, 55±93.

GonzaÂlez, M. (1973). Use and Evaluation of Synthetic Estimators. Proceedings of the

Social Statistics Section, American Statistical Association, 33±36.

GonzaÂlez, M. and Hoza, C. (1978). Small Area Estimation with Application to Unemploy-

ment and Housing Estimates. Journal of the American Statistical Association, 73, 7±15.

GonzaÂlez, M. and Waksberg, J. (1973). Estimation of the Error of Synthetic Estimates.

Paper presented at the ®rst meeting of the International Association of Survey

Statisticians, Vienna, Austria.

Hansen, M.H., Hurwitz, W.N., and Madow, W.G. (1953). Sample Survey Methods and

Theory, Vol. 1. Methods and Applications, Vol. II Theory. New York: John Wiley

and Sons.

Harville, D.A. (1991). Discussion of paper by Robinson. Statistical Science, 6, 35±39.

Henderson, C.R. (1975). Best Linear Unbiased Estimation and Prediction Under a

Selection Model. Biometrics, 31, 423±447.

21Marker: Organization of Small Area Estimators Using a Generalized Linear Regression Framework



Holt, D., Smith, T.M.F., and Tomberlin, T.J. (1979). A Model Based Approach to

Estimation for Small Subgroups of a Population. Journal of the American Statistical

Association, 74, 405±410.

Holt, D. and Moura, F. (1993a). Mixed Models for Making Small Area Estimates. In

Kalton, G., Kordos, J., and Platek, R., eds: Small Area Statistics and Survey Designs,

1, Central Statistical Of®ce, Warsaw, Poland, 221±231.

Holt, D. and Moura, F. (1993b). Small Area Estimation Using Multi-Level Models.

Proceedings of the Section on Survey Research Methods, American Statistical

Association, 21±30.

Kish, L. (1965). Survey Sampling. New York: John Wiley and Sons.

Kish, L. (1987). Discussion. Small Area Statistics. An International Symposium. New

York: John Wiley and Sons, 267±271.

Lahiri, P. and Rao, J.N.K. (1995). Robust Estimation of Mean Squared Error of Small Area

Estimators. Journal of the American Statistical Association, 90, 758±766.

Levy, P.S. (1971). The Use of Mortality Data in Evaluating Synthetic Estimates.

Proceedings of the Social Statistics Section, American Statistical Association,

328±331.

Levy, P.S. (1978). Small Area Estimation ± Synthetic and Other Procedures, 1968±1978.

National Institute on Drug Abuse Research Monograph, 24, 4±33.

Levy, P.S. and French, D.K. (1977). Synthetic Estimates of State Health Characteristics

Based on the Health Interview Survey. Vital and Health Statistics, 2:75.

Louis, T.A. (1984). Estimating a Population of Parameter Values Using Bayes and

Empirical Bayes Methods. Journal of the American Statistical Association, 79, 393±398.

LundstroÈm, S. (1988). Experiences on Small Domain Estimation Methods at Statistics

Sweden. Presented at the NCHS International Symposium on Small Area Statistics,

New Orleans, Louisiana.

Malec, D. (1981). Outline of Hierarchical Improvement of Small Area Estimates: U.S.

Bureau of the Census. (Mimeographed).

Malec, D. and Sedransk, J. (1985). Bayesian Inference for Finite Population Parameters in

Multistage Cluster Sampling. Journal of the American Statistical Association, 80, 879±

902.

Malec, D. (1993). Model Based State Estimates from the National Health Interview

Survey. Statistical Policy Working Paper 21, Indirect Estimators in Federal Programs.

Of®ce of Management and Budget, 8-1±8-25.

Marker, D.A. and Waksberg, J. (1994). Small Area Estimation for the U.S. National

Health Interview Survey. Statistics in Transition, 1, 6, 747±768.

Marker, D.A. (1995). Small Area Estimation: A Bayesian Perspective. Unpublished

dissertation.

Martin, J.H. and Serow, W.J. (1978). Estimating Demographic Characteristics Using the

Ratio-Correlation Method. Demography, 15:2, 223±233.

Namekata, T., Levy, P.S., and O'Rourke, T.W. (1975). Synthetic Estimates of Work Loss

Disability for Each State and the District of Columbia. Public Health Reports, 90:6,

532±538.

National Center for Health Statistics (1968). Synthetic State Estimates of Disability.

P.H.S. Publication No. 1759. Washington, DC: Government Printing Of®ce.

22 Journal of Of®cial Statistics



Nicholls, A. (1977). A Regression Approach to Small Area Estimation. Australian Bureau

of Statistics. (Mimeographed).

Otelsberg, J. (1981). Small Area Estimates Based on Concurrent Measures Versus

Regression Estimates: The Case of One Family House Construction. Proceedings of

the Section on Survey Research Methods, American Statistical Association,

690±709.

Pfeffermann, D. and Barnard, C.H. (1991). Some New Estimators for Small-Area Means

with Application to the Assessment of Farmland Values. Journal of Business and

Economic Statistics, 9, 73±84.

Pfeffermann, D. and Bleuer, S.R. (1993). Robust Joint Modeling of Labor Force Surveys

of Small Areas. Survey Methodology, 19, 149±163.

Pfeffermann, D. and Burck, L. (1990). Robust Small Area Estimation Combining Time

Series and Cross-Sectional Data. Survey Methodology, 16, 217±238.

Pfeffermann, D., Feder, M., and Signorelli, D. (1999). Estimation of Autocorrelations of

Survey Errors With Application to Trend Estimation in Small Areas. Journal of

Business and Economic Statistics, forthcoming.

Pham, D.Q. and Thomsen, I. (1988). Small Area Estimation Possibilities and Limitations.

Presented at the NCHS International Symposium on Small Area Statistics, New

Orleans, Louisiana.

Prasad, N.E. and Rao, J.N.K. (1990). The Estimation of the Mean Squared Error of Small

Area Estimators. Journal of the American Statistical Association, 85, 163±170.

Purcell, N. and Kish, L. (1979). Estimation for Small Domains. Biometrics, 35, 365±

384.

Purcell, N. and Kish, L. (1980). Postcensal Estimates for Local Areas. International

Statistical Review, 48, 3±18.

Pursell, D.E. (1970). Improving Population Estimates with the use of Dummy Variables.

Demography, 7:1, 87±91.

Rao, J.N.K. and Yu, M. (1994). Small Area Estimation by Combining Time Series and

Cross-Sectional Data. Canadian Journal of Statistics, 22:4, 511±528.

Robbins, H. (1964). The Empirical Bayes Approach to Statistical Decision Problems.

Annals of Mathematical Statistics, 35, 1±20.

Robinson, G.K. (1991). That BLUP is a Good Thing: The Estimation of Random Effects.

Statistical Science, 6, 15±32.

SaÈrndal, C.E. and Hidiroglou, M.A. (1989). Small Domain Estimation: A Conditional

Analysis. Journal of the American Statistical Association, 84, 266±275.

Schaible, W.L. (1978a). A Composite Estimator for Small Area Statistics. National

Institute on Drug Abuse Research Monograph, 24, 36±62.

Schaible, W.L. (1978b). Choosing Weights for Composite Estimators for Small Area

Statistics. Proceedings of the Section on Survey Research Methods, American

Statistical Association, 741±746.

Schaible, W.L. (1980). A Discussion of ``Synthetic Estimates for Local Areas from the

Health Interview Survey'' by DiGaetano, R., Waksberg, J., Mackenzie, E., and Yaffe,

R. Proceedings of the Section on Survey Research Methods, American Statistical

Association, 56.

Schaible, W.L. (1993a). Use of Small Area Estimators in U.S. Federal Programs. In

23Marker: Organization of Small Area Estimators Using a Generalized Linear Regression Framework



Kalton, G., Kordos, J., and Platek, R., eds: Small Area Statistics and Survey Designs, 1.

Central Statistical Of®ce, Warsaw, Poland, 221±231.

Schaible, W.L. (1993b). Personal communication.

Schaible, W.L., Brock, D.B., and Schnack, G.A. (1977). An Empirical Comparison of the

Simple In¯ation, Synthetic, and Composite Estimators for Small Area Statistics.

Proceedings of the Social Statistics Section, American Statistical Association,

1017±1021.

Schmitt, R.C. and Crosetti, A.H. (1954). Accuracy of the Ratio-Correlation Method for

Estimating Post-Censal Population. Land Economics, 30:3, 279±281.

Scott, A. and Smith, T.M.F. (1969). Estimation in Multi-Stage Surveys. Journal of the

American Statistical Association, 64, 830±840.

Shpiece, M.R. (1981). The Use of Synthetic Estimation in Estimating the Elderly Popula-

tion in Need: A Study and Comments. Proceedings of the Social Statistics Section,

American Statistical Association, 267±272.

Singh, M.P., Gambino, J., and Mantel, H.J. (1994). Issues and Strategies for Small Area

Data. Survey Methodology, 20:1, 3±22.

Spjùtvoll, E. and Thomsen, I. (1987). Application of Some Empirical Bayes Methods to

Small Area Statistics. Bulletin of the International Statistical Institute, 2, 435±449.

Steel, D. (1988). Approaches to Small Area Estimation at the Australian Bureau of

Statistics. Presented at the NCHS International Symposium on small Area Statistics,

New Orleans, Louisiana.

Stroud, T.W.F. (1987). Bayes and Empirical Bayes Approaches to Small Area Estimation.

Small Area Statistics, An International Symposium. New York: John Wiley and Sons,

124±137.

Thomsen, I. (1994). A discussion of ``Small Area Estimation: An Appraisal'' by Ghosh,

M. and Rao, J.N.K. Statistical Science, 9:1, 89±90.

Tiller, R.B. (1992). Time Series Modeling of Sample Survey Data from the U.S. Current

Population Survey. Journal of Of®cial Statistics, 8, 149±166.

U.S. Department of Commerce, Bureau of the Census (1974). Estimates of the Population

of States with Components of Change, 1970 to 1973. Current Population Reports,

Population Estimates and Projections, Series P-25, 520.

U.S. Department of Commerce, Bureau of the Census (1980). Population and Per Capita

Money Income Estimates for Local Areas: Detailed Methodology and Evaluation.

Current Population Reports, Population Estimates and Projections, Series P-25, 699.

Wolter, K.M. (1985). Introduction to Variance Estimation. New York: Springer-Verlag.

Woodruff, R.S. (1966). Use of a Regression Technique to Produce Area Breakdowns of

the Monthly National Estimates of Retail Trade. Journal of the American Statistical

Association, 61, 496±504.

Received September 1996

Revised August 1998

24 Journal of Of®cial Statistics


